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Abstract

Background: Development and application of transcriptomics-based gene classifiers for ecotoxicological
applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous
statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic
algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals
(EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across
the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects.
Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and
a dedicated validation dataset.

Results: Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the
transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features
unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions,
each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique
to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression
profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for
prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no
classifier could predict the GEP from prochloraz-brain.

Conclusions: The discrepancies in the performance of these classifiers were attributed in part to varying data
complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation
in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions,
thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier
discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented
biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more
refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across
tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish
transcriptome involving some basic cellular functions.
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Background

Microarray-based high throughput transcriptomic ana-
lysis profiles transitory changes in gene expression of an
organism in response to perturbations such as a disease
state or exposure to chemical or non-chemical stressors.
A selected set of characteristic gene signatures could
serve as a diagnostic or prognostic tool for samples of
interest with regard to a possible perturbation. Since the
development of microarray technology in the 1990’s,
there has been a steadily increasing interest in develop-
ing these gene signatures for various clinical and envir-
onmental applications [1-4]. As a result, several gene
classifiers® were approved for use in human clinical diag-
nostics, and many more yet to be validated candidates
have been identified for ecotoxicological purposes.

To date, most transcriptomics-based gene classifier
studies have been conducted in the area of human clin-
ical diagnosis and prognosis, often with mixed results.
However, there have been several successful applications
recently. For example, four subtypes of breast cancer
were differentiated by expression profiling [5], and a 70-
gene prognostic classifier was successfully developed and
approved by the US Food and Drug Administration to
characterize breast cancer patient risks [6]. The Path-
work Tissue of Origin Test, a microarray-based gene ex-
pression test involving 1500 genes, was also shown to be
capable of determining the tissue of origin of poorly or
undifferentiated cancers, thus facilitating their diagnosis
[7]. Perhaps the most encouraging success so far is the
concept of connectivity mapping (Cmap), where chem-
ical compounds with similar/dissimilar mechanisms of
action (MOAs) and disease states can be connected by
assessing a group of their gene signatures relative to a
reference collection of gene expression profiles (GEPs)
[8]. Despite these notable successes, there remain issues
that need to be resolved before a widespread acceptance
and application of gene classifier approaches become real-
ity, perhaps particularly so in ecotoxicology. For example,
the stability/reliability of gene classifiers across independ-
ent studies is a common concern. Often, classifiers de-
veloped for the same phenotype from different studies
have little overlap and perform rather poorly on inde-
pendent datasets [9]. And many proposed ecotoxico-
logical gene classifiers are simply differentially expressed
genes lacking vigorous statistical and experimental
validations.

The predictive performance of a gene classifier is
dependent on several technical and biological factors, in-
cluding quality of data acquisition, choice of classifica-
tion algorithm, and the complexity of the dataset under
investigation. This data complexity refers to the extent
to which a dataset is intrinsically structured such that
classes of treated and control samples can be separated
into distinct groups as defined by gene features (i.e. a
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geometric boundary can be established computationally
between classes in a multi-dimensional space). When
data quality and classification algorithms are controlled,
for example within the same study, the difference in
complexity among chemical-tissue conditions underlying
gene classifiers may become critical to their respective
performance [10]. This relationship between data com-
plexity and the performance of a gene classifier was
addressed in several recent studies [11-14]. A number of
measures such as Fisher’s discriminant ratio (F-ratio),
overlap between the distributions of two classes, and
feature efficiency have been proposed to capture this
complexity [10]. Studies comparing cancer biomarkers
suggested that their performance is closely linked to data
complexity and sample size [15]. When this function is
not optimized, there is an increased risk of model over-
fitting, where stochastic noise in training data gets incor-
porated and results in poor classifiers. An assessment of
classifier performance as a function of data complexity
in an ecotoxicological context, therefore, could generate
significant empirical insights concerning issues such as
sample size required for discovery of a particular type of
gene classifier in an optimized experimental design.

Application of microarray technology, in general, and
development of microarray-based gene classifiers, in par-
ticular, for ecotoxicological applications lags far behind
those in human biomedical sciences. Despite numerous
candidate molecular indicators discovered in recent years,
few are field-ready for exposure and risk assessment of
environmental stressors. Several issues probably con-
tribute to this relative lack of progress. First, there is a
general lack of knowledge of the data complexity of indi-
vidual chemical stressors. It is not clear what sample size
is required for discovery of a gene classifier for any given
chemical with a unique MOA. Much of the published lit-
erature on gene classifier discovery in ecotoxicology in-
volved only a minimum number of biological replicates
across treatment conditions due to the prohibitive cost
of microarray technology, despite the desirability of a
much larger number of replicates [15,16]. Second, very
few studies have actually conducted independent valida-
tions on targeted candidate gene classifiers, a critical step
neglected in the discovery process. Without vigorous val-
idation, it is not at all clear how reliable putative gene
classifiers are for chemical exposures. Finally, ecotoxico-
logical application of gene classifiers is also complicated
by a large number of uncontrolled physical, chemical, and
biological variables in a field setting relative to human
clinical applications.

The purpose of this study was to discover gene classi-
fiers for a number of endocrine-disrupting chemicals
(EDCs) with different MOAs, evaluate their performance,
and gain insights on issues important to the discovery
process in general, through vigorous computational
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search and statistical analyses with an experimental de-
sign and sampling strategy similar to those found in the
current ecotoxicological literature. In addition, the sum-
mary statistics of classifiers by various search categories
may also shed additional light on the biological impact
of these EDCs. Specifically, our objectives were to: 1)
search for EDC classifiers either across the entire zebra-
fish transcriptome or within individual transcription fac-
tor (TF) networks based on the microarray data from
EDC-exposed fish samples; 2) generate additional micro-
array data dedicated to validation only and test the
performance of selected candidates; 3) evaluate the cor-
relation between the performance of classifiers and the
data complexity of individual chemical-tissue conditions
as measured by F-ratio; 4) and assess the relative effects
of EDCs on zebrafish based on the summary statistics
of classifiers across chemicals, tissue types, and TF
networks.

Methods
Exposure, sampling, RNA extraction, and microarray
profiling
As part of a larger computational toxicology project
studying the impact of a number of EDCs on the
hypothalamic-pituitary-gonadal (HPG) axis in fish, ap-
proximately 300 microarrays covering 58 treatment con-
ditions for zebrafish were available for this investigation
[17,18]. Many experiment details regarding the project,
including the research goals, design, test chemicals, fish
exposures, biological endpoints and sample handling
(e.g., RNA extraction and hybridization) are available else-
where [17,18]. Only a brief overview is provided below.
Zebrafish exposures were conducted using 10 chemi-
cals with differing known/hypothesized MOAs within
the HPG axis: 17a-ethynyl estradiol, fadrozole, 170-
trenbolone, fipronil, prochloraz, flutamide, muscimol,
ketoconazole, trilostane, and vinclozolin [17]. Repro-
ductively mature male and female zebrafish were exposed
to a continuous flow of test chemical (two different,
analytically-confirmed concentrations and a control), de-
livered in water (with no solvent), for 24, 48, or 96 h.
At the end of each exposure period, fish were eutha-
nized in a buffered solution of tricaine methanesulfonate
(MS-222; Finquel, Argent, Redmond WA, USA) and tis-
sues, including gonads, liver, and brains (with the pituit-
ary gland and hypothalamus) were collected. Total RNA
isolated from selected tissue samples was labeled and
hybridized to microarrays by an Agilent certified contract
laboratory (Cogenics, Morrisville, North Carolina 27560,
USA). Expression profiling in zebrafish was achieved using
Agilent two-color zebrafish microarrays (G2518A and
G2519E, design 013223 and 015064, Agilent Technolo-
gies, Santa Clara, CA 95051, United States). Data from
approximately 290 microarrays, representing 58 treatment
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conditions encompassing the 10 chemicals, three tissue
types, and three exposure durations, in both male and fe-
male zebrafish were analyzed for candidate classifiers
(Table 1). Additional unused 28 fish tissue samples of
flutamide-ovary, prochloraz-ovary, and prochloraz-brain
were set aside and subsequently profiled by microarrays
for the validation of their corresponding classifiers. The
entire microarray dataset is accessible through the Na-
tional Center for Biotechnology Information Gene Expres-
sion Omnibus [19] with the accession number GSE38070.

Gene classifier discovery and validation

Putative classifiers for various chemical-tissue conditions
were identified through intensive computational searches
with two different strategies (Figure 1, Additional file 1:
Figure S1). While there are a great number of algorithms
available for microarray-based gene classifier discovery, a
choice was made to employ a combination of either GA-
SVM (genetic algorithm-support vector machines) or
GA-KNN (K-nearest neighbors) based on their previous
evaluations as being the best and second best performer
respectively [20]. GA is a computational approach mod-
eled on biological evolution, incorporating concepts and
processes such as genes, chromosomes, selection, re-
combination, mutation, and fitness [21]. It is a power-
ful tool for optimization, and thus well-suited for the
task of reducing data dimensionality by selecting a small
number of informative gene features among tens of thou-
sands present on a microarray, a necessary first step for
any classifier discovery algorithm. Genes selected and

Table 1 Sample size across chemical-tissue conditions for
classifier search

Chemical/tissue Brain Ovary Testis All tissues
17a-Ethynyl Estradiol 10° 5 9 30
Fadrozole 15¢ 15 NA 30
Fipronil 10¢ 10 10 30
Flutamide NA 10 15 25
Ketoconazole 10° 15 5 40
Muscimol 20° 5 NA 25
Prochloraz 10° 10 10 30
17B-Trenbolone 5 15 NA 25
Trilostane NA 10/5 20/ 15 30/20
Vinclozolin NA 10 15 25
Total 80 105 84 269/290

Except for trilostane-ovary and trilostane-testis, each entry represents equal
number of independent replicates of both treated and control samples®. In
trilostane where some of the same controls were paired to different treatment
conditions, only unique ones were counted. Conditions with less than nine
samples in either class were excluded from classifier search. “NA”, a condition
not included in the study. The dataset of “all tissues” includes brain, ovary,
testis, as well as a few additional samples from liver for selected conditions.
*for example, 17a-Ethynyl Estradiol-brain had 10 treated samples and 10
control samples; male only; ‘male and female; “female only.
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Preprocessed microarray training data
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testis, all tissues)
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Figure 1 Flow chart for gene classifier discovery and validation.

arranged into chromosomes then evolve under the prin-
ciples of biological evolution employing either SVM or
KNN as a fitness function. The fitness here is equivalent
to the performance of a classifier. SVM can handle both
linearly separable and non-separable microarray data
[13,22]. The algorithm projects samples from a training
dataset into high-dimensional space separated by a hy-
perplane [23], which is captured in a SVM model to be
used subsequently for classifying unknown samples.
KNN identifies a sample in question based on the class
memberships of its nearest neighbors as determined by a
distance measure in a multi-dimensional space defined
by gene features [24].

The performance of gene classifiers was then evaluated
by gene set enrichment analysis (GSEA), where a classi-
fier containing a group of gene signatures associated
with a treatment condition was determined for their non-
random distribution on the rank-ordered gene lists from

the GEPs of both training and validation data. If a classi-
fier formatted as a gene set is enriched in these gene lists,
their respective underlying chemical-tissue conditions
must have similar MOAs, leading to the validation of the
classifier. On the original training data, GSEA was con-
ducted for the classifiers of all the conditions. For the
dedicated validation data, only classifiers for several se-
lected chemical-tissue conditions were assessed. The
identities of these conditions were known but withheld
during analysis.

Microarray data preparation and characterization

To avoid issues resulting from complications of tissue-
specific expression [25], gene classifiers were searched
primarily within a tissue type. Datasets were prepared in
this investigation separately from samples of ovary (105
microarrays and 10 chemicals), testis (84 microarrays
and seven chemicals), and brain (80 microarrays and
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seven chemicals). As a comparison, an inclusive dataset
was also generated containing all samples from above,
plus several more from liver. Several dye-swaps among
the 300 microarrays were excluded. Individual microar-
rays were processed as single channel intensities (Cy5,
Cyanine 5; and Cy3, Cyanine 3) since, for these studies,
the two channels contained unique biological samples
[18] and the search for a binary classifier was more
straightforward. Data preprocessing including filtering
and normalization was conducted by dataset, identical to
that described by Wang et al. [18]. The data complexity
of a chemical- tissue condition was captured by F-ratio
statistic, an effective measure of microarray data com-
plexity [11]:

(fi)max = (py — /,12)2/(012 + 022)71' =1to N

where 11, o, o2, o2 are the means and variances of the
two classes in the condition, and f; the estimated value
for gene feature i.

Choice of software

Both GA-SVM and GA-KNN were implemented
through the software R [26] package GALGO [27]. The
algorithms were implemented in such a way that during
a search, samples would be split randomly into a train-
ing group versus a test group a number of times. To en-
sure a minimum number of samples in both groups for
the algorithm to function, each chemical-tissue condi-
tion must have at least nine microarrays (18 biological
samples) in order to be included in the search for a gene
classifier.

General search strategies

Both the transcriptome-wide searches by GA-SVM and
the network-specific searches by GA-KNN were applied
to the three tissue-specific datasets and the all tissue
combined dataset. While these datasets contained data
for multiple chemical-tissue conditions, each search was
always conducted on an individual condition within a
dataset. Several considerations were taken into account
in the design of search strategies with regard to datasets,
search scope, and algorithms. To avoid the dominant
impact of tissue type on GEPs, searches were primarily
conducted within individual tissue types. However, to
demonstrate tissue effect on classifier discovery, the all
tissue combined dataset was also analyzed. For each
chemical-tissue condition, the search scope was either
across the entire zebrafish transcriptome or limited to
previously reverse-engineered, individual TF networks
[18]. In other words, the sampling space for GA con-
sisted of all the expressed genes in zebrafish or those
belonging to a particular TF network only. Given the
established linkage between these TF networks and EDC
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effects in zebrafish, this network-specific search could
potentially produce more mechanistically-based classi-
fiers. GA-KNN was used for the network-specific searches
because it is computationally less intensive than GA-
SVM, and the overall computing load for these searches
was far greater than that of the transcriptome-wide
searches as a result of hundreds of TF networks over
multiple chemical/tissue conditions involved. To further
reduce computing demand, network-specific searches for
the all tissue combined dataset were limited to three of
its chemical-tissue conditions.

Transcriptome-wide search

All gene features remaining in a given dataset (brain,
ovary, testis, or all tissue combined) after data prepro-
cessing were included in the search space for GA-SVM.
The number of features was 13339 in brain, 12706 in
ovary, 14148 in testis, and 12802 in the all tissues-
combined dataset. Prior to searches by GA-SVM, a
“cost” parameter necessary for a selected SVM kernel
function had to be determined for individual datasets.
An R script was developed for this purpose to conduct
a grid search using the R package e1071, an interface to
C++ library libsvm [28]. The GA-SVM search was con-
figured by the GALGO setup function configBB. VarSel,
and is summarized in Additional file 2: Table S1. A GA-
SVM search was conducted independently for 29 dif-
ferent chemical-tissue conditions.

Network-specific search

A TF network consists of a TF regulator and a number
of target genes under its transcriptional regulation. A TF
regulator is also referred as a hub TF. Previously, we
identified 515 reverse-engineered TF networks signifi-
cantly impacted by EDCs [18]. Network-specific searches
by GA-KNN were applied to these 515 networks as well
as the two additional groups of genes: the hub TFs of
the 515 TF networks compiled into a separate group
termed master regulators, and a list of genes coding for
proteins known to be involved in regulation of the HPG
axis [29]. For simplicity, the master regulators and HPG
axis will also be counted as TF networks hereafter in the
context of classifier search. Given the number of chemi-
cals, multiple tissue types, and hundreds of TF networks,
a separate R script wrapper had to be developed for
GALGO in order to batch process a large number of
searches. GA-KNN searching was also configured by the
GALGO setup function configBB. VarSel (Additional file
2: Table S1). Searches for classifiers were conducted for
each chemical-tissue condition by the 517 networks,
which translated to over 10,000 independent searches
spread out over multiple nodes of a computer cluster
with the Linux operating system.
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Prioritizing candidate classifiers

The nature of GA-SVM and GA-KNN was such that
there were typically multiple models generated in a
search for a given gene classifier, with each model reach-
ing the same pre-defined fitness goal and containing a
number of gene features. Some of these gene features
were often redundant among models. In the case of the
transcriptome-wide search, the union of these models
was first determined. The resultant unique set of gene
features was then visually screened for class separation
by its corresponding heat map for a particular chemical-
tissue condition. Since network-specific searching in-
volved multiple TF networks within a chemical-tissue
condition, unique sets of gene features, each derived
from multiple models within a network, had to be visu-
ally screened by their respective heat maps first, and if
qualified, merged across TF networks. Those gene fea-
tures that were redundant across multiple chemical-
tissue conditions were then removed in order to reduce
ambiguity in future field applications where multiple
chemical mixtures may be present. Otherwise, a classi-
fier with a subset of gene features responsive to multiple
chemicals will become less condition-specific. The re-
maining gene features unique to a single chemical-tissue
condition were then each ranked by the number of TF
networks in which it was selected into a model. The top
100 were chosen as a classifier for each condition. For
both transcriptome-wide and network specific searches,
a heat map was generated by an R script developed in
house based on a unique set of gene features and the
gene expression data of a given chemical-tissue condi-
tion from which these features were identified. Each heat
map contained two-way clustering of samples and genes.
During its visual screening, a unique set of gene features
would qualify as a classifier (transcriptome-wide search)
or for further consolidation across TF networks (net-
work specific search) only if there was a complete sep-
aration of treated and control samples into two distinct
clusters. The phrase “qualified classifier” was used only
in this context throughout this study.

Validation

Qualified classifiers from all of the chemical-tissue con-
ditions, one classifier per condition, were converted into
GSEA format (gmt, gene matrix transposed) and orga-
nized into two files according to their tissues of origin
(brain or ovary). Each classifier composed of multiple
gene features became a gene set. Gene features were
represented by their corresponding gene symbols [30], if
available on Agilent zebrafish annotations, or original
probe identifications (IDs). The two gene set files were
tested on both the original training dataset and a newly
generated validation dataset. This new set of GEPs was
generated from fish exposed concurrently with the other
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fish used previously for the training data. A total of 28
samples, 19 ovaries and nine brains, and their paired
controls were profiled for their gene expression. Label-
ing and hybridization protocols employed for these new
data were similar to those used for the training data;
however, a newer version of Agilent zebrafish microarray
(G2519E, design 019161) had to be used because the pre-
vious design 015064 was discontinued. The ovary sam-
ples included eight treated with flutamide and eight
treated with prochloraz. And there were another eight
brain samples from fish treated with prochloraz as well.
These chemical-tissue conditions were selected because
they had a large number of TF networks each generating
a qualified classifier. Similar to the previous training
data, half of the samples in each of these three treatment
conditions were exposed for 48 hr and the other half for
96 hr. Each sample was also paired to its corresponding
control. The remaining four samples were extra controls
from these exposures included for microarray data pre-
processing only. Outputs from Agilent Feature Extrac-
tion software were organized into three datasets, brain
only, ovary only, brain and ovary combined, and pro-
cessed as single channel intensities following a previ-
ously described procedure [18]. These three different
ways of organizing the same outputs provided an oppor-
tunity to assess whether microarray data preprocessing
would be impacted by sample size.

Given that the data for training and validation were
produced from Agilent zebrafish microarrays of two dif-
ferent designs, their probe IDs had to be cross mapped
(Additional file 3: Table S2). Several types of evidence
were considered when cross-mapping the probe IDs be-
tween the designs: probe sequences, probe coordinates
along a chromosome (019161_D_BED_20110527_modi-
fied.bed, 015064 _D_BED_20110527_modified.bed made
available by Agilent as of June 14, 2011; bed, browser ex-
tensible data), GenBank reference sequence (RefSeq;
zebrafish.rna.fna as of June 20, 2011), Ensembl gene
sequences (32312 unspliced including 5 UTR, exons,
introns, 3' UTR) [31], and Ensembl ¢cDNA sequence
(Danio_rerio.Zv9.62.cdna.abinitio.fa, Danio_rerio.Zv9.62.
cdna.all.fa as of June 14, 2011). Probes were mapped by
common sequence targets on cDNA, RefSeq, and genes
by BLASTN at a minimum E-value of E-10, or perfect
match of probe sequences, or +/— 50 bps of start posi-
tions on the same chromosome. Number of probes
matched between the designs varied with type of evi-
dence (Additional file 3: Table S2). Overall, 24677 of
43603 probes from the design 019161 were matched to
17302 of 21495 probes from the design 015064.

A typical classification algorithm such as SVM relies
on a training dataset and its derived computational
model to make a prediction on an unknown test sample.
It is difficult to evaluate the performance of a gene
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classifier on its own independent of the original training
data. Two alternative approaches were adopted to ad-
dress this issue, one statistical and the other by visual
examination of heat maps. In GSEA [32], a classifier ori-
ginating from a known chemical-tissue condition was
validated on the newly produced GEPs. In the current
study, qualified classifiers for various conditions were
organized into gene sets by brain or ovary, and analyzed
with either the original training data or the newly gen-
erated GEPs dedicated for validation. Each classifier
contained gene features unique only to its own chemical-
tissue condition and not shared with any other classifiers.
The gene sets were paired to a microarray dataset with
the same tissue type. GSEA was conducted using an R
script wrapper and the release GSEA.1.0.R from the
Broad Institute [18,33]. Based on the GSEA results,
selected heat maps were generated for prochloraz gene
classifiers from brain and ovary using their respective,
tissue-specific training and validation datasets. To func-
tion effectively as a positive control, GSEA was also con-
ducted for all the classifiers on the original training
datasets of brain and ovary. For both GSEA and heat
maps, gene features were cross mapped between the
microarray design 015064 and 019161 based on the pro-
cedure and outputs described above, but at an elevated
stringency of E-25 for BLAST-based evidence (Ensembl
genes, cDNA, GenBank RefSeq) and +/- 20 bps for
probe starting positions (Agilent bed files).

Results

Putative classifier identification and their distribution
across chemicals, tissues, and networks

In the current study, microarray data were organized
and prepared according to individual tissue types (brain,
ovary, and testis) each containing multiple chemicals
(Table 1). Each condition may also contain data from
multiple time points of exposure. Several brain condi-
tions also had mixed male and female fish, with seem-
ingly minimal impact on the discovery and performance
of their classifiers. The purpose of pooling data in these
conditions was to have increased sample size for their
classifier search. A separate dataset was constructed by
combining all three tissue types together along with add-
itional liver samples for 17a-ethynyl estradiol, flutamide,
ketoconazole, and 17fB-trenbolone. Searches for gene
classifiers were conducted for individual chemicals and
their controls in these four datasets (brain, ovary, testis,
all tissues combined) either across the entire zebrafish
transcriptome or within each of the 517 individual net-
works (Tables 2, 3). Given the nature of binary searches,
a classifier discovered in this study was intended only
for distinguishing GEPs from fish exposed to a chemical
or control within a particular tissue, and not for diag-
nosing between chemicals. While most of these 10,000
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Table 2 Chemical-tissue conditions found with (1) or
without (0) a qualified gene classifier

Chemical/tissue All tissues brain ovary testis
17a-Ethynyl Estradiol 0 0 — 0
Fadrozole 0 0 0 NA
Fipronil 0 0 0 1
Flutamide 0 NA 1 0
Ketoconazole 0 0 1 —
Muscimol 0 1 — NA
Prochloraz 0 0 1 1
17B-Trenbolone 0 — 0 NA
Trilostane 0 NA — 0
Vinclozolin 0 NA 0 0

Searches were conducted transcriptome-wide using genetic algorithm-support
vector machine followed by visual screening of heat maps. Each condition
refers to the tissue sampled from fish treated with a particular chemical. “NA”,
a condition not included in the study; “---“, insufficient sample size for classifier
search.

plus searches yielded putative gene classifiers, only a
small subset of them was later qualified by visual evalu-
ation of their heat maps (Figure 2). Unless otherwise ex-
plicitly stated, it is these qualified classifiers that are
analyzed and discussed further. In addition, throughout
this report, a classifier will always be discussed in the
context of a chemical-tissue condition. For example, a
classifier for prochloraz-ovary would refer to a number
of gene features identified from the ovary microarray
data of prochloraz-treated fish. If valid, it should diag-
nose GEPs of fish with the same exposure history.

Given the strong impact of a tissue type on an overall
transcriptional profile, it is not surprising that no classi-
fiers were discovered for any chemicals using the expres-
sion data combined from multiple tissues (Table 2).
When searches were conducted across the entire zebra-
fish transcriptome using only data from individual tissue
types, classifiers were found for six conditions: muscimol-
brain, flutamide-ovary, ketoconazole-ovary, prochloraz-
ovary, fipronil-testis, and prochloraz-testis (Table 2). A
typical classifier for these conditions had approximately
50 gene features. Excluding those features shared among
multiple conditions, a classifier for each of the six con-
ditions had from 20 to 30 unique gene features.

In addition to searches across the entire zebrafish tran-
scriptome, similar analyses were also conducted by TF
networks. The search space for these was limited to the
517 individual networks, including a group of genes
compiled for HPG axis and another group made up ex-
clusively of hub TFs (master regulators), the networks of
which had been previously linked to various chemical-
tissue conditions (Table 3) [18]. While preliminary clas-
sifiers were found from the HPG axis and the master
regulators respectively for all 19 possible chemical-tissue
conditions, only one classifier (flutamide-ovary) from the
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Figure 2 A comparison of heat maps of selected gene classifiers. Heat maps were generated for gene classifiers of prochloraz-ovary and
prochloraz-brain based on the corresponding gene expression profiles of the same chemical-tissue conditions in the respective training and
validation datasets. All datasets were prepared tissue-specifically. The classifiers were unique to each chemical-tissue condition, and cross mapped
between the design 015064 and 019161 based on the exact match of their probe sequences. The red and green bars above each heat map
indicate treated and control samples in a condition. Pairs of heat maps in each column compare a classifier of the same group of gene features
between the training and validation data. Pro, prochloraz; TF network, transcription factor network.

Table 3 Summary statistics of qualified gene classifiers from network-specific searches

Chemical/tissue All tissues Brain Ovary Testis Subtotal by
(495 search / (496 search / (495 search / (497 search / chemical
condition)? condition) condition) condition)

Prochloraz & 177 68 76 321

Flutamide & NA 124 0 124

Fipronil & 71 17 20 108

17a-ethynyl estradiol 0 41 — 50 91

Vinclozolin 0 NA 28 1 29

Ketoconazole & 18 7 — 25

Muscimol & 22 — NA 22

Fadrozole & 4 0 NA 4

17B-trenbolone & — 0 NA

trilostane 0 NA — 0

Subtotal by tissue 333 243 147

A total of 517 individual networks were analyzed by chemical-tissue conditions using genetic algorithm-K nearest neighbors. Within a condition, each TF network
contributed one classifier composed of multiple gene features. “NA”, a condition not included in the study; “--*, insufficient sample size for classifier search; “0”,
searched but no qualified classifier; “&”, no search conducted.

?Between 20 to 22 of the 517 networks did not contain sufficient number of genes to be searched due to variations in their availability in different datasets.
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master regulators later qualified based on its heat map.
Among the remaining 515 TF networks searched, a
number of qualified classifiers were found for each of 15
chemical-tissue conditions (Table 3) from a total of 255
unique networks, with one per TF network per condi-
tion. At maximum, gene features in a given TF network
could be selected into classifiers for 10 different condi-
tions, with a median of two (data not shown). The top
contributing TF networks in this regard (as denoted by
their hub TFs) included XBP1 (X-box binding protein),
HIF1AB (hypoxia inducible factor), YBX1 (Y-box bind-
ing protein), SMAD2 (MAD homolog), and YY1B (YY1
transcription factor). No preliminary classifiers from
fadrozole-ovary, 17p-trenbolone-ovary, flutamide-testis,
and trilostane-testis were qualified (Table 3). Brain tissue
had the greatest number of TF networks (333) each
yielding a qualified classifier, followed by ovary (243) and
testis (147). By individual chemicals, prochloraz had the
greatest number of TF networks (321) each generating a
classifier, followed by flutamide (124), fipronil (108), and
17a-ethynyl estradiol (91). A similar pattern was also
observed in the distribution of number of gene features
in a classifier (Table 4). Classifiers from brain had the
most gene features (1894), followed by ovary (1299) and
testis (643). Chemical-wise, classifiers for prochloraz
had the greatest number of gene features (1848), fol-
lowed by flutamide (814), and 17a-ethynyl estradiol
(473) (Table 4). A majority of these gene features over-
lapped among multiple classifiers.

Testing/validation of selected classifiers

After their discovery from the original training dataset
and passing visual screening of heat maps, classifiers
were still considered as candidates until further valid-
ation on an independently generated microarray dataset.
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Using GSEA, a classifier defined by its original chemical-
tissue condition, for example, prochloraz-ovary, was
tested to see if it could correctly identify the exposure in
an independent organism with the same exposure his-
tory. A total of six classifiers from the transcriptome-
wide search and 14 classifiers from the network-specific
search each had enough gene features unique only to a
particular condition to be a useful gene set. To prove its
utility as a diagnostic tool, GSEA of classifiers was also
conducted on the original training data alongside with
the new validation dataset. In theory, GSEA should link a
classifier to the GEPs of the training data sharing a com-
mon chemical-tissue condition.

The results of testing classifiers were inconsistent. Dis-
crepancies existed not only between the original training
data and validation dataset, but also within each of them.
As expected for the training data, nine out of the 11
gene classifiers identified the chemical exposures of their
original GEPs as top candidates based on statistically sig-
nificant enrichment of gene sets on ranked gene lists
(Table 5). The classifier for flutamide-ovary also identi-
fied its target GEP of the same condition, but only as
the third choice. However, in the majority of cases, sev-
eral classifiers representing different chemical-tissue con-
ditions would also identify the same GEP. For example,
classifiers for prochloraz-ovary, ketoconazole-ovary, and
flutamide-ovary all diagnosed the GEP of prochloraz-
ovary. The GEP of fadrozole-brain, however, failed for
all classifiers tested, including surprisingly its own.

While testing classifiers on their original training data
proved the utility of GSEA as a diagnostic tool, a classi-
fier has to be evaluated on data completely independent
from its discovery. The results were also mixed when
selected classifiers from brain and ovary were tested sep-
arately on the validation dataset (Table 6). Since the

Table 4 Number of gene features in qualified classifiers for various chemical-tissue conditions

Chemical No. unique gene features (total)

Brain Ovary Testis Subtotal by chemical
Prochloraz 1236 (3391) 277 (1437) 335 (1550) 1848 (6378)
Flutamide NA 814 (2491) 0 814 (2491)
17a-ethynyl estradiol 221 (897) — 252 (737) 473 (1634)
Fipronil 261 (1370) 47 (338) 53 (353) 361 (2061)
Vinclozolin NA 131 (662) 3(6) 134 (668)
Ketoconazole 84 (519) 30 (185) — 114 (704)
Fadrozole 14 (115) 0 NA 14 (115)
Muscimol 78 (656) — NA 78 (656)
17B-trenbolone — 0 NA
Trilostane NA — 0
Subtotal by tissue 1894 1299 643

Based on Agilent probe IDs, each total count includes those gene features overlapping among multiple classifiers. While search was network-specific, gene
features were summarized across multiple networks in a classifier for a given condition where available. A total of 7522 features were selected into classifiers for
the 15 conditions listed. “NA”, not included in the study; “---“, insufficient sample size for classifier search; “0”, searched but no qualified classifier.
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Table 5 Gene set enrichment analysis (GSEA) of classifiers on their original gene expression profiles (GEPs) for training

Brain
GEP (F-ratio)

Chemical

GEP (FDR)

Brain classifiers
enriched on brain

Ovary
GEP (F-ratio)

Ovary classifiers
enriched on ovary
GEP (FDR)

Fadrozole (FAD) FAD-brain (3.41)

17a-ethynyl estradiol (EE2)

EE2-brain (5.96)

Muscimol (MUS) MUS-brain (6.42)

Fipronil (FIP) FIP-brain (6.78)
Flutamide (FLU) NA
Ketoconazole (KET) KET-brain (9.17)
Prochloraz (PRO) PRO-brain (19.42)
TRE-brain (22.94)°

17B-trenbolone (TRE)

Trilostane (TRI) NA
Vinclozolin (VIN) NA

F-ratio mean=10.59

No enrichment

EE2-brain (0.028)

MUS-brain (0.0)

FIP-brain (0.002); MUS-brain (0.012)

KET-brain (0.006);MUS-brain (0.008)

PRO-brain (0.0)

No enrichment

FAD-ovary (2.01)° PRO-ovary (0.005)
KET-ovary (0.006)
FLU-ovary (0.01)
KET-ovary (0.002)
PRO-ovary (0.004)
FLU-ovary (0.023)
FIP-ovary (0.027)
KET-ovary (0.035)
PRO-ovary (0.052)
FLU-ovary (0.077)
FIP-ovary (0.006);
PRO-ovary (0.0)
KET-ovary (0.0)
KET-ovary (0.002)
PRO-ovary (0.006)
FLU-ovary (0.007)
KET-ovary (0.0)
PRO-ovary (0.008)
FLU-ovary (0.18)
PRO-ovary (0.0)
KET-ovary (0.009)
FLU-ovary (0.008)
KET-ovary (0.1)
PRO-ovary (0.234);
FIP-ovary (0.236)
PRO-ovary (0.121)
VIN-ovary (0.024);
KET-ovary (0.0)
PRO-ovary (0.107)
FLU-ovary (0.106)

EE2-ovary (22.4)°

MUS-ovary (42.62)°

FIP-ovary (10.23)

FLU-ovary (67.23)

KET-ovary (4.85)

PRO-ovary (14.48)

TRE-ovary (3.28)°

TRI-ovary (1 H6)b
VIN-ovary (6.09)

F-ratio mean = 1844

Each classifier was formatted into a gene set, and multiple gene sets were grouped by their tissue of origin. GSEA was conducted by individual chemical-tissue
conditions, at a threshold of FDR< 0.25. Classifiers enriched on the top or bottom of a ranked gene list are separated by a semicolon. If two classifiers of the same
condition are both significant, only the most significant one is listed. A GEP in bold indicates the availability of its corresponding classifier as a gene set. FDR, false
discovery rate; F-ratio, maximum Fisher’s discriminant ratio; “NA”, a condition not included in the study.

aSearched but no qualified classifier found for the condition. Its GSEA was conducted using classifiers for other unrelated chemical-tissues.

PNo classifier search was conducted due to insufficient sample size for the condition. Its GSEA was conducted using classifiers for other unrelated chemical-tissues.

validation datasets prepared by ovary, brain, and their
combination all gave similar results, only GSEA results
based on the combined brain and ovary data are presented.
Despite potential issues resulting from cross-mapping
probes between the two microarray designs or slight dif-
ferences in sample preparation, the GEP of flutamide-
ovary was diagnosed by its corresponding classifier, and by
classifiers for vinclozolin-ovary, ketoconazole-ovary, and

prochloraz-ovary as well. Similarly, the GEP of prochloraz-
ovary was also identified by its classifier and that of keto-
conazole. In contrast, none of the classifiers was able to
identify the GEP of prochloraz-brain. When the classifiers
for prochloraz-brain and prochloraz-ovary were evaluated
visually by their heat maps on the corresponding GEPs of
the same chemical-tissue conditions from the original
training and validation datasets, the complete separation
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Table 6 Gene set enrichment analysis (GSEA) of classifiers on their validation data

chemical Brain Brain classifiers Ovary Ovary classifiers
GEP (F-ratio) enriched on brain GEP (F-ratio) enriched on ovary
GEP (FDR) GEP (FDR)
Flutamide (FLU) NA NA FLU-ovary (13.76) VIN-ovary (0.174)

Prochloraz (PRO) PRO-brain (24.75)

No enrichment

FLU-ovary(0.21)%
KET-ovary (0.039)
PRO-ovary (0.123)
PRO-ovary (0.067)
KET-ovary (0.163)

PRO-ovary (15.2)

Although the gene expression profiles (GEPs) were preprocessed as a whole by combining data from both brain and ovary, each GSEA was conducted by
individual chemical-tissue conditions at a threshold of FDR <0.25. Classifiers enriched on the top or bottom of a ranked gene list are separated by a semicolon. If
two classifiers for the same condition were both significant, only the most significant one is listed. Mapping of the probe IDs between the Agilent design 15064
and 19161 was based on identical probe sequences only. FDR, false discovery rate; F-ratio, maximum Fisher’s discriminant ratio. “NA”, a condition not included in

the study.

“When the GEPs were preprocessed with data from ovary only, the FDR for flutamide-ovary was 0.53.

of treated and control samples observed in the training
datasets was not evident in the validation data (Figure 2).

Data complexity of chemical-tissue conditions

Given the impact of data complexity on the performance
of gene classifiers, it is potentially informative to bring
this measure into the discussion. A smaller F-ratio re-
flects less separation of the population mean responses
of treated and controls in a given condition relative to
their variances, thus a greater complexity.

Within the training data, fadrozole-brain had the smal-
lest F-ratio (3.41), followed in ascending order by (in the
brain) 17a-ethynyl estradiol, muscimol, fipronil, ketoco-
nazole, prochloraz, and 17B-trenbolone (22.94; Table 5).
In ovary, fadrozole again had the smallest F-ratio (2.01),
followed by 17p-trenbolone, ketoconazole, vinclozolin,
fipronil, trilostane, prochloraz, 17a-ethynyl estradiol,
muscimol, and flutamide (67.23). Between the two tissues,
the relative ranking order of F-ratios remained similar
for some chemicals but changed with others, notably
17a-ethynyl estradiol, muscimol, and 17p-trenbolone.
There was also a several-fold difference between the lar-
gest F-ratios in ovary versus the brain, of flutamide-ovary
and 17f3-trenbolone-brain respectively. On average, the
GEPs of ovary had a greater F-ratio (18.44) than those of
brain (10.59).

The F-ratios of several chemical-tissue conditions were
not consistent between the training and validation data-
sets. In the training set, several selected conditions with
F-ratios from low to high were prochloraz-ovary (14.48),
prochloraz-brain (19.42), and flutamide-ovary (67.23). In
the validation data, the sequence changed to flutamide-
ovary (13.76), prochloraz-ovary (15.2), and prochloraz-
brain (24.75; Table 6). Also notable was an observation
that those conditions with smaller F-ratios (fadrozole-
brain, fadrozole-ovary, 17-trenbolone-ovary) in the train-
ing data tended to yield fewer classifiers while those

with greater F-ratios (flutamide-ovary, prochloraz-brain,
prochloraz-ovary) tended to yield more (Table 3).

Discussion

Perhaps the most critical component of any gene classi-
fier discovery effort is independent validation. Especially
in the field of ecotoxicology, there is a current prevalence
of candidates but few field-ready classifiers for exposure
and risk assessment. With a limited number of biological
replicates in most microarray studies due to cost consid-
erations, it is not clear how well these transcriptomics-
based gene classifiers will perform in validations. Rather
than directly pursuing more complicated multi-class
classifiers in our current study, a choice was made to dis-
cover simpler binary classifiers for two reasons. One was
to avoid potential computational issues arising from the
complex biological interactions of EDCs all targeting
the various components of the HPG axis. Second, a multi-
class problem can be decomposed into a number of bi-
nary classifications problems [34], and initial binary clas-
sifiers successfully identified could later be combined
computationally to tackle a multi-class classification
problem [35]. While the microarray training dataset used
in this study was not designed specifically for gene clas-
sifier discovery, it does represent typical microarray data
obtained in ecotoxicology experiments, both in terms
of the extent of biological sample replication, and the
relevance of EDCs to chemicals of concern in fish and
wildlife.

In order to make predictions on samples of interest of
their chemical exposure history, a typical classification
algorithm requires the availability of training data or its
representation as a computational model derived before-
hand. An approach like GSEA offers a flexible alterna-
tive. There are two possible scenarios for interpretation
when GSEA determines that a classifier as assayed on
samples of interest is enriched on the rank-ordered gene
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lists generated from reference GEPs associated with a
known chemical. For an established classifier on samples
of unknown, the chemical exposure history of these sam-
ples would be diagnosed by the chemical condition asso-
ciated with the reference GEPs. For a candidate classifier
on known samples, on the other hand, a connection of
corresponding chemical conditions between these sam-
ples and reference GEPs would effectively validate the
classifier. In a typical study of biomarkers, the same al-
gorithm is used in their discovery and validation. In this
research, however, independent algorithms were used in
the two stages. The successful linkage, in 10 out of a
total of 11 cases, of treatment conditions of classifiers to
those of their respective GEPs in the training data dem-
onstrated not only the strength of GA-SVM/GA-KNN
for discovery, but also the utility of GSEA for validation.

The inconsistent predictive performance of several
classifiers on both the original training data and later-
generated validation data could be attributed in part to
the data complexity of their respective chemical tissue
conditions unresolved by computational modeling at
their existing sample size. This complexity reflects the
differential biological impact of an EDC on an individual
fish relative to its overall population. In other words,
with all other factors equal, the performance of a classi-
fier is probably a function of both the (mechanisms of)
action of the EDC and the population variation in organ-
isms’ response to exposure of these chemicals, both gen-
etic and environmental. Accordingly, the sample size
required for classifier discovery would likely vary among
different chemical-tissue conditions. When biological
replication is inadequate for a given level of data com-
plexity, model overfitting could result in an incorpor-
ation of both signal and noise, leading to unsuccessful
predictions later [36,37].

As one of a variety of measures proposed to capture
the data complexity of GEPs, F-ratio statistic varies in its
degree of correlation with the performance of classifiers
[11,12,14], probably because of a wide range of linear
separability present among microarray datasets [13].
Many complexity measures including F-ratio are thought
to be especially effective in characterizing linearly separ-
able data [10]. In the current study, a similar inconsist-
ent correlation was also observed between F-ratio and
classifier performance. In conditions like fadrozole-
brain, prochloraz-brain, and prochloraz-ovary in the
training data, F-ratio reflected the performance of classi-
fiers (Table 5). In other conditions such as prochloraz-
brain across the training and validation data, this
correlation broke down (Table 6). And the F-ratio of the
same condition, for example flutamide-ovary, also varied
widely between the training and validation data in spite
of the fact that fish samples involved were co-exposed in
the same batch. Similar challenges of data complexity
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impacting classifier performance were also observed in
cancer classification data [15]. Thus, a better characteri-
zation of microarray data complexity probably requires
an exploration of a full suite of statistical measures and
depends highly on chemical-tissue conditions.

The discrepancy between GSEA validation results and
the corresponding heat maps is difficult to interpret.
The heat maps of prochloraz classifiers achieved a per-
fect separation of treated and control samples from the
training data as expected. Given the partial success of
these same classifiers on the validation data by GSEA, it
was expected that this would also be reflected in the
heat maps. While model overfitting cannot be com-
pletely ruled out here, it is likely that such a strict bifur-
cation of samples in heat maps via two-way clustering of
both gene classifiers and samples is simply a more strin-
gent criterion than FDR 0.25, a commonly accepted
threshold for GSEA. Also notable is that, while GA-
SVM/GA-KNN generated classifiers from the entire
transcriptome for most of the conditions or from most
individual TF networks for a given condition, a majority
of these classifiers were later disqualified during visual
examination of their heat maps under a strict require-
ment of bifurcation of treated and control samples. Some
of these disqualified classifiers could be false negatives.

While the chemicals included in this study all target
the HPG axis and preliminary classifiers were indeed
found from this compiled group of genes for all 19 con-
ditions, none of these classifiers was later qualified by
their heat maps. A similar pattern was also observed in
master regulators, a group of hub TFs anchoring gene
regulatory networks previously found to be associated
with various chemical-tissue conditions for this same set
of EDCs [18]. In contrast, a previous study of master
regulators suggested that they tended to be stable and
reliable classifiers [9]. In addition, almost half of the 515
networks generated a qualified classifier for at least one
condition. There are several possible explanations for
these observations. First, strict separation of treated and
control samples in a heat map might be a criterion too
stringent for a qualifying classifier. Second, the target
genes in the HPG axis operate in a variety of tissue types
[38] and many of them respond to multiple chemicals.
Within a given tissue, these genes may not be involved in
endocrine regulatory functions. And lastly, with regard to
the master regulators, hub TFs may just be classifiers
more suitable for problems with better-defined biological
endpoints, as in the case of cancer morphology, than for
chemicals with diverse treatment effects [15].

With binary classifiers found for six chemical-tissue
conditions by the transcriptome-wide searches, and 15
conditions by the network-specific searches, each con-
taining many gene features, their distribution statistics
across chemicals, tissues, and TF networks could offer
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some biologically important insights into the MOAs of
EDCs. Assuming a positive connection between bio-
logical impact and the number of such classifiers and
gene features involved, the 10 EDCs under study had the
greatest effects on brain tissue, then ovary and testis.
Chemical-wise, prochloraz would rank as the most ac-
tive chemical (in terms of networks affected), followed
by flutamide, fipronil, 17a-ethynyl estradiol, vinclozolin,
ketoconazole, muscimol, fadrozole, 17B-trenbolone, and
trilostane. Another interesting perspective came from
the top TF networks which were shown to generate
classifiers for a number of chemical-tissue conditions.
Some of these networks, as denoted by their hub TFs,
included XBP1, HIF1AB, YBX1, SMAD2, and YYI1B.
The cellular functions behind these TFs include stress
response (XBP1) [39], regulation of oxygen homeostasis
(HIF1AB) [40], regulation of transcription and/or trans-
lation (YBX1, YY1B) [41,42], and signal transduction
(SMAD?2) [43], suggesting far-reaching biological effects
of the test chemicals on zebrafish beyond the HPG
axis.

With a current knowledge of molecular pathways asso-
ciated with different types of chemical stressors often
lacking, an attempt was made in this study to develop
more mechanistically-based gene classifiers by conduct-
ing TF network-specific searches. The idea behind this
approach was to first construct transcriptome-wide TF
networks based on the GEPs from fish samples treated
with multiple EDCs, and then to identify a subset of
these networks significantly impacted by individual
endocrine-active chemicals. Classifiers later identified
specific to these individual networks would in effect be
tied to EDCs through common TF networks, which
would add a mechanistic perspective to these classifiers.
In comparison, a classifier from the transcriptome-wide
search was more likely to be a biologically random as-
semblage of gene features. Based on hundreds of individ-
ual TF networks previously constructed and linked to
various EDCs by GSEA [18], the network-specific search
generated a substantial number of classifiers for multiple
conditions in this study despite greatly reduced search
space. This approach also yielded classifiers for more
chemical-tissue conditions than the transcriptome-wide
search. Upon confirmation, these classifiers could pro-
vide an explicit linkage among a chemical stressor, its
underlying regulatory TF networks, and apical (whole
animal) responses.

A common pattern emerging from both training and
validation datasets is that multiple classifiers sharing no
common gene features could predict the same target
GEP. Assuming a subset of these classifiers is valid, such
an overlapping prediction reflects complex interactions
between the test chemicals and biological pathways
within the tissues that comprise the HPG axis [17,18],
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some of which are expected according to the current
biological understanding of these chemicals. For exam-
ple, among the 10 EDCs, both vinclozolin and flutamide
are androgen receptor antagonists in multiple androgen/
estrogen-responsive tissues while ketoconazole, fadro-
zole, and prochloraz are overlapping inhibitors of cyto-
chrome P450 11A, 17, and 19 respectively in the gonad.
In both the training and validation data, the classifiers
for these conditions often simultaneously diagnosed the
same GED, as is the case between prochloraz and ketoco-
nazole. Perhaps more significant is when this relation-
ship of multiple classifiers all predicting a single GEP
occurred with seemingly unrelated EDCs, such as pro-
chloraz and fipronil, the latter a GABA (gamma-amino
butyric acid) receptor antagonist. Such a many-to-many
relationship among classifiers and GEPs from different
conditions would be informative with regard to the un-
derlying pathways affected by these chemicals and their
possible grouping into a smaller number of classes, thus
reducing the need to develop classifiers for individual
chemical-conditions.

GSEA proved to be a flexible tool in ecotoxicological
application of gene classifiers without relying on their
original training data. Future improvement could be made
by adopting Cmap, a conceptually similar but more re-
fined approach developed for human biomedical studies
[8]. Cmap connects small molecule drugs to one another
or a small molecule drug to a human disease state by
mapping a group of gene signatures to GEPs previously
assembled as a large reference collection of ranked gene
lists. Each GEP is generated from samples treated with a
chemical of interest. With its demonstrated flexibility
and effectiveness [44], the Cmap algorithm could be an
excellent analytical tool for ecotoxicological applications.
The main barrier to its application is the need to gener-
ate and assemble a large collection of GEPs linked to a
wide variety of chemical compounds of environmental
significance. Conceivably, Cmap could be used in con-
junction with preexisting gene classifiers to make predic-
tions on field samples with unknown exposures, validate
candidate gene classifiers using pre-established reference
GEPs, categorize environmental stressors into a more
manageable number of chemical classes based on path-
ways affected, and link chemical stressors to their apical
biological endpoints.

Conclusions

In summary, binary gene classifiers for a number of
chemical-tissue conditions were identified based on the
GEDPs of fish samples previously exposed to these chemi-
cals. Consistent with prior reports, tissue type was found
to have a major impact on a transcriptome such that
data containing multiple tissues yielded no qualified
classifiers. The distribution characteristics of classifiers
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across tissues, chemicals, and TF networks suggested a
differential biological impact among the chemicals on
zebrafish transcriptome involving some basic cellular
functions. An independent validation of classifiers for
prochloraz-ovary, flutamide-ovary, and prochloraz-brain
on additional GEPs was partially successful. Data com-
plexity measured by F-ratios varied among individual
chemicals and between tissue types, suggesting sample
size required for classifier discovery is likely different for
various chemical-tissue conditions. The varying data
complexity was probably also partially responsible for in-
consistent performance of classifiers observed in the
current study. In the future, a preliminary survey of
transcriptomic impact by various stressors would likely
be informative with regard to their data complexity and
appropriate sample size for gene classifier discovery.
An adoption of Cmap-based approach for ecotoxico-
logical applications of gene classifiers may also provide
a more effective and flexible tool for exposure and risk
assessment.

Endnotes

*While terms such as gene classifier, gene signature,
molecular indicator, biomarker and their respective
plural forms are often used interchangeably in literature,
the term gene classifier is used throughout this paper. In
its singular form, a gene classifier is defined here as a
group of microarray gene features (signatures, probes)
capable of distinguishing samples in a single chemical-
tissue condition between the treated and control. Gene
classifiers, on the other hand, refer to multiple sets of
gene features each diagnostic of a different chemical-
tissue condition.
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