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Abstract

High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-
level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these
approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation.
In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE) genes which
– by simply comparing genes to themselves – have the pitfall of taking molecular information out of context.
Numerous scientists have emphasised the need for better context. This can be achieved through holistic
measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists
continue to use isolated lists of DE genes as the major source of input data for common readily available analytical
tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these
problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed
experiment, it is now possible to use gene expression to identify causal mutations and the other major effector
molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various
reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these
conclusions.
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“Given one hour to solve a problem my life depended
on, I would spend fifty five minutes defining the nature
of the question to be solved. The remaining five
minutes would be more than adequate to answer that
question.” Albert Einstein (1879–1955) on priorities in
problem solving.

“An approximate answer to the right question is worth
a great deal more than a precise answer to the wrong
question.” John Tukey (1915–2000) on priorities in
problem solving.

“Low input, high throughput, no output!” Sydney
Brenner (1927-) on the application of high throughput
gene expression technologies to biological problem
solving.
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In this correspondence piece we describe a previously
published set of gene expression analyses [1-4] - devel-
oped on skeletal muscle, but universally applicable – that
can correctly determine the site of causal mutations and
prioritise major effector molecules, in the absence of Dif-
ferential Expression (DE). Although the causal gene(s)
may or may not be directly measurable through their
own expression changes, they always cast a long tran-
scriptional shadow over the rest of the data - and the
shadow can be quantified.
This kind of mechanistic systems-level and molecular-

level understanding surely underpins medical break-
throughs, productivity gains in agricultural commodities
and many other diverse applications of biological
modelling.
Gene expression analysis is a mathematical area, but

we recognise that the interested end users may be prac-
ticing scientists without advanced mathematical training.
Therefore, we have endeavoured to explain the mathem-
atical approaches figuratively, making ample use of meta-
phor and analogy.
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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This piece is not an exhaustive historical review of
gene expression network analyses. Readers interested in
alternative examples of recent promising methods can be
found here [5-8] and a recent review of differential net-
working can be found here [9]. Nor is this correspond-
ence intended as a broader view on the various
complementary data types and methods aimed at identi-
fying causal genes and pathways such as expression QTL
analyses, mutation enriched pathways [10], methods for
linking expression to clinical outcomes [11], ChIP-on-
chip or genome-wide association studies.
We restrict our commentary to a personal perspective

on those network analyses invented by our group that
can be run entirely on gene expression data independent
of other data sources. A formal and more detailed de-
scription of each of these methods, including the statis-
tical output, can be found in the literature cited.

Why skeletal muscle?
Skeletal muscle is a relatively well-understood tissue.
From an anatomical viewpoint it is formed from
repeated structural subunits, built up hierarchically from
cell to muscle fibre via sarcomeres and myofibrils. The
development of muscle from embryonic precursor cell
populations to mature adult organ is understood to be
largely regulated by a mere handful of pro-myogenic
transcription factors (MYOD1, MYOG, MEF2C, MYF5,
MYF6) [12].
Skeletal muscle appears to us to be an appropriate,

tractable tissue upon which to invent and calibrate new
analytical and computational methods. The generality of
the methods can be assessed by applying them more
broadly to other species, tissues and circumstances and
comparing the output against the experimentally vali-
dated literature. Unfortunately, there are not many cases
where comprehensive gene expression contrasts have
been performed in circumstances where a causal muta-
tion has also unambiguously been identified.

Gene expression data: promise and limitations
The last decade has witnessed the emergence of cheap,
high-throughput techniques, including the microarray
expression platforms. Microarrays, and the subsequent
RNA sequencing based methods, provide detailed simul-
taneous expression information for tens of thousands of
genes. The standard gene expression paper consists of
lists of DE genes followed by enrichment analyses per-
formed by web tools such as GOrilla [13], GSEA [14,15],
DAVID [16] or Ingenuity Pathway Analysis (http://www.
ingenuity.com/).
Informed commentators have suggested that gene ex-

pression technologies have failed to live up to their
promise of providing molecular and systems-level expla-
nations of biological phenomena, because the ability to
extract meaning from the data is poorer than the ability
to generate the data in the first place.
One of the more vocal critics, Sydney Brenner claims

that inferring models of physiology and development
from descriptions of molecular events in a complex sys-
tem is an insoluble ‘inverse problem’ [17,18]. By way of
analogy, Brenner argues that this is rather like inferring
the physical properties of a musical instrument based en-
tirely on a recording of the sounds emitted. Brenner
argues that the approach is ‘. . .bound to fail. . .’ because
the ‘measurements taken are static snapshots’ and that
‘. . .information is lost.’
Therefore, so the argument runs, while the data gener-

ation is enormous (“high throughput”) the gain in know-
ledge or understanding has been minimal (“no output”).
Brenner makes a related claim that the natural functional
unit in biology is the cell, and that consequently an
understanding of biology rests on cell-level analyses [18].
Our overarching aim is to outline how gene expression

data can be exploited to say something meaningful about
the regulatory biology of skeletal muscle [1,2], and also
how exactly the same methods have been applied to
other (non – muscle) circumstances with success [4].
We will show that providing a reasonable resolution of
the inverse problem of bovine muscle physiology and de-
velopment can be achieved without recourse to the func-
tional unit that is the cell.
The set of arguments that follow are built on a very

simple insight, made independently by a number of
groups (reviewed in [9]). To understand the regulatory
behaviour of molecules in a complex system, they must
not be considered in isolation, but rather in the context
of other molecules.
Computing DE, the most commonplace first pass gene

expression analysis, necessarily involves comparing a mol-
ecule to itself. Because this process neglects contextual in-
formation it is a form of inappropriate reductionism.
In trying to understand why a phenotype changes, one

should not merely think “which gene(s) are the most dif-
ferentially expressed”, but rather “which gene(s) are the
most differentially connected.” This insight introduces us
to the field of network science. Defining and exploiting
differential connectivity has been an area of active debate
and the details of the definition strongly influence its
utility.

The model system
We have studied Longissimus muscle in two breeds of
cattle across development using the Bovine Agilent
microarray platform [1,2]. One of the breeds, the Pied-
montese, is extremely muscular due to a missense muta-
tion which interferes with the function of the muscle
growth repressing MYOSTATIN (MSTN) gene. Its coun-
terpart, the Wagyu, possesses a wildtype MSTN gene and

http://www.ingenuity.com/
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has a normal level of muscularity. Readers interested in
the biological nature of MSTN, and how mutations in it
govern mammalian muscle mass are directed to the fol-
lowing references [19-21].
Suffice to say, there is very little question that the mus-

cularity of the Piedmontese breed can be largely attributed
to a mutation in the MSTN coding sequence. The conver-
ging lines of evidence emerge from genetics [19,20], func-
tional genomics [1], cell biology [22-24] and physiology
[25,26].
Thus, we have a colossal amount of gene expression data

on a well understood – albeit complex - tissue system,
coupled with knowledge of both the physical site and func-
tional modus operandi of a particular genomic mutation.
This rich, numerical playground has afforded us an unpar-
alleled Systems Biology opportunity to explore, discover
and create new questions and solutions.
We have developed a series of universally applicable

numerical analyses to correctly reverse-engineer core
biological processes. Until now, these findings have been
published in specialised technical journals, and explained
in domain-specific mathematical language [1-4].
Given a well designed gene expression experiment, we

can now identify with some confidence 1) the likely cause
(s) of any perturbation (genomic or otherwise) and 2) how
those cause(s) are communicated through the gene regula-
tory network. By good experimental design we refer to the
usual statistical rules-of-thumb of adequate replication
and randomisation. None of these are peculiarities of the
particular methods discussed herein.
Heeding Einstein’s and Tukey’s heuristic advice, we have

already made strides defining what the right questions are
and so can now start giving meaningful, even if only ap-
proximate, answers. We believe we are now set for an era
of “well designed input, high throughput, carefully consid-
ered inferential algorithms, cogent output!”.
RNA data and meaning
During a gene expression experiment RNA is extracted
from a tissue sample. One takes a tissue sample that is
highly structured (comprising intact cells, organelles and
so on) and thus from a biological perspective information-
rich, and homogenises it to something unstructured and
thus information-poor.
From an Information Theory point of view, the entropy,

or disorder, has increased. Furthermore, the resulting RNA
combines the various expression signals from the original
sample, frozen at that point in time. The gene expression
profiles reflect the cell-specific transcriptomes skewed by
the overall cell composition of the sample.

The RNA samples are a ‘riddle wrapped up in an en-
igma’: highly complex in origin, highly disordered in
preparation.
One of the main tasks facing the researcher is to try to
‘recover’ this starting information during the subsequent
analyses. The answer lies in various iterations, some sim-
plistic and some advanced, of the “honour by association”
heuristic. In other words, we will show that much bio-
logical information can be recovered from global, sys-
tematic patterns of similarities and differences in the
various expression profiles.
These systematic patterns involve not only comparing a

molecule to itself, but also to other molecules. The higher-
order analyses (Regulatory Impact Factor analyses) are
built up from the ‘bricks’ of the more basic analyses (abun-
dance, differential expression, co-expression and differen-
tial co-expression).
The mathematical formalism pertaining to each step is

detailed in Tables 1 and 2. However, it is not necessary to
follow the equations in order to appreciate the arguments.
A small number of molecules will be used to illustrate

the concepts, pre-eminently MSTN, the causal mutation
in our particular (Piedmontese versus Wagyu) contrast.
The essay is structured such that we begin with the sim-
plest analyses and culminate with the most complex. At
the conclusion of each contributing section it will be
shown that MSTN cannot be identified, at which point
we will proceed to a more complex and compelling
approach.
The pros and cons of each analysis will be briefly dis-

cussed in passing, with specific illustrations given from
our skeletal muscle data. The final section will reveal the
nature of the differential connectivity analysis that can
indeed quantify the long transcriptional shadow cast by
MSTN.

Expression (abundance)
The simplest expression information, taking each gene
one at a time, is its abundance either in absolute terms
or relative to other genes in the same experimental set-
ting. The collection of mRNA’s in the sample can be
viewed as a transcriptional ‘community.’
Examining muscle from a global perspective, this com-

munity is somewhat biased. That is, a relatively small
number of molecules (the myosin heavy and light chain
isoforms plus other major structural components such as
ribosomal and mitochondrial proteins) dominate the
sample, yielding a scale-free frequency distribution with
a steep, exponential decay curve (Figure 1).
An examination of Figure 1 shows that the distribution

in expression in skeletal muscle tends towards bimodal-
ity. Even after normalisation the shape is better described
by a mixture of two partly superimposed normal distri-
butions, rather than one normal distribution. Whether
or not the shape of the distribution changes if the data
are collected by microarray is not clear, and further re-
finement awaits direct RNA sequencing count data.



Table 1 Measures of gene expression in ascending order of complexity

Measure Algebra formulae Description Example in skeletal muscle context

Expression Ei;A ¼ 1
n

Pn
k¼1xi;k Average (normalized) expression of the i-th gene

across the n samples (eg. biological replicates) of
experimental condition A and where each xi,k
corresponds to the expression of the i-th gene in the
k-th sample (k = 1, . . ., n).

MYL2 is abundant, MSTN is intermediate

Differential
Expression

dEi ¼ Ei;A � Ei;B Difference in the expression of the i-th gene in the
two conditions under scrutiny, A and B (eg. healthy
and diseased, two breeds, two diets, two time points,
. . .). Note that it is not a requirement to have the same
number of samples surveyed in the two conditions.

MYL2 relatively strongly, definitely not MSTN

Co-Expression Ci;j ¼ rA i; jð Þ ¼ Cov i;jð Þ
σi σj

Similarity of expression profile (typically and shown
here the Spearman correlation coefficient) between
the i-th and the j-th genes across the n samples
of condition A.

MYOD1 and MYOG

Differential Co-
Expression

dCi;j ¼ rA i; jð Þ � rB i; jð Þ Difference in the co-expression between the i-th and
the j-th genes in the two conditions under scrutiny, A
and B. Note that it is not a requirement to have the
same number of samples surveyed in the two conditions.

MSTN and MYL2

Co-Differential
Expression

CdEi;j ¼ r dEi ;dEj
� �

Similarity of the profile of differential expression of
genes i and j across the levels of another
experimental design effect such as time points. Two
conditions, A and B, are being surveyed across a
series of developmental time points.

MYL2 and MYL3
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However, the correlation between RNA sequencing reads
and microarray probe intensities tends to be quite rea-
sonable [27] so major changes seem unlikely.
Across tissues, the shape of these distribution curves

can vary [28]. For example in a plant context, ‘leaves’ pos-
sess a biased transcriptional community whereas ‘pollen’
Table 2 Higher-order metrics arising from combinations of th

Measure Algebra formulae Description

Phenotype
Impact
Factor

PIFi ¼ 1
2 Ei;A þ Ei;B
� �

dEi ¼ AidEi
�

Average (norm
of the i-th gen
conditions mu
expression. In
differential exp
overall abunda

Regulatory
Impact
Factor,
Option 1

RIF1i ¼ 1
ndE

Pj¼ndE
j¼1 PIFjdC2

i;j

� �
For the i-th reg
all the j differe
genes (j = 1, .
the average PI
weighted by t
between the i
expressed gen
regulator is co
with the abun

Regulatory
Impact
Factor,
Option 2

RIF2i ¼ 1
ndE

Pj¼ndE
j¼1 Ej;ArA i; jð Þ� �2 � Ej;BrB i; jð Þ� �2h i

For the i-th reg
j differentially
at the average
to predict the
It addresses th
ability to pred
possess a more uniformly distributed transcriptional
community [29]. It is not clear what these distributional
differences mean, but one appealing hypothesis is that
evenness reflects relative levels of ‘generalism.’ By this
reasoning, the biased transcriptome of skeletal muscle
reflects a dominant cell type (the myocyte) and its’
e basic measures documented in Table 1

Example in
skeletal muscle
context

alized) expression
e across the two
ltiplied by its differential
other words, PIF weights the
ression of a given gene by its
nce.

MYL2 very strongly.

ulator and across
ntially expressed
. ., ndE) RIF1 looks at
F of the i-th regulator
he squared differential co-expression
-th regulator and the j-th differentially
e. It addresses the question: Which
nsistently highly differentially co-expressed
dant differentially expressed gene?

MSTN very strongly.

ulator and across all the
expressed genes (j = 1, . . ., ndE) RIF1 looks
change in predictive ability of the i-th regulator
abundance of the j-th differentially expressed gene.
e question: Which regulator has the most altered
ict the abundance of differentially expressed genes.

MSTN very strongly.
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Figure 1 Frequency histogram of bovine skeletal muscle transcripts (blue circles). The overall distribution is bimodal (simulated by the red
and yellow circles), and a relatively small number of highly abundant transcripts encoding muscle structural subunits, ribosomal proteins and
mitochondrial proteins dominate. MSTN sits in the nexus between the two distributions, possessing an average abundance of ~7.
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primary role of contraction. These issues of diversity and
specialization have been systematically formalised for a
range of human tissues by [30].
The enormous enrichment for the core muscle struc-

tural proteins among the very abundant muscle genes,
suggests abundance gives an indication of the structural
contribution a molecule makes to the sample. That is,
molecules making a large contribution to tissue structure
tend to be abundant at the mRNA level. A corollary is
that molecules which encode structural proteins yield
well to prioritisation based on this thinking.
However, as biologists interested in deciphering how

and why a phenotype is formed, we are often more inter-
ested in the ‘input’ regulatory molecules as opposed to
the ‘output’ structural molecules. But herein lies the
problem: regulatory molecules are enigmatic, they tend
not to conform to this reasoning i.e. the belief that their
activity is closely related to their abundance.
For example, in a genome-wide census of human tran-

scription factors, Vaquerizas et al. [31] noted that regula-
tors tended to be lowly expressed compared to other
types of molecules. Equally, in our data we find that
many key muscle regulators have low to moderate ex-
pression, including MSTN (Figure 2).
This means that one cannot determine MSTN’s im-

portance to muscle biology through its expression level,
which is modest. To return to the opening quotes, an ac-
curate measure of abundance may well be the right an-
swer (for some genes in some circumstances), but
unfortunately for MSTN in this context it is to the wrong
question.
This observation undermines any metric that is dir-

ectly derived from abundance, such as differential
expression.
Differential Expression (DE)
From a statistical inference standpoint, the standard ana-
lysis is calculation of significant DE. This is the difference
in the abundance of a given molecule in two treatments
or conditions of interest. Typically, a table will be pro-
duced ranking the molecules in descending order of dif-
ferential expression, and the list may be explored for
functional enrichment using a burgeoning suite of readily
available tools e.g. [13,16,32].
One drawback of these tools is that they provide bio-

logical interpretations based on what is already known,
has been correctly entered into a database, and has ad-
equate search and retrieval facilities. There is clearly a
need for alternate analyses that can take the results from
any experiment and make useful predictions and conclu-
sions, irrespective of existing knowledge gaps.
Figure 2 shows the DE genes in our data in the form of a

‘MA’ plot (where ‘M’ and ‘A’ stand for ‘minus’ and ‘average’,
respectively). Rare transcripts appear to be more DE,
which is largely the result of poorer signal to noise as the
detection limits of the technology are approached. Any
ranking on DE, in the absence of sensitivity testing, will
therefore have the unfortunate tendency of highlighting
noise. A complication to this argument is provided by sto-
chasticity. Namely that key developmental genes like
members of the HOX family tend to be tightly expressed
[33] while environmentally-responsive genes such as yeast
detoxification genes change markedly in a variety of stress-
ful conditions [34]. This stochasticity may provide a real
biological source of variation independent of technical
noise. Readers interested in further discussion on robust-
ness versus stochasticity are directed to this review [35].
Putting stochasticity to one side, sensitivity testing [36]

broadly helps overcome this problem, by requiring a



Figure 2 Needle in a numerical haystack. Despite being the causal effector molecule, MSTN is neither DE nor abundant when comparing MSTN
mutant cattle versus MSTN wildtype cattle. Here DE is computed by subtracting the average expression in the Wagyu from the average in the
Piedmontese, across the 10 time points. Figure from PLoS Computational Biology.
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greater DE for lowly expressed genes to be called signifi-
cant. In a complementary approach, we have invented an
adapted differential expression metric called Phenotypic
Impact Factor (PIF). This is the product of a molecule’s
DE and its average abundance [1,4].
This statistic has two desirable features. Firstly, DE and

abundance correspond to the two sources of variation in
the original data. As they are independent of each other,
their product accounts for all the variation, so the com-
putation of the metric does not lose valuable informa-
tion. Secondly, weighing by abundance reduces the effect
of noise in the rarer transcripts, and increases the ability
to detect small changes in the abundant ones. This
process highlights molecules making an important struc-
tural contribution to the change in phenotype, forming
the foundation of downstream analyses.
For example, in our data, ranking on PIF rather than

DE does a much better job of emphasising the slow my-
osin isoforms driving the change in fibre composition
that accompanies the MSTN mutant phenotype [1].
There are a number of different ways of computing DE

in longitudinal data (comparing single time points, or
various combinations of time points). In our data, which-
ever DE measure is used, MSTN, the causal regulator, is
not prioritised. This is illustrated in Figure 2 for all time
points averaged, and in Figure 3 for a single particularly
important developmental time point only, that of sec-
ondary myogenesis. We have also computed DE at every
other time point taken individually and can confirm that
MSTN is not significantly DE at any of them. Therefore,
in a concerning false negative, MSTN will be overlooked
by any analysis using DE as the exclusive prioritisation
strategy. An accurate measure of DE is again the right
answer to the wrong question.
We wish to emphasise that this observation is much

more than an isolated curiosity. The same faulty reliance
on DE applies much more broadly, interfering with and
confounding our comprehension of the entire regulatory
landscape.
We know that there are a large number of constitutively

expressed regulatory molecules whose activity is known to
be modulated almost entirely post-transcriptionally i.e.. via
reversible phosphorylation, cellular localisation, cofactor
or ligand binding and so on. These changes in activity are
entirely invisible to DE analysis as they relate, in various
guises, to a molecule’s behaviour not its own abundance.
From a biological knowledge perspective, this may

seem a statement of the obvious. However, from an ana-
lytical perspective, if we rely on DE we are neglecting
this appreciation. We shall illustrate the pervasiveness of
this problem with a few examples from the very recent
literature. On the 21st November 2011 one of us (NJH)



Figure 3 Comparing the MSTN muscle building pathway in the two breeds. The yellow (no differential expression), red (upregulated in
Wagyu) and green (upregulated in Piedmontese) colours were generated within Cytoscape, with the bright red and bright green representing the
outermost bounds of the extreme DE molecules across the whole transcriptome at day 135 post conception. The colour bar beneath the
molecular pathway is intended as a schematic guide only. ACVR2B was not reported on the array, but was included in the diagram for visual
completeness of the pathway.
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searched for “microarray gene expression” on NCBI
Pubmed. The 3 most recent hits were as follows [37-39].
One [39] describes a new statistical approach to docu-

ment the role a cellular pathway plays in a change in
phenotype (in this case, cancer versus normal). The
authors describe their method as follows “. . .a larger
value indicating relatively higher expression levels of
genes in a pathway and therefore a higher pathway
activity.”
A second example [37] uses gene expression to con-

trast Duchenne Muscular Dystrophy subjects with un-
affected control subjects. In the abstract the authors
write “We identified 528 differentially expressed genes,
of which 328 could be validated by an exhaustive meta-
analysis. . .”
In the third example [38], the authors used microarray

gene expression to contrast bovine ileum response to
pathogens versus control animals. They write “gene ex-
pression changes mapped to 219 molecular interaction
pathways and 1620 gene ontology groups.” Furthermore,
“. . .a period of intense gene expression activity. . .primarily
increased gene expression at later time points. . .consistent
between microarray and qRT-PCR for both up-regulated
and down-regulated genes.”
Furthermore, a very recent review [40] states that gene

set enrichment analyses are “. . .commonly applied to
identify enrichment of biological functional categories in
sets of ranked differentially expressed genes from
genome-wide mRNA expression data sets.”
Abundance, abundance, abundance! So, how does one

get a measure of a molecule’s behaviour?

Networks and ‘contextomies’
Computation of DE is a form of reductionism that over-
looks molecular interaction or context. According to
Wikipedia, a ‘contextomy’ is a type of false attribution in
which a text passage is removed from its surrounding
material in such a way that its meaning is distorted. We
believe that computing an isolated list of DE genes is
analogous to performing an accidental ‘molecular
contextomy.’
What is required to identify causal molecules like

MSTN is a clear sense of their molecular context. The
branch of mathematics that deals with this area is net-
work science. The remainder of this essay will deal with
the application of clustering-based approaches to infer
networks from expression data.
This problem in the specific case of our data is made

most apparent in Figure 3, illustrating not only the ab-
sence of DE of MSTN itself but also that of the particular
muscle-building component of the TGF-β signalling
pathway into which MSTN is embedded [41]. Even
though we are looking in the right place (a sub section
of the TGF-β pathway) at the right time (secondary
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myogenesis), neither MSTN nor any of the associated up
nor downstream signalling or regulatory pathways are
DE at this time point!
What is happening? In short, the impact of the per-

turbed TGF-β pathway is entirely post-transcriptional.
That is, in the muscular Piedmontese the mutated MSTN
fails to bind the activin IIB receptor regardless of its own
expression level; SMAD complex formation and nuclear
translocation fails to occur regardless of their own expres-
sion level – each successive step passing on the TGF-β
pathway information independent of expression level.
While this will not be a surprise to practicing biolo-

gists, the set of commonly applied gene expression statis-
tics reliant on DE, in effect, ignore it.
In our data it is only the change in expression of the

pro-myogenic TF (MYOD1) and the other output or tar-
get genes (such as MYL2) at the very end of the chain
that can be perceived by DE. But even knowing the na-
ture of the pathway a priori as illustrated in Figure 3,
this output information is still inadequate to find a
causal role for TGF-β. There is nothing in the DE data
that connects MSTN to MYL2, because none of the
intermediates are DE either.
Admittedly, Figure 3 is a convenient schematic to illus-

trate the point, derived from the orthologous pathway in
mouse [41]. It may be incomplete. However, future refine-
ments to the pathway and the inclusion of more compo-
nent parts will only confuse matters more, unless a
previously unrecognised TGF-β muscle building compo-
nent turns out to be highly DE, or RNA sequencing count
data reports as highly DE a TGF-β molecule not reported
at all by the Agilent array technology. Even accepting this
(perhaps unlikely) scenario, any conclusion about the pos-
sible role of MSTN would still be under a cloud because of
the lack of DE in all the other components. Our full data
set can be found in [42] for readers interested in exploring
the data more thoroughly.
We wish to emphasise that this observation says nothing

about technological limitations. It is a much stronger ‘in
principle’ argument. Using DE alone it is theoretically im-
possible to determine thatMSTN is doing anything interest-
ing in these data. However excellent ones measure of
MSTNs abundance, one will not see anything because abun-
dance is not what changes. For example, one might replace
microarray probe data with more sensitive qRT-PCR data.
However, any increase in sensitivity achieved for detecting
the DE of MSTN would presumably be matched for all the
other genes in the system. Consequently, this more sensitive
approach would not actually help with the correct priori-
tisation, because there is no reason to believe the rank order
would change appreciably.
This observation is devastating for the burgeoning

suite of tools that are routinely exploited by biologists to
identify serial components of a causal pathway from
isolated DE gene lists, such as Ingenuity Systems Path-
way Analysis (www.ingenuity.com), GOseq [32], DAVID
[16], GOrilla [13] and many, many more. It should be
pointed out that these web tools can utilise any form of
ranked gene list as input, and are not reliant on those
derived from DE, even though DE lists are a common
practical choice. Therefore, our main point is a criticism
on the exclusive use of DE lists as input for the tools, ra-
ther than the use of the tools per se.
Up until now, we have discussed a set of approaches

that do not work in the data under consideration. In the
network analyses that follow, genes are grouped based
on some measure of profile similarity - the “honour by
association” heuristic. The more sophisticated the ana-
lysis, the more penetrating the question, and the deeper
they dig into the data. We shall begin with the most
basic and familiar, “co-expression.” And we shall end
with the most complex, “co-differential co-expression.”
The initial analyses are able to identify certain known

regulatory relationships. However, they miss a lot, in-
cluding the role of MSTN. The final analyses can cor-
rectly identify not only MSTN as the likely causal
mutation, but also the regulatory molecules to which it
is communicating when mutated.

Co-expression
This approach assesses the similarity in expression pro-
file of gene pairs across various experimental conditions,
based on a distance measure such as the Pearson’s cor-
relation coefficient. In our data the expression profile of
MYOD1 is significantly co-expressed with MYOG in
both Piedmontese and Wagyu animals across the ten
time points (Figure 4A). Significant co-expression can be
used as a criterion to build a co-expression network.
To determine co-expression significance we use Partial

Correlation Information Theory (PCIT) [3]. It is our
judge, jury and executioner. However, there are a num-
ber of alternate approaches in the literature [43-49].
PCIT is a soft-thresholding method that exploits the

twin concepts of Partial Correlation and Mutual Infor-
mation. In brief, it explores relationships between all
possible triplets of genes, in an attempt to determine
truly informative correlations between gene pairs once
the numerical influence of other genes in the system has
been accounted for.

The scale of this exploration is very large. For example,
expression measurements for a typical microarray experi-
ment of ~10,000 genes yield (10,000×9,999/2) ~50 million
possible pair-wise correlations and (10,000×9,999×9,998/
6) ~ 167 billion trios. Clearly, this presents potential scal-
ability issues for higher resolution transcriptome data sets
looking to the future, which are as yet unresolved.
This systematic and exhaustive exploration yields a

global estimate of the numerical structure of a given data

http://www.ingenuity.com
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Figure 4 Co-expression, co-differential expression and differential co-expression. As illustrated for the Piedmontese across development,
MYOD1 and MYOG are strongly positively co-expressed whereas USP13 and CCNB2 are strongly negatively co-expressed (A). In comparing
Piedmontese and Wagyu, PRSS2 and KLK12 are co-ordinately or co-differentially expressed in addition to being co-expressed (B). The differential co-
expression arrangement between MSTN and MYL2 is large (+1.1), despite the co-expression strength being relatively modest in the Piedmontese
(+0.76) and Wagyu (−0.34) breeds treated separately (C).
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set, providing the broader context into which any par-
ticular pair-wise correlation must be assessed. This
awareness of context means PCIT can be justly applied
to data sets that possess, at a global level, varying
strengths of inter-relationships.
Depending on the particular data set, a ‘weak’ correl-

ation of 0.6 may in fact be deemed significant (if the cor-
relation is mainly attributable to the two genes in
question and not an artifact of any of the genes in the
pair being highly correlated to a third gene in the data-
set), whereas a ‘strong’ correlation of 0.9 may be rejected
(if it is mainly attributable to the third member of the
triplet).
What does a co-expression network look like? Our bo-

vine muscle network possesses several interesting prop-
erties [2]. Firstly, it has a scale-free Power Law
connectivity distribution; a few highly connected nodes
or ‘hubs’, with many poorly connected nodes. This non-
random connectivity distribution is commonly observed
in many types of real-world networks.
Secondly, in contrast to ‘small-world’ networks, such as

the 6 metaphorical handshakes that connect everyone on
the planet (the Kevin Bacon Principal), it can take a sur-
prisingly large number of steps to traverse a co-expression
network.
In a real Gene Regulatory Network based on direct ex-

perimental observations, a highly connected hub would
correctly be seen as a highly important regulator. Its tar-
geted removal would have functional consequences. In-
deed, one known feature of Network Theory is that scale
free topologies are robust to random attacks and vulner-
able to targeted attacks [50]. However, in a co-expression
network context this seductive notion is an illusion.
In our network, MSTN is not connected to anything

while MYOD1 and MYOG are poorly connected. We con-
clude that in co-expression networks well-connected hubs
are better seen as components of biological structures
(such as muscle structural isoforms) and processes (such as
the cell cycle) which themselves are tightly regulated, not
quite the same thing.
A major take home message is that co-expression net-

works tend to resolve into highly inter-connected function-
ally-related ‘modules’ such as mitochondria, extracellular
matrix and ribosomal proteins [2,51]. Although these were
present as coherent structures in the original tissue sample,
they were subsequently annihilated during RNA extraction.
Therefore, when visualising co-expression networks

such as our bovine muscle network, one recovers a great
deal of structural and functional information that was
apparently lost during sample preparation – offering
support for clustering-based methods [2].
An additional appealing feature of these networks is

that by analysing entire modules of genes, rather than
single genes, one is able to interpret relatively small
changes. For example, one can overlay the DE results of
a separate experiment on top of the co-expression net-
work [52]. Observing an entire module of highly co-
expressed genes, each represented by an independent
probe, all increasing a mere 1.1 fold adds confidence to
this small change. This reasoning helps overcome the
sensitivity issues levelled at microarrays – notwithstand-
ing our criticism of thinking solely in terms of DE.
Furthermore, high co-expression is reasonably success-

ful in allowing real regulator-to-target interactions to be
determined [2]. For example, by hunting in the module
of interest or asking the question “which regulator has
the highest absolute average correlation to all the genes
in the module?” one correctly infers driver of core pro-
cesses such as cell cycle (E2F1), mitochondrial biogenesis
(ESRRA) and muscle fibre composition (SIX1) [2].
Nevertheless, the co-expression approach tends to se-

lect the low hanging fruit. MSTN is absent from our co-
expression network; it is not significantly co-expressed in
both breeds with any gene. An accurate measure of
MSTN’s co-expression significance is once again the
right answer to the wrong question.

Co-differential expression
Co-differential expression clusters together groups of
genes whose profiles may not necessarily be co-
expressed, but they are differentially expressed in a coor-
dinated fashion; even though they are not similar, they
are similarly different. In our case, the patterns of differ-
ential expression are coordinated over time (Figure 4B).
In principle, co-differential expression can be used to

build networks, although we cannot find a precedent for
this in the literature.
This property of relatively strong co-differential ex-

pression but relatively weak co-expression is true in our
data for a broad set of slow twitch muscle fibre structural
proteins [1,2].
In essence, one is computing a ‘shape-based’ version of

DE. This is defined by the surfaces described by the pro-
files of various genes in two different conditions. Co-
differential expression is a useful feature for connecting
genes that might be missed by conventional co-expres-
sion. As with co-expression, the linking makes a predic-
tion about shared biology e.g. peptidase activity in the
case of KLK12 and PRSS2 (Figure 4 panels B1 and 2). In
the example given, KLK12 and PRSS2 are co-expressed
in addition to be co-differentially expressed, although
this need not always be the case.

Differential co-expression
“What is the question to which MSTN is the answer?”
Transcription Factors and associated molecules are

often considered to be the hubs in gene regulatory net-
works. It is known that they tend to be stably expressed



Figure 5 MSTN is highly differentially co-expressed with many
of the abundant, highly differentially expressed genes - mutant
breed on the left, wildtype breed on the right. For example,
MSTN has a differential co-expression of 1.1 (+0.76 - - 0.34) with
MYL2 (Panel A). RIF accumulates these differential co-expressions for
all the DE genes (85 in this instance), weighted by their abundance.
The size of the bubble representing the various DE genes
corresponds to the combination of the extent of DE and average
abundance. An alternative measure of differential connectivity is
given in Panel B, where the number of significant co-expressions
possessed by MSTN in the two breeds is contrasted. MSTN does not
get prioritised by this alternative approach.
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at relatively low levels. Their activity is controlled largely
at the post-transcriptional level, by phenomena such as
nuclear translocation of the protein, binding of activating
co-factors or ligands and so forth. This means their own
expression level is a poor measure of how active they are
in a given biological situation.
As mentioned previously, a corollary of this is that DE

will not be an appropriate measure of a change in their
activity, and subsequently will often fail to prioritise
them correctly. Equivalent arguments also apply beyond
TF to other regulatory molecules, such as components of
signalling pathways. Based on these considerations we
believe DE analysis will lead to poor prioritisation of
causal regulatory pathways in a host of species, tissues
and biological circumstances, although it may perform
well with close-to-target output pathways.
Returning to our specific example, MSTN is neither 1)

abundant nor 2) differentially expressed nor is it 3) con-
sistently significantly co-expressed in Piedmontese versus
wildtype Wagyu muscle. It is the proverbial needle in a
(numerical) haystack. Nevertheless, in a retrospective
analysis trying to determine “the biologically sensible
question to which MSTN is the answer” we did discover
the smoking gun [1].
In brief, MSTN is strongly differentially co-expressed

to many of the 85 DE genes, some of which are highly
abundant and highly DE. The DE genes represent puta-
tive ‘targets’ for the regulatory molecules, and the word
‘target’ will be used in this rather relaxed manner
throughout the rest of the correspondence. These differ-
ential co-expression relationships are presented schemat-
ically in the top panel of Figure 5. MYL2 is highlighted
by name on Figure 5 and in the discussion that follows
because it best reflects the combination of high abun-
dance and high differential expression which the RIF al-
gorithm exploits when weighing the differential co-
expression relationships.
For illustrating the principle under consideration, the

discussion that follows will focus on the specific differen-
tial co-expression relationship between MSTN and
MYL2. However, for the purposes of computing RIF, the
DE profile of MYL2 is just one contributor. In fact,
MSTN is also differentially co-expressed with many other
transcripts that are highly abundant and DE, and is best
exemplified by those encoding muscle structural pro-
teins: ACTN2 (differential co-expression to MSTN of
0.59), TNNT1 (0.45), MYOZ2 (0.43) and MYL3 (0.30).
It is the combined weight of influence of these mole-

cules that drives the gross anatomical change in fibre
composition. Similarly, along with the other DE genes,
the expression profiles of all these molecules contribute
substantially (but to somewhat varying extents) to the
RIF output. Thus, it is the overall weight of MSTN’s
system-wide differential connectivity, not the behaviour
of its relationship with any one DE gene, which permits
its correct prioritisation.
In the wildtype Wagyu breed, across the ten time

points, MSTN has a fairly weak negative co-expression
arrangement with MYL2 (−0.34). This negative co-
expression reflects MSTN’s function as a negative regula-
tor of muscle mass under normal circumstances. Thus,
when MSTN goes up, muscle structural proteins like
MYL2 go down and vice versa.
However, in the mutant Piedmontese breed, the nor-

mal repression is lost because of the mis-folding of the
mutated MSTN protein. The new – now modest to
strong - positive co-expression arrangement (+0.76)
reflects this change in protein behaviour. That is, when
MSTN goes up, MYL2 also goes up and vice versa. The
differential co-expression arrangement is simply the dif-
ference in co-expression between the two breeds i.e.
+0.76 – –0.34 = + 1.1. The maximum differential con-
nectivity by this differential co-expression definition is 2
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(i.e +1 – –1) and + 1.1 can be seen as very substantial,
even though the co-expression values in the two breeds
could be seen as somewhat modest when taken in
isolation.
Because substantial changes to modest co-expression

relationships provide such useful re-wiring information,
no attempt is made during RIF to assess the significance
of the individual (breed level) co-expression arrange-
ments. That is, it is of no concern that the MSTN-MYL2
co-expression is a meagre −0.34 in one of the states (i.e.
breeds).
This contrasts starkly with formal comparisons be-

tween co-expression networks. Co-expression networks
clearly rely on some assessment of co-expression signifi-
cance, and most methods would likely dismiss this
MSTN-MYL2 relationship as non-significant.
Similarly, no attempt is made to place formal levels of

significance on the various differential co-expression
relationships. Nevertheless, it is true that small differen-
tial co-expression arrangements make a smaller contri-
bution to the RIF output than the large co-expression
changes, assuming the abundance and differential ex-
pression of the target gene remains constant. These dif-
ferential co-expression arrangements are computed
system-wide for all regulators (~1000) versus all DE
genes (85 in our data).
This set of phenotypically relevant differential co-

expression observations brings us much closer to the
right question and therefore the right answer. The ana-
lysis works by assessing which regulators change their
behaviour with the highly abundant, highly differentially
expressed genes – which in turn reflect the change in
phenotype at a molecular level.
These simultaneous relational properties can be accu-

mulated into a single metric, which we call RIF [1]. Ver-
bally, this can be expressed as “which regulator possesses
the greatest total amount of differential co-expression to
the very abundant, highly differentially expressed genes.”
The numerical answer represents a holistic global differ-
ential connectivity statistic. The algorithm correctly
identifies causal regulators in a range of data sets, irre-
spective of numerical structure, nature of the perturb-
ation, tissue or species [4]. Unlike many network
inference approaches, the RIF algorithm is computation-
ally inexpensive. Consequently, we do not foresee scal-
ability problems with higher resolution data sets into the
future.
We have applied RIF to both breast cancer and colo-

rectal cancer expression data sets, contrasting them
against normal tissue samples. The breast cancer RIF
analysis underscored the role of estrogen signalling [4],
while the colorectal cancer analysis prioritised CDK8
[53], a known biomarker of the disease [54]. Further-
more, we note that an independent group has used
Global Differential Wiring Analysis to identify a causal
regulator of Parkinson’s disease (alpha syn-nuclein)
based on brain sample gene expression. The Parkinson’s
research output is currently Pending as a Patent [55].
None of these various discoveries could have been made
by exclusive analysis of DE.
A summary of RIF results in a broad range of circum-

stances can be found in Table 3.The legitimacy of the
prioritisations are repeatedly borne out by literature
searches. However, in many gene expression data sets
unequivocally defined causal mutations or effector mole-
cules are not known, clearly making retrospective assess-
ment more challenging than the particular MSTN case
upon which the algorithm was first developed.
By way of analogy, the RIF approach is similar to infer-

ring where a stone has dropped into a pond by the sur-
face disturbance. Working back from the emanating
ripples (the output DE genes and pathways), allows one
to identify the original splash (the input regulators).
It can be seen that the ‘pond algorithm’ transcends the

detailed nature of both the object and the fluid. It works
so long as the pond is visualised at the appropriate time
points, otherwise the signal will not be detected. If one
looks too early the ripples will not yet have been pro-
duced, and if one looks too late the surface will have re-
equalized.
In the same way that one does not need to see where

the stone drops, nor worry about the exact physical na-
ture of the stone or pond, one does not need the causal
regulator(s) to be DE, nor does one need to know the
exact biological details of the rewired molecule(s).
Assuming a set of gene expression samples are col-

lected at the relevant time points, the approach will uni-
versally work.
The algorithm operates at a deep level of abstraction, by

proxy rather than directly. Returning to Figure 4 (panel C)
and Figure 5 (panel A), it is the differential co-expression
between MSTN and MYL2 (and the other abundant, DE
genes such as other fibre specific subunits) that supplies the
analytical leverage. From a certain pragmatic perspective,
the fact MYL2 is not a direct target of MSTN does not
interfere with the correct prioritisation of MSTN even
though this detail is clearly of biological relevance. In our
approach the identification of the ‘targets’ is entirely data
driven by DE, and is a proxy of transcriptional disturbance.
Does it matter that the DE targets may not be immedi-

ate, direct targets of the regulators under consideration?
This question is related to the problem of inferring caus-
ation from correlation. It also returns us to Brenner’s ori-
ginal criticisms, and introduces us to the topic of
emergence in complex systems science.
In the physical and chemical sciences, the robust quan-

titative Laws and Models possess a common thread.
They are emergent Laws built on emergent data.



Table 3 Causal genes correctly highlighted by RIF across a range of species and biological circumstances

Gene Species, Phenotype Independent evidence for gene function RIF ranking Differentially expressed

MSTN Cattle
muscle, Piedmontese
hyper-muscularity versus
normal

Mapping, deep sequencing [60] 1st out of 920 [1] No

Alpha-Synuclein Human brain,
Parkinson’s disease
versus healthy

Range of evidence including GWAS
reviewed in [61

Not formally
stated in patent
[55, presumably
1st

Unknown. Patent was
established to identify
causal variants by transcriptome wiring,
even when not DE

CDK8 Human colon,
colorectal cancer
versus healthy

Colorectal cancer oncogene
regulates B-catenin [54]

4th out of 1,292
[53]

No

P107 Human, brown fat
tissue versus white fat
tissue

P107 knockout mouse exhibits a
uniform white to brown fat transition
[62]

5th out of 552 [4] No

DLK1 Sheep muscle,
Callipyge hyper-
muscularity versus
normal

Not proven, but DLK1 is the most
DE highly abundant gene, and its
expression is maintained post-natally
in effected muscles only.

4th out of
898 Unpublished
data

Yes, 2.14-fold up-
regulation in callipyge
individuals across all
time points explored.

INSM1 Pig, 6 CNS tissues
versus 21 other tissues

Neuroendocrine differentiation [63] 1st out of
1,072 (submitted)

Yes, 3.8-Fold up-
regulation in CNS

OXTR Cattle muscle,
steroid hormone
induced muscling

No direct evidence, but OXT
precursor is the most DE gene in
this experiment, and is known to
drive cardiac development.

2nd out of 2,944
[52]

No

CARM1 Human breast,
breast cancer high
survival versus low
survival

Regulates estrogen stimulated
breast cancer via E2F1 [64]

2nd out of 892 [4] No

RIF highlights the correct molecules irrespective of whether they are DE.
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There are very few, if any, truly foundational Laws. By
foundational, we mean those describing processes at
lower levels of organisation that can correctly predict
processes at higher levels of organisation. For example,
and perhaps contrary to naïve expectations, the very reli-
able ‘macro-scale’ Laws of Thermodynamics accurately
model emergent statistical properties that are actually
simpler than the complex ‘micro-scale’ interactions upon
which they are based.
How does this physical modelling discussion relate to

gene regulatory network inference? In our complex
(developing tissue) system, the real impact of the MSTN
mutation is manifest at multiple biological scales: micro-
(impaired binding of MSTN to the MSTN receptor ACV-
RIIB [56] at the level of the molecule), intermediate-
(extended cell proliferation at the level of the cell) and
macro- (gross change in muscle fibre composition and
muscle mass at the level of the tissue). These smaller
scales are very complex. They depend on molecular
binding affinities, sub-cellular and extra-cellular molecu-
lar movement, and exquisitely coordinated patterns of
cellular dynamics.
However, we wish to point out that the transcriptional

outputs we measure (and base our network model on),
integrate from and thereby ‘emerge’ from those various
scales – even if we don’t address any of them explicitly.
From this conceptually abstract perspective, it is irrele-
vant that MSTN does not directly activate or repress
MYL2. For the purpose of computing RIF, all that mat-
ters is that these various multi-scale events set in motion
by the MSTN mutation are reflected by a measurable
transcriptional change in output DE genes like MYL2.
In terms of biological inference, the RIF output implies

MSTN is involved at some level in driving the difference
in expression of MYL2, even if there are considered to
be intermediate molecular steps which hitherto remain
elusive. That being said, the next section will discuss
how the RIF output can subsequently be wired into a
very plausible gene regulatory network linking together
some of the expected intermediates (including MyoD1)
that sit between MSTN at the beginning of the chain,
and molecules like MYL2 at the end.
Furthermore, no attempt has been made to try to un-

ravel the component cell-specific profiles. In this in-
stance it transpires that one does not need to explicitly
think in terms of the cell, in order to infer something
meaningful about the overall tissue.
What does this mean, in light of Brenner’s arguments?

To summarise, we would reply that 1) high throughput
expression measurements can be accurate enough for



Hudson et al. BMC Genomics 2012, 13:356 Page 14 of 16
http://www.biomedcentral.com/1471-2164/13/356
global questions; 2) an explicit account of the cell is not
necessarily required for meaningful inference; 3) if one
reduces ‘in context’ one does not necessarily lose import-
ant information; and 4) inverse problems can be tract-
able if your technology provides emergent data upon
which emergent models can be built.
While Brenner’s musical instrument argument may be

logically correct in that specific instance (i.e. his conclu-
sion follows from his premise), it appears to us that the
analogy is not a good one. Brenner’s negative conclusion
does not translate well to gene expression analysis.
When applying RIF to these data, one boils down from

10,000 genes, two breeds and 10 time points to a single
statistic, ranking MSTN first. Clearly, this is an act of re-
ductionism, but because it reduces ‘in context’ it is holis-
tic in spirit.

Co-differential co-expression
We have seen that one can identify MSTN as the likely
causal effector through global patterns of differential co-
expression. A related question is: which molecules is the
mutant MSTN communicating with in Piedmontese cat-
tle to generate the muscular phenotype? In other words,
can we build a re-wired ‘differential gene regulatory net-
work?’ We have found this can be determined by asking
which molecules possess an equivalent pattern of differ-
ential co-expression to the abundant differentially
expressed genes.
To pursue the pond analogy, this is rather like simul-

taneously examining the pond for similar looking pat-
terns of emanating ripples (in different locations on the
ponds surface), then inferring something in common be-
tween the objects causing those patterns. In our data, ap-
plying the PCIT significance testing algorithm to the
various differential co-expression relationships produces
a ‘co-differential co-expression network’ [1]. Other than
our own work [1], there is no precedent for this type of
network in the literature. It can be contrasted with the
more traditional application of significance testing
approaches (such as PCIT) to expression profiles, which
produce co-expression networks.

This more sophisticated ‘differential network’ estab-
lishes a link between MSTN and just two other regula-
tory molecules - MYOD1 and IFRD1. Satisfactorily, in
mice, MSTN is known to form an in vivo regulatory cir-
cuit with the orthologs of both these molecules [57,58].
This close inter-relationship between MSTN, MYOD1
and IFRD1 cannot be determined by simple co-
expression analysis, and provides compelling but not de-
finitive proof for the soundness of the concept.
Compared to a co-expression network, the co-

differential co-expression network has an unusual global
topology. Rather than resolving into several modules
with a scale-free connectivity distribution, the vast
majority of molecules are highly connected together into
a single dense, cohesive network. In effect, they exhibit a
similar absence of differential co-expression, implying
they are similarly irrelevant to the change in muscularity.
They create no ripples in the system.
Good examples of molecules in this category include

PTTG1 and TOPO2A. They possess a very extreme near
perfect co-differential co-expression of 0.994. They are
both involved in the highly fundamental biological process
of chromatid separation during DNA replication, which
plays no particular role in driving relatively superficial pro-
cesses like changes in muscle mass. This result, and many
others like it, reinforces the power of clustering-based
approaches to infer functional similarity.
On the other hand MSTN, IFRD1 and MYOD1 are an

example of a small, isolated and independent sub-net-
work. In contrast to the majority of the molecules in the
system, they possess similarly high and coordinate levels
of differential co-expression compared to the abundant
DE genes.
We find it very appealing that a single clustering method

(co-differential co-expression) can correctly connect those
molecules that leave a big splash and apparently drive a
phenotype change (MSTN plus connectors) and, simultan-
eously, those that leave no imprint and therefore are pre-
dicted to play little part in driving the change (PTTG1 and
TOPO2A). Standard co-expression can recreate the second
of these, but not the first.
At this point, we wish to reinforce the statement that to

the best of knowledge our understanding of Piedmontese
muscling due to the combined re-wired activity of MSTN,
MYOD1 and IFRD1 cannot be deduced from other bio-
logical approaches, whether analytical or experimental in
nature.
The result cannot be deduced from DE because the

muscle building component of the TGF-β pathway is not
substantially DE. This strongly implies that no matter how
well curated the molecular pathway is - or becomes - over-
laying DE measurements onto it will not work, now or in
the future. More sensitive measurements of abundance,
such as qPCR or indeed future technologies are of no rele-
vance here. They will systematically increase the sensitivity
with which all genes can be deemed DE, and therefore
make no appreciable difference to the rank order and by
extension, the ability to prioritise the correct molecules.
As far as we are aware the correct prioritisation cannot

be deduced from alternative differential connectivity algo-
rithms. For example, we ran the DiffK differential network
algorithm of [59] and it failed to identify MSTN [1].
Our attempts to contrast the number of significant (i.e.

tight or highly coordinated) co-expressions in key molecules
between the two breeds were also futile [1] (Figure 5 panel
B). Along these lines, we feel strongly that contrasting ‘non-
significant’ co-expression relationships is very important in
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differential network approaches. Ignoring large changes in
modest relationships omits valuable re-wiring information.
In this specific case, contrasting significant co-expressions
produces a non-extreme differential connectivity result for
MSTN (Figure 5 panel B), presumably because it struggles
to handle changes exemplified by the MSTN-MYL2 co-
relationship.
The result cannot be deduced from DNA precipitation

experimental methods because MSTN does not bind
DNA. This also means that examination of Transcription
Factor Binding Sites based on DNA sequence analysis
are of little value here.
The causal role for MSTN could in principle be homed

in on through GWAS assuming a marker proximate to
MSTN’s chromosomal location is present on the chip.
However, the regulatory circuit the mutated MSTN
forms with MYOD1 and IFRD1 cannot be deduced from
GWAS data by existing statistical methods unless all 3-
way epistatic interactions are exhaustively searched, and
certainly not if the change in behaviour of MYOD1 and
IFRD1 is solely dependent on the specific genetic change
in MSTN.
The only method we are aware of capable of inferring

such a model of re-wired transcriptional regulators is a
well-designed gene expression experiment followed by
RIF and co-differential co-expression.
The appeal of our method can be found in two qual-

ities. Firstly, it is entirely data-driven, requiring nothing
else but transcriptome data. Secondly, it is very simple
compared to the data it models so concerns of over-
fitting have no foundation. Nevertheless, we welcome
further attempts by other scientists to apply their pre-
ferred analytic methods to this expression data set, or in-
deed to use it to invent new approaches. Clearly, it is
conceivable that complementary insights might be
achieved by as yet undiscovered numerical strategies.

Conclusion
In this essay, we have tried to show how it is possible to
dig deep enough to uncover causal mutations and other
causal effector molecules from gene expression data. As
with all complex problems, the starting point, as agreed
by Einstein, Tukey and others, is asking the right
question.
Through RIF (MSTN) and ‘co-differential co-expres-

sion’ (MYOD1, IFRD1) one can make substantial pro-
gress in solving the Inverse Problem of Piedmontese
enhanced muscularity using nothing more than the out-
put behaviour of a complex system.
We have illustrated why “which molecule is the most

differentially expressed” is not necessarily the right ques-
tion. Any downstream interpretation built exclusively on
DE, no matter how sophisticated, runs the risk of produ-
cing faulty scientific insights.
Competing interest
The authors declare that they have no competing interests.

Authors’ contributions
NJH, BPD and AR conceived of the commentary. AR performed the
mathematical formalism. NJH drafted the manuscript. All authors contributed
to, read and approved the final manuscript.

Acknowledgments
We wish to thank Prof. Alan Bell and Dr. Gene Wijffels for their critical
reading of an earlier draft of this manuscript and for helping refine our
thoughts in this area. The authors acknowledge CSIRO’sTransformational
Biology Capability Platform for ongoing financial support and two
anonymous reviewers for improving the communication of the manuscript.

Received: 15 February 2012 Accepted: 10 July 2012
Published: 31 July 2012

References
1. Hudson NJ, Reverter A, Dalrymple BP: A differential wiring analysis of

expression data correctly identifies the gene containing the causal
mutation. PLoS Comput Biol 2009, 5(5):e1000382.

2. Hudson NJ, Reverter A, Wang Y, Greenwood PL, Dalrymple BP: Inferring the
transcriptional landscape of bovine skeletal muscle by integrating co-
expression networks. PLoS One 2009, 4(10):e7249.

3. Reverter A, Chan EK: Combining partial correlation and an information
theory approach to the reversed engineering of gene co-expression
networks. Bioinformatics 2008, 24(21):2491–2497.

4. Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP:
Regulatory impact factors: unraveling the transcriptional regulation of
complex traits from expression data. Bioinformatics 2010, 26(7):896–904.

5. Ahmed A, Xing EP: Recovering time-varying networks of dependencies in
social and biological studies. Proc Natl Acad Sci USA 2009,
106(29):11878–11883.

6. Roy S, Werner-Washburne M, Lane T: A multiple network learning
approach to capture system-wide condition-specific responses.
Bioinformatics 2011, 27(13):1832–1838.

7. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R,
Wang Y: Differential dependency network analysis to identify condition-
specific topological changes in biological networks. Bioinformatics 2009,
25(4):526–532.

8. Zhang B, Tian Y, Jin L, Li H: Shih Ie M, Madhavan S, Clarke R, Hoffman EP,
Xuan J, Hilakivi-Clarke L et al.: DDN: a caBIG(R) analytical tool for
differential network analysis. Bioinformatics 2011, 27(7):1036–1038.

9. de la Fuente A: From 'differential expression' to 'differential networking' -
identification of dysfunctional regulatory networks in diseases.
Trends Genet 2010, 26(7):326–333.

10. Vandin F, Upfal E, Raphael BJ: Algorithms for detecting significantly
mutated pathways in cancer. J Comput Biol 2011, 18(3):507–522.

11. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test
for groups of genes: testing association with a clinical outcome.
Bioinformatics 2004, 20(1):93–99.

12. Buckingham M: Skeletal muscle formation in vertebrates. Curr Opin Genet
Dev 2001, 11(4):440–448.

13. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene lists.
BMC Bioinformatics 2009, 10:48.

14. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a
desktop application for Gene Set Enrichment Analysis. Bioinformatics
2007, 23(23):3251–3253.

15. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci USA 2005, 102(43):15545–15550.

16. da Huang W, Sherman BT, Lempicki RA: Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources.
Nat Protoc 2009, 4(1):44–57.

17. Friedberg EC: An interview with Sydney Brenner. Nature 2008, 9:8–9.
18. Brenner S: Sequences and consequences. Philos Trans R Soc Lond B Biol Sci

2010, 365(1537):207–212.



Hudson et al. BMC Genomics 2012, 13:356 Page 16 of 16
http://www.biomedcentral.com/1471-2164/13/356
19. Berry C, Thomas M, Langley B, Sharma M, Kambadur R: Single cysteine to
tyrosine transition inactivates the growth inhibitory function of
Piedmontese myostatin. Am J Physiol Cell Physiol 2002, 283(1):C135–C141.

20. Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin (GDF8)
in double-muscled Belgian Blue and Piedmontese cattle. Genome Res
1997, 7(9):910–916.

21. Lee SJ: Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol
2004, 20:61–86.

22. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA: Myostatin
knockout in mice increases myogenesis and decreases adipogenesis.
Biochem Biophys Res Commun 2002, 291(3):701–706.

23. Manceau M, Gros J, Savage K, Thome V, McPherron A, Paterson B, Marcelle
C: Myostatin promotes the terminal differentiation of embryonic muscle
progenitors. Genes Dev 2008, 22(5):668–681.

24. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr,
Gonzalez-Cadavid N: Myostatin inhibits cell proliferation and protein
synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 2001,
280(2):E221–E228.

25. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G:
Mechanisms involved in the inhibition of myoblast proliferation and
differentiation by myostatin. Exp Cell Res 2003, 286(2):263–275.

26. Joulia-Ekaza D, Cabello G: Myostatin regulation of muscle development:
molecular basis, natural mutations, physiopathological aspects.
Exp Cell Res 2006, 312(13):2401–2414.

27. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res 2008, 18(9):1509–1517.

28. Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H,
Landherr L, Tomsho LP, Hu Y, Carlson JE, et al: Comparison of next
generation sequencing technologies for transcriptome characterization.
BMC Genomics 2009, 10:347.

29. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B,
Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana
development. Nat Genet 2005, 37(5):501–506.

30. Martinez O, Reyes-Valdes MH: Defining diversity, specialization, and gene
specificity in transcriptomes through information theory. Proc Natl Acad
Sci USA 2008, 105(28):9709–9714.

31. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of
human transcription factors: function, expression and evolution.
Nat Rev Genet 2009, 10(4):252–263.

32. Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biol 2010, 11(2):R14.

33. Lewis EB: A gene complex controlling segmentation in Drosophila.
Nature 1978, 276(5688):565–570.

34. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein
D, Brown PO: Genomic expression programs in the response of yeast
cells to environmental changes. Mol Biol Cell 2000, 11(12):4241–4257.

35. Macneil LT, Walhout AJ: Gene regulatory networks and the role of
robustness and stochasticity in the control of gene expression.
Genome Res 2011, 5:645–657.

36. Reverter A, McWilliam SM, Barris W, Dalrymple BP: A rapid method for
computationally inferring transcriptome coverage and microarray
sensitivity. Bioinformatics 2005, 21(1):80–89.

37. Baron D, Magot A, Ramstein G, Steenman M, Fayet G, Chevalier C, Jourdon
P, Houlgatte R, Savagner F, Pereon Y: Immune Response and
Mitochondrial Metabolism Are Commonly Deregulated in DMD and
Aging Skeletal Muscle. PLoS One 2011, 6(11):e26952.

38. Lawhon SD, Khare S, Rossetti CA, Everts RE, Galindo CL, Luciano SA, Figueiredo
JF, Nunes JE, Gull T, Davidson GS, et al: Role of SPI-1 Secreted Effectors in
Acute Bovine Response to Salmonella enterica Serovar Typhimurium: A
Systems Biology Analysis Approach. PLoS One 2011, 6(11):e26869.

39. Yang H, Cheng C, Zhang W: Average rank-based score to measure
deregulation of molecular pathway gene sets. PLoS One 2011, 6(11):e27579.

40. Clark NR, Ma'ayan A: Introduction to statistical methods for analyzing
large data sets: gene-set enrichment analysis. Sci Signal 2011, 4(190):tr4.

41. Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, Ageta H, Inokuchi K:
Activin signaling as an emerging target for therapeutic interventions. Cell
Commun Signal 2009, 7:15.

42. Hudson NJ, Reverter A, Dalrymple BP: A Differential Wiring Analysis of
Expression Data Correctly Identifies the Gene Containing the Causal
Mutation. PLoS Comput Biol 2009, 5((5):e1000382.
43. Butte AJ, Kohane IS: Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput 2000, 5:418–429.

44. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S,
Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia
coli transcriptional regulation from a compendium of expression profiles.
PLoS Biol 2007, 5(1):e8.

45. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P: Inferring regulatory networks
from expression data using tree-based methods. PLoS One 2010, 5(9).

46. Langfelder P, Horvath S:WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics 2008, 9:559.

47. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R,
Califano A: ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinformatics
2006, 7(Suppl 1):S7.

48. Meyer PE, Kontos K, Lafitte F, Bontempi G: Information-theoretic inference
of large transcriptional regulatory networks. EURASIP. J Bioinform Syst Biol
2007, 1:79879.

49. Mordelet F, Vert JP: SIRENE: supervised inference of regulatory networks.
Bioinformatics 2008, 24(16):i76–82.

50. Albert R, Jeong H, Barabasi AL: Error and attack tolerance of complex
networks. Nature 2000, 406(6794):378–382.

51. Prieto C, Risueno A, Fontanillo C, De las Rivas J: Human gene coexpression
landscape: confident network derived from tissue transcriptomic profiles.
PLoS One 2008, 3(12):e3911.

52. De Jager N, Hudson NJ, Reverter A, Wang YH, Nagaraj SH, Cafe LM,
Greenwood PL, Barnard RT, Kongsuwan KP, Dalrymple BP: Chronic exposure
to anabolic steroids induces the muscle expression of oxytocin and a
more than fiftyfold increase in circulating oxytocin in cattle. Physiol
Genomics 2011, 43(9):467–478.

53. Nagaraj SH, Reverter A: A Boolean-based systems biology approach to
predict novel genes associated with cancer: Application to colorectal
cancer. BMC Syst Biol 2011, 5:35.

54. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH,
Vena N, Ogino S, et al: CDK8 is a colorectal cancer oncogene that
regulates beta-catenin activity. Nature 2008, 455(7212):547–551.

55. Abeliovich A: Transcriptome Wiring Analysis of Parkinson's Disease.:
Columbia Technology Ventures; 2011. http://techventures.columbia.edu/
technologies/search.php?req=caseSearch&caseNumber=2837.

56. Lee SJ, McPherron AC: Regulation of myostatin activity and muscle
growth. Proc Natl Acad Sci USA 2001, 98(16):9306–9311.

57. Hennebry A, Berry C, Siriett V, O'Callaghan P, Chau L, Watson T, Sharma M,
Kambadur R: Myostatin regulates fiber-type composition of skeletal
muscle by regulating MEF2 and MyoD gene expression. Am J Physiol Cell
Physiol 2009, 296(3):C525–534.

58. Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira
SA, Farioli-Vecchioli S, Caruso M, Tirone F: PC4/Tis7/IFRD1 stimulates
skeletal muscle regeneration and is involved in myoblast
differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem
2011, 286(7):5691–5707.

59. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S: Weighted
gene coexpression network analysis strategies applied to mouse weight.
Mamm Genome 2007, 18(6–7):463–472.

60. McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the
myostatin gene. Proc Natl Acad Sci USA 1997, 94(23):12457–12461.

61. Pihlstrom L, Toft M: Genetic variability in SNCA and Parkinson's disease.
Neurogenetics 2011, 12(4):283–293.

62. Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, Rudnicki
MA: Rb and p107 regulate preadipocyte differentiation into white versus
brown fat through repression of PGC-1alpha. Cell Metab 2005, 2(5):283–295.

63. Lan MS, Breslin MB: Structure, expression, and biological function of
INSM1 transcription factor in neuroendocrine differentiation.
FASEB J 2009, 23(7):2024–2033.

64. Frietze S, Lupien M, Silver PA, Brown M: CARM1 regulates estrogen-
stimulated breast cancer growth through up-regulation of E2F1.
Cancer Res 2008, 68(1):301–306.

doi:10.1186/1471-2164-13-356
Cite this article as: Hudson et al.: Beyond differential expression: the
quest for causal mutations and effector molecules. BMC Genomics 2012
13:356.

http://techventures.columbia.edu/technologies/search.php?req=caseSearch&caseNumber=2837
http://techventures.columbia.edu/technologies/search.php?req=caseSearch&caseNumber=2837

	Abstract
	Why skeletal muscle?
	Gene expression data: promise and limitations
	The model system
	RNA data and meaning
	Expression (abundance)
	link_Tab1
	link_Tab2
	Differential Expression (DE)
	link_Fig1
	link_Fig2
	Networks and &lsquo;contextomies&rsquo;
	link_Fig3
	Co-expression
	link_Fig4
	Co-differential expression
	Differential co-expression
	link_Fig5
	link_Tab3
	Co-differential co-expression
	Conclusion
	Competing interest
	Authors´ contributions
	Acknowledgments
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64

