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Abstract

relatively small.

Background: How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence
of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-
model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to
predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene
coverage and expression analysis was further investigated in the non-model context by using increasingly divergent
genomic reference species to group assembled contigs by unique genes.

Results: Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and
assessed. Hybrid 454/lllumina assemblies had the highest transcriptome and individual gene coverage. Quantitative
whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted
genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes.
Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias
and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are

Conclusions: Predicted gene sets from sequenced genomes of related species can provide a powerful method for
grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to
results obtained using gene models derived from a high quality genome, though biased towards conserved genes.
Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

Background

Massively parallel sequencing of RNA, known as RNA-
Seq, provides unprecedented access to sequence and ex-
pression variation in the transcriptome [1,2] and allows
for additional insights into alternative splicing [3], cis vs.
trans gene regulation [4], and micro-RNA dynamics [5].
RNA-Seq experiments for gene expression analysis typic-
ally involve mapping 10’s of millions of short sequencing
reads onto the reference dataset (scaffold) of a model
species, whose genome has been sequenced and gene
models determined [6]. As next generation sequencing
becomes more affordable (see [7] for an insightful
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discussion of hidden costs), RNA-Seq is becoming in-
creasingly attractive for quantitative studies of differen-
tial gene expression in non-model species, for which
there is often much knowledge of the evolution and
ecology but little or no genomic resources.

The non-model species community is rapidly harnes-
sing the transcriptome, with an explosion of RNA-Seq
studies published over the past 5 years, predominantly
using the longer sequencing reads of the 454 FLX tech-
nology for the generation of EST databases containing
sequence and SNP information [8-12]. This community
is now also beginning to use the Illumina platform with
excellent results, further decreasing the cost for tran-
scriptome database construction and SNP identification
[13-16]. However, although the Illumina sequencing
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platform is the main workhorse for quantitative tran-
script analysis, only a handful of studies have begun to
use this platform to study expression variation in non-
model species (e.g. [17,18]), primarily due to concerns
over read mapping accuracy in the absence of a genome
scaffold (e.g. [9]). Given that the number of RNA-Seq
studies in non-model species is expected to rapidly in-
crease [19] there is a pressing need to assess the per-
formance of RNA-Seq in the non-model species context.

A researcher wishing to conduct RNA-Seq in a species
lacking genomic resources faces a series of currently un-
answered questions. These initially are queries of how
much data is necessary to produce informative signifi-
cant results, the price of producing such data and what
sequencing platform to use. There are also concerns
over the quality of de novo transcriptomes and their util-
ity as scaffolds for mapping RNA-Seq reads compared to
a high quality genome, or indeed any genome for the
target species. An additional problem faced by the non-
model community is the ability to draw functional infor-
mation from the de novo assembly and expression
results. Combining reads per gene and annotating as-
sembly contigs can be achieved by using the genome or
predicted gene set of a related species as proxy. How-
ever, the level of bias and error this introduces is for the
most part unknown, as is the effect of evolutionary dis-
tance between the proxy reference and the study species.
Here we directly address these questions in detail using
RNA-Seq data and genomic resources available for
Homo sapiens.

Results

de novo transcriptome assembly and assessment

RNA-Seq data were assembled in various combinations
into eight different transcriptome assemblies (TAs) to
assess the relative performance of different sequencing
technologies and their utility in combination. To clarify,
a ‘read’ is the short sequence output of the sequencing
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platform (e.g. Illumina with 35-100 bp reads). A ‘contig’
is a contiguous sequence formed from two or more
reads that are found to overlap. Three of the TAs were
assembled using three replicate paired-end Illumina runs
of similar size (TA_Ilprl (153 Mb), TA_Illpr2
(14.7 Mb), TA_Illpr3 (14.0 Mb)). A fourth TA combined
all of the reads from these datasets into one assembly
(TA_Illprs, 28.5 Mb). The fifth also used all of this
RNA-Seq data and incorporated an additional Illumina
RNA-Seq dataset in order to determine the effect of in-
creasing the volume of data upon assembly performance
(TA_AILIlL, 35.3 Mb). The sixth TA was created using
only 454 RNA-Seq reads (TA_454, 46.1 Mb), while the
seventh used the three pairs of Illumina data plus this
454 dataset (TA_Illprs&454, 68.0 Mb). TA_AIl (71.0 Mb)
was assembled using all of aforementioned RNA-Seq
data (see Methods and Additional file 1: Table S1).

Standard metrics of assembly quality
We initially assessed the de novo TAs by comparing sev-
eral standard metrics commonly used in ascertaining the
quality of an assembly [10]: total number of contigs;
longest contig length; mean and median contig length;
N50 (the median contig size, length weighted); and the
summed contig lengths (i.e. raw size of the TA). The
amount and type of RNA-Seq data incorporated into the
eight TAs and the basic assembly metrics are summar-
ized in Additional file 1 Table S1. For the three TAs cre-
ated using replicate Illumina RNA-Seq data (TA_Illprl,
TA_Illpr2, TA_Illpr3), each gave near identical perform-
ance to each other but were all consistently inferior to
the other five TAs in terms of the basic assembly
metrics. We subsequently focussed upon quality com-
parisons of the remaining five TAs: TA_Illprs, TA_AIL_III,
TA_454, TA_Illprs&454, and TA_All (Figure 1).

An optimal assembly will have near full length contigs
similar to that expected from the actual transcriptome of
the target species. The basic metrics shown in Figure la &
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Figure 1 Basic assembly metrics of five de novo transcriptome assemblies (TAs). Comparison of the assembly metrics for five TAs
generated from different data sources: a) the mean, median and N50 TA contig length, b) the total number of contigs in the TA, and ¢) the
summed contig length.
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b suggested that TA performance was best with Illumina
data alone. TA Illprs and TA_All Ill had the largest contig
mean, median and N50 lengths, whilst also having the
lowest number of contigs. These metrics indicate that the
TA composed solely of 454 reads (TA_454) was of poorer
quality than those composed purely of Illumina reads. The
assemblies comprised of both Illumina and 454 sequen-
cing data (TA_Illprs&454 and TA_All) also had a com-
paratively small mean, median and N50 contig length.
These hybrid assemblies also had the greatest number of
contigs, containing more than twice as many as the TAs
solely composed of Illumina reads. However, the optimal
assembly will also have a large summed contig length, and
this metric provided a very different set of conclusions
(Figure 1c). For summed contig length, the hybrid assem-
blies performed much better than the pure assemblies
with summed contigs lengths of: TA_Illprs&454:
67.96 Mb and TA_AIll: 71.05 Mb, both of which being ap-
proximately twice as large as TA_AIL_Ill (35.30 Mb) and
over twice the size of TA_Illprs (28.49 Mb). Thus, despite
having larger contigs, the de novo transcriptomes com-
posed of pure Illumina reads were overall much smaller.

de novo transcriptome assembly coverage metrics

The contrasting insights provided by the basic metrics il-
lustrate their limited utility. Metrics based upon contig
lengths (e.g. mean, median, N50) do not provide quanti-
tative insights into how much of the target species tran-
scriptome is represented in the de novo TA. For
transcriptome assembly in the context of generating a
scaffold for RNA-Seq mapping, optimising the represen-
tation of the transcriptome is critical since the only
RNA-Seq data that is analysed is that which can be
aligned to a scaffold. Here we calculated several add-
itional metrics to gauge the quality of a de novo tran-
scriptome assembly by taking advantage of the genomic
resources for Homo sapiens.

We assessed the integrity and completeness of the TAs
in terms of their recapitulation of the H. sapiens pre-
dicted consensus coding sequence (CCDS) gene set.
First, we quantified the size of the coding region of the
de novo TAs in comparison to the summed length of all
CCDS (Figure 2a). Given that one or more TA contigs
may align to a given CCDS, we used BLASTn to identify
these relationships and calculate the regions that were
covered of each CCDS by at least one TA contig. That
is, we only took the length of the CCDS that was cov-
ered regardless of the number of different TA contigs
that covered those regions (i.e. if 5 TA contigs all aligned
to nucleotides 150 to 550 of a given CCDS, the length
covered was only 400 bp). Compared to the total size of
the H. sapiens CCDS dataset, the hybrid assemblies
TA_Illprs&454 and TA_All performed the best, covering
61% and 64% of the total size of the CCDS dataset
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respectively, while TA_454 had the smallest transcrip-
tome coverage at 38%. Second, we counted the number
of H. sapiens predicted genes (CCDS) hit by a TA contig
in BLASTn searches (Figure 2b). The two hybrid assem-
blies had the greatest number of CCDS represented: 75%
and 76% of the CCDS being hit by TA_Illprs&454 and
TA_All respectively. Of note is that although TA_454
was the smallest in term of coding size (Figure la), its
coverage of the transcriptome as estimated by the num-
ber of CCDS hit by this TA was similar to both of the
TAs composed solely of Illumina reads (TA_454 64%;
TA_Illprs 62%; TA_AlL_IIl 66%).

In determining how successful the coverage of the ac-
tual transcriptome was in the de novo TAs created here,
we first note that the transcriptome from one tissue type
is expected to contain fewer transcripts than that of the
whole organism. One study estimates a figure of 70% of
the genes of an organism’s genome [20]. Given that the
CCDS dataset represents the entire transcriptome, and
the RNA-Seq data obtained for this study derives from
sequencing a human brain sample, we cannot therefore
expect a coverage figure near 100%. In addition the RNA
sample was not normalized, so the RNA-Seq data were
likely to primarily contain highly transcribed genes and
miss many lowly expressed transcripts. The largest TA,
TA_All is 18.8 Mb and hits 13,343 CCDS. This is 64%
of the size of the CCDS dataset (29.6 Mb) and comprises
76% of the CCDS transcripts (n =17,520).

While these two measures, total coding size and the
number of genes represented in each TA, are very
informative, knowing the proportion of each gene
covered by TA contigs is also important (i.e. the com-
pleteness [21]). We therefore calculated what we term
the contig reference ratio (CRR) for each of the CCDS
to ascertain the actual coverage of the transcriptome
for the different TAs. The CRR therefore is the ratio
of the length of the CCDS uniquely covered by TA
contigs divided by the length of that CCDS (e.g. a
CRR of 0.9 means that 90% of that CCDS is covered
by one or more TA contigs). This metric directly indi-
cates the amount of sequence in the TA that is in-
formative, as it is the coding regions that can be used
to align to divergent species and identify synonymous
and non-synonymous SNPs. We initially calculated the
mean and median CRR across the five TAs to assess
the average coverage per gene across the transcriptome
(Figure 2c). The mean and median CRR values were
fairly consistent between the different assemblies, with
the exception of TA_454 that had lower coverage per
CCDS and therefore would provide less sequence in-
formation per transcript. The remaining four TAs all
had very high CRR median and mean values, showing
that the majority of the CCDS represented in the TAs
have very high coverage (Figure 2c).
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Figure 2 Assessment of TA quality using genomic information. a) the total size (kbp) of the TAs compared to the CCDS, adjusted so only
the contig sequence that aligns to a CCDS is included; b) the total number of genes represented in each TA compared to the CCDS; ¢) the mean
and median CRR (coverage of CCDS) in a TA; and d) the number of CCDS transcripts that have equal or greater than 90% CRR in the TA.
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Finally, a stringent assessment of assembly perfor-
mance was performed by calculating the number of
CCDS represented in a TA which had a>=90% CRR
(Figure 2d). The Illumina only TAs, and especially the
TA composed solely of 454 reads, performed poorly in
comparison to the hybrid assemblies. The results of this
metric are particularly informative when looked at in
conjunction with the number of CCDS represented in
each TA (Figure 2b). Although the number of CCDS hit
by TA_454 was comparable to that of the two TAs com-
posed purely of Illumina reads (TA_Illprs and TA_Al-
1_1ll), we can see that of those CCDS hit, the CRR is
much lower. Indeed, of the 11,297 CCDS represented in
TA_454, only 29.8% had a CRR of 0.9 or greater. This
explains the discrepancy of the results for TA_454 of
total size (Figure 2a) and number of CCDS represented
(Figure 2b). TA_lllpairs had 50.8% of 10,859 CCDS
represented with CRR >= 90% and TA_AIL Il has 58.0%

of 11,565 CCDS represented with CRR>=90%. Using
these ‘genomic’ quality metrics, we found that while the
TA_All performed best, with 61.1% of the 13,343 CCDS
represented having a CRR of >=90%, the other hybrid
TA, TA_lllprs&454, was similar in performance with
56.4% of the 13,213 CCDS represented having a CRR
of > =90%.

Closer analysis of the number of genes represented in
three of the TAs revealed that although there is a large
area of overlap in the CCDS in common between
TA_Illprs and TA_454 (n=9794 CCDS), the TAs created
from either Illumina or the 454 data hit different areas
of the transcriptome (Figure 3). There were 1065 and
1503 CCDS unique to TA_Illprs and TA_454 respect-
ively, suggesting that these different technologies
sequenced different areas of given transcripts. This was
assessed further by looking at the CRR values for each
CCDS represented in the pure Illumina TA (TA_Illprs),
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Figure 3 Venn diagram displaying the numbers of CCDS
transcripts represented in each of three TAs.

the pure 454 TA (TA_454), and the largest hybrid TA
(TA_AIl). The CRR of a particular CCDS was often much
lower in the pure assemblies compared to the hybrid as-
sembly (Figure 4). When the 454 and Illumina reads were
combined in the other hybrid TA (TA_Illprs&454) the
CRR of a given CCDS was much longer, indicating that
these reads are providing complementary coverage rather
than similar coverage of a given CCDS, with the results
comparable in coverage to that of TA_AIll (Figure 4). This
is similarly true when we look at the CRR of the sin-
gle longest TA contig per CCDS (Additional file 2:
Figure S1); in the single platform TAs, although the
[llumina data does generate longer TA contigs com-
pared to the 454 data, their combined data results in
TAs that have a greater number of longer contigs per
CCDS. This derives from the much larger coverage of
the transcriptome by Illumina runs coupled with the
ability of the assembler we used to pull that data to-
gether correctly into contigs. Thus combining data
from these two different sequencing platforms not only
increased the number of CCDS, it also increased the
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coverage within a CCDS by bringing together contigs
that hit different areas of that CCDS. In addition, the
hybrid transcriptome assemblies resulted in contigs
being formed for genes that were not present in as-
semblies composed of one type of sequencing platform
(n =888, Figure 3).

Comparison of expression profiles produced using different

de novo TA scaffolds

In order to assess the performance of the different de
novo TAs as scaffolds for RNA-Seq expression analysis,
we compared the use of a TA as a mapping scaffold to
that of a predicted gene set from the well characterized
reference genome of H. sapiens. Since our focus in this
study was upon the utility of de novo RNA-Seq for quan-
tifying whole gene expression in non-model species, we
assessed the accuracy and efficiency of drawing together
sequencing reads that are from the same gene to calcu-
late an expression value for that gene. In the latter part
of this paper, we explore this mapping relationship in
the non-model species case of using increasingly evolu-
tionary divergent species (from the target species) for
grouping contigs by putative orthology (see section:
Using increasingly divergent genomic reference species for
RNA-Seq analysis).

Given the highly fragmented nature of de nmovo TAs,
many genes are likely to be represented by several non-
overlapping contigs. Using such a TA as a scaffold for
mapping RNA-Seq reads will result in the mRNA reads
for a given gene being split among these contigs. Thus,
in order to create an expression profile at the whole
gene level, which is equivalent to mapping RNA-Seq
reads to a predicted full length gene model, contigs of
the same gene need to be grouped in order to sum their
RNA-Seq reads. Comparing the expression profiles pro-
duced when using de novo assemblies as the mapping
reference versus using the H. sapiens CCDS dataset was
achieved by using CLC Genomics Workbench to map
paired-end Illumina to the CCDS unique gene set and to
two of the de novo TAs. The two TAs investigated in this
part of the study were TA_Illprs and TA_Illprs&454,
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Figure 4 Comparison of the coverage (CRR) of the de novo TAs. The best quality transcriptome produced (TA_AIl) and three other TAs
created using RNA-Seq from different sequencing methods were compared: panel of three graphs depicting the CRR of CCDS that are
represented in all three TAs, each datapoint (black dots) represents the CRR of a CCDS
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since the former represents the data likely to be acquired
from a given RNA-Seq experiment, while the latter
represents a higher quality TA within the reach of most
non-model research systems. Reads mapped to the TA
contigs were then assigned to CCDS genes by assigning
each contig of a TA to a single CCDS via BLASTn
(Figure 5).

We first assessed the effects of scaffold on technical
replicate data using three pairs of Illumina sequencing
runs (pair 1: 50nt paired-end reads with an average in-
sert size of 200nt, totalling 16.4 million reads [Genbank:
SRA012427: SRR039628/29]; pair 2: 50nt paired-end
reads with an average insert size of 200nt, totalling 15.5
million reads, [Genbank: SRA012427-SRR039630/31];
pair 3: 50nt paired-end reads with an average insert size
of 200nt, totalling 14.9 million reads, [Genbank:
SRA012427-SRR039632/33]). Each of these runs were
independently mapped to both the CCDS dataset and to
the two TAs (TA_Illprs and TA_Illprs&454). Expression
was initially measured as the number of unique reads
that map to a whole gene. Scaffold had little effect on
technical replicates, with replicates having>0.9 correl-
ation (Spearman’s rank correlation coefficient, p;
Additional file 3: Figure S2). These correlations were fur-
ther investigated using a MVA (minus versus average)
plot [22], which provides insights into abundance-
dependent biases [23-25]. For this analysis expression
was measured using RPKM (Reads Per Kilobase of exon
model per Million mapped reads) values [26]. As is typ-
ical for RNA-Seq technical replicates, agreement among
replicates is highly dependent upon expression level,
with low expressed genes showing less agreement among
replicates [25] and this effect was essentially identical
across scaffolds (Additional file 4: Figure S3).

We then compared the mapping of one set (pair 1) of
the RNA-Seq read data directly to the CCDS dataset ver-
sus two of the TAs to assess the performance of de novo
TAs for whole gene expression analysis. Directly map-
ping to the CCDS dataset recovered expression data
for 15,763 genes, while going through TA Illprs or
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TA_Illprs&454 provided data for 10,761 and 12,860
genes respectively. However, of those genes (CCDS) that
did have expression data in terms of number of unique
reads from both methods the correspondence between
them was extremely high (CCDS vs. TA_lllprs Spear-
man’s p = 0.94, P<0.0001; CCDS vs. TA_Illprs&454
Spearman’s p = 0.95, P <0.0001; Additional file 5: Figure
S4). Expression as RPKM was also measured for one
comparison — that of mapping to CCDS vs. to
TA_Illprs&454 (Figure 6a), the results of which also
showed a high degree of correlation. A MVA plot was
used to further assess the relationship between the
CCDS and TA_lllprs&454 mapping (Figure 6b). The
distribution of disagreement between the two mapping
methods was not a function of expression since the
TA_Illprs&454 mapping had a higher level of expression
than the CCDS mapping across the range of expression
values. Two separate and technical causes were observed.
First, calculation of the RPKM values for the CCDS map-
ping used the length of the CCDS gene, while for the
TA_Illprs&454 mapping, only the length of the CCDS
gene covered by the TA was used (in order to reflect the
de novo aspect of the mapping). This caused an inflation
of the TA values. Second, the two mapping approaches
were different. The direct mapping only quantified the
reads that mapped uniquely to a given CCDS. Although
the TA mapping used the same approach for mapping
RNA-Seq reads to the individual contigs of the TA, each
contig was assigned to its best CCDS BLAST hit. This
approach allowed for the collection of 5 and 3° UTR
regions into contigs that also overlapped with CCDS
genes, significantly inflating the TA mapping reads.

Using increasingly divergent genomic reference species
for RNA-Seq analysis

For species lacking a well assembled genome, annotating
RNA-Seq reads is problematic. One route is to map
reads to a de novo TA and then assign each TA contig
(and therefore the associated reads) to a unique gene
through a BLAST search against the reference gene set

RNA-Seq reads mapped to CCDS

n RNA-Seq reads mapped to 3 different TA contigs

N

v

| ccos

Contigs assigned to a given CCDS via BLASTn

Figure 5 Diagram of the two methods used to assign RNA-Seq reads to CCDS. a) RNA-Seq reads are mapped directly to the CCDS dataset,
b) RNA-Seq reads are mapped to a TA and then the TA contigs assigned to CCDS via BLASTn.
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2 3 4 5
Average pr1 log (RPKM)
CCDS and TA_lllprs&454

of the nearest Genomic Reference Species (GRS). How-
ever, the evolutionary divergence between the target spe-
cies (the species of interest) and the GRS is likely to be a
significant source of bias and error. For genes with high
rates of evolutionary change there is a decreased likeli-
hood of successful homology matching between the TA
contigs of the target species and GRS gene. It is there-
fore expected that as evolutionary distance increases, the
ability to group contigs to a particular gene will decrease
and potentially be accompanied by an increase in incor-
rect assignment of contigs to putatively orthologous
genes. In addition, with increasing evolutionary distance,
the most accurate expression information is likely to
come from a biased set of genes, notably those having a
high level of expression and low rates of evolutionary
change (e.g. housekeeping genes). Here we explore the
magnitude of this effect by studying the decrease of in-
formation content and accuracy of RNA-Seq data gene
assignment with the use of increasingly divergent GRS
as proxy references.

Six species of increasing divergence from H. sapiens
were chosen as genomic reference proxies, spanning a
range of 5 to 160 million years divergence. This range
was chosen as a likely range researchers may encounter
in their choice of a GRS. RNA-Seq reads were mapped
to the most cost effective de novo TA that also per-
formed well (TA_Illprs&454) and each contig from this
assembly was assigned to the predicted genes from each
divergent species using BLASTx (with GRS genes as
protein sequences). The orthology relationships were
also determined between the H. sapiens CCDS and GRS
gene sets using the Reciprocal Best Hit method [27-29]
via BLASTp (see Figure 7 for a diagrammatic overview).
The results of using these GRS proxies were then com-
pared with directly using the predicted gene set of the
target species (the H. sapiens CCDS dataset).

Transcriptome coverage when using proxy GRS
We first assessed the utility of the GRS grouping ap-
proach by calculating the number of GRS genes that hit

:|'||'|

RNA-Seq reads mapped to 3 different TA contigs

v Y

| | &
Contigs grouped in a GRS gene via BLASTx

¥ O v

Predicted Gene Set of GRS

4

Orthology via RBH using BLASTp

v

CCDs

Figure 7 Overview of the non-model species RNA-Seq mapping
strategy for inferring ‘gene’ grouping of RNA-Seq read data.
Displayed are RNA-Seq reads that are mapped to three different TA
contigs. The red and green contigs (DNA) are assigned to the same
gene of the GRS (protein) via BlastX. However, due to divergence
between the target species and the genomic reference species
(GRS), the blue contig is not, resulting in only the red and green
RNA-Seq reads being assigned to this GRS ortholog. In order to
compare the expression data inferred from these GRS groupings to
that obtained by directly mapping RNA-Seq reads to the CCDS
genes, the orthology between GRS and CCDS genes was
determined using the Reciprocal Best Hit (RBH) via BLASTp. This
method can be compared to the method outlined in Figure 5b.
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the de novo TA using BLASTx (Figure 8a). There is no
appreciable difference in the number of genes of Chim-
panzee, Orangutan, Macaque and Marmoset and that
of the human dataset (CCDS) that have TA contigs
assigned to them. However, there is a decrease in the
number of genes that have a TA contig hit when using
the Mouse gene set and a further drop when using Platy-
pus. There is thus a decrease in the number of genes
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that can be identified in the de novo transcriptome with
evolutionary divergence, however this effect is only
observed at the high end of divergence.

We also expect the number of orthologous relation-
ships between TA contigs and a particular GRS gene i.e.
gene coverage, to decrease with increasing divergence.
To measure this effect we determined the CRR value for
each of the GRS genes (or CCDS in the case of H.
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sapiens) (Figure 8a). In this case there is an immediate
effect of using a proxy reference genome, with the num-
ber of genes having a CRR>=90% decreasing from that
of Human (7353 genes) to that of the next closet rela-
tive, the Chimpanzee (5614 genes), which is a drop of
24%. This decrease then levels out, with only a 4.3% de-
crease across ¢a.100my to Mouse (CRR>=90% in 5370
genes) and finally reaches its lowest level in Platypus,
which only had 4645 genes with a CRR>=90%. These
results suggest that the loss of RNA-Seq read informa-
tion when using a proxy GRS derives from one or more
contigs not being assigned to their GRS gene due to lack
of orthology. This will lead to a loss of sequence and
associated expression value per gene. However, this loss
does not increase in a linear fashion with evolutionary
distance from the target species.

Effect of using proxy GRS on expression signal: introduction
of error

In order to determine how much expression signal is
lost via reduced contig assignment when using divergent
species as proxy references, expression values were cal-
culated for GRS genes that are both represented in the
de novo TA and have an RBH ortholog in the CCDS
dataset. By grouping TA contigs that hit GRS genes
orthologous to CCDS, we could compare the expression
signal between mapping to a CCDS via a TA (Figure 5b)
and to the GRS dataset via a TA (Figure 7). The correl-
ation is fairly high for all taxa (Chimpanzee, Orangutan,
Macaque, Marmoset: Spearman’s p=0.94; p<0.0001;
Mouse: Spearman’s p=0.91; p<0.0001) except Platypus
(Spearman’s p=0.83; p<0.0001). Thus, while there was
some loss of expression signal (expected as fewer contigs
are assigned to GRS datasets compared to the CCDS),
using the GRS asgene’ grouping proxies was still
informative.

In order to explore sources of error when using in-
creasingly divergent GRS proxies, we further examined
the differences in expression values obtained via map-
ping TA contigs to the CCDS or via one of the GRS
(Figure 9). Points above the line of unity would be CCDS
that have fewer contigs assigned to it through utilisation
of GRS to annotate the TA. Points below the line of
unity, as well as some above it, are CCDS that have con-
tigs wrongly assigned to them during the BLAST search,
resulting in a greater number of reads than the direct
CCDS mapping method. The extent of this error can be
calculated by identifying the true subset of GRS genes
that are orthologous to Human genes in the CCDS data-
set. Since we previously assigned, via BLASTn, TA con-
tigs to CCDS genes, and have established CCDS to GRS
RBH orthologs with high confidence using BLASTp,
whether a given TA contig assignation to GRS gene was
correct can be determined (correct when TA contigs are
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assigned to the same CCDS via direct BLASTn or via
BLASTx to a GRS gene and which in turn matches the
same CCDS via BLASTp). The BLASTp RBH between
the GRS and CCDS datasets was assumed to be robust
and so if a contig was wrongly assigned to a CCDS (via
the GRS dataset), it is likely that BLASTx is the source
of error.

The level of error (percentage of TA contigs wrongly
assigned to a CCDS via GRS dataset) was found to in-
crease as evolutionary distance from Human increases
(Figure 8b). The error for Chimpanzee was fairly low,
at 3.96%, and similar to Orangutan (4.20%), Macaque
(4.80%) and Marmoset (4.80%). Utilisation of Mouse
resulted in 6.30% of the contigs being wrongly
assigned, while for Platypus error increased massively
to 17.06%. As mentioned above, error is likely to occur
during the BLASTx of TA contigs and GRS genes
(proteins). We investigated whether increasing the
stringency of the BLAST parameters decreased the
level of error for two of the GRS: Chimpanzee and
Mouse. In both cases it did, with Chimpanzee now
having 2.49% error, and Mouse 4.43% error. As
expected this decrease was highest for the more diver-
gent Mouse. A repercussion of increasing the threshold
identity in the BLAST searches is that fewer genes
were annotated in the de novo TA (Chimpanzee:
12922 (decrease of 7.28%); Mouse: 11533 (decrease of
11.11%). The BLASTx parameters used must therefore
be a tradeoff between the size of the transcriptome
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that can be annotated by using a divergent GRS, and
the level of error accepted.

Ascertaining the level of bias when using proxy GRS

We further investigated the potential sources of error
and bias by gene set enrichment analysis using the GO
and KEGG functional categories of the Human CCDS
genes (Figure 8c; Additional file 6: Table S2, Additional
file 7: Table S3, Additional file 8: Table S4). First, we
assessed whether there was any bias in the GRS genes
identified as CCDS orthologs by TA hits of the GRS
datasets. For all the taxa investigated we observed a sig-
nificant bias in many functional categories although
there is no significant pattern of an increase in this bias
with evolutionary divergence. However, when only genes
that had no contigs incorrectly assigned to them were
analysed a different picture emerged (Figure 8c). First,
there was an increase in the number of biased functional
categories for all comparisons, although this was modest
for most taxa. Second, there was an increase in bias with
divergence that mirrored the pattern of error. This trend
was mainly due to the highly divergent Platypus, where
the number of biased functional categories rose from 21
to 27 when error was removed. This pattern suggested
that the increased error in the most divergent species
masked the higher bias in those species.

Next we investigated bias in the gene expression
results from the two different mapping approaches. We
took the residuals from a fit of expression levels from
the direct mapping of TA (TA_Illprs&454) to CCDS
against the expression levels obtained using GRS proxies
to annotate the TA contigs. Residuals had a value of 9
when genes had identical expression levels in both meth-
ods. Residuals were positive when they had fewer reads
mapped to them from the method using GRS proxies to
annotate the TA contigs, and residuals were negative
when CCDS genes had more reads mapped to them
using the GRS proxies to annotate the TA contigs
method. We expected that highly expressed and evolu-
tionarily conserved genes would be over-represented
among those having a residual of 0, and that this bias
would increase over evolutionary time. We therefore
assessed whether there was any unequal distribution of
gene functional categories among those having resi-
duals =0 vs. those having residuals # 0. We found that
there is a significant bias in a low number of functional
categories for all taxa, except in Platypus where the
number of biased functional categories increases three-
fold above Mouse (Figure 8c). When investigating
whether there was a difference between positive and
negative residuals, we found no biased categories in any
taxa (results not shown).

Our final analysis looked at general trends in the types
of functional categories that were over and under-
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represented in our analyses (Additional file 6: Table S2,
Additional file 7: Table S3, Additional file 8: Table S4).
Mitochondrion  (GO:0005739) and protein binding
(GO:0005515) categories were nearly always over-
represented when using GRS to annotate TA contigs, and
in comparisons with Platypus, transcription and transla-
tion related categories (e.g. translation (GO:0006412),
RNA splicing (GO:0008380), ribosome (GO:0005840))
were also over-represented. Typically under-represented
categories included a diversity of biological functions,
from sensory perception of smell (GO:0007608) and de-
fence response to bacterium (GO:0042742), to signal
transduction (GO:0007165). In general then, it appears
that genes in the over-represented category, primarily
represented by comparisons with Platypus, included genes
with very conserved housekeeping functions, while those
being under-represented included categories of genes
known to undergo more complex evolutionary dynamics
(e.g. birth-death dynamics).

Discussion
Analysing RNA-Seq data for gene expression has trad-
itionally required genomic resources for the species of
interest in order to map and annotate reads. Greater se-
quencing depth and read length, more advanced assem-
bly software [6,34] and most importantly, lower costs,
now make RNA-Seq an attractive alternative to design-
ing and using custom microarrays for researchers want-
ing to study the transcriptomes of species that don’t
have genomic resources. For such non-model species
one route to using RNA-Seq for expression insights is to
perform de novo transcriptome assembly and use this as-
sembly as a scaffold for quantitative RNA-Seq mapping.
While this has been done using the 454 platform (e.g.
[9]), the small number of reads typically provided per
run (ca. 1 x 10°) makes this perhaps only accurate for
the most highly expressed genes. Currently in the litera-
ture there is much discussion about how many RNA-Seq
reads are necessary to generate repeatable quantitative
measures for middle to low expressed genes, with emer-
ging empirical results suggesting at least 10 to 30 million
reads are necessary ([25,35], but see [36]). This strongly
suggests that using the Illumina platform, which can
provide two orders of magnitude more reads for less
than half the cost of the current 454 technology, is the
best way forward for quantitative expression analysis.
Thus, here we have assessed the performance of Illu-
mina sequencing data in the non-model species context.
To date, only a handful of studies have applied the
[lumina approach for quantitative RNA-Seq expression
analysis in non-model species. In their investigation of
the transcriptome profiles of parasitized vs. non-
parasitized Plutella xylostella moths, Etibari and collea-
gues assembled all of their Illumina reads into a de novo
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transcriptome and consequently used this as a scaffold
for mapping their differently parasitized groups. Annota-
tion of the P. xylostella transcriptome used a BLAST
search in NCBI [18], allowing them to identify differen-
tial expression of many metabolic and immune genes. A
different study developed a pipeline that facilitates the
assembly and annotation of non-model species tran-
scriptomes through utilisation of the genomic resources
of related organisms. This method allowed the research-
ers to perform expression profiling and also to increase
the quantity and quality of sequence data available for
their targeted species, the Chinese hamster [17].

The current study was motivated by questioning the
general accuracy of the de novo approach exemplified by
these two studies. While their conclusions are well justi-
fied, here we have worked to attain a deeper understand-
ing of the potential errors and biases that might underlie
such analyses. One major concern is the level of bias in
the genes that are finally included in the analysis. Genes
assembled and annotated are not likely to be a random
sample of the genome, since highly expressed genes will
likely be assembled and annotated best. Etibari et al. [18]
found no bias in GO terms between their de novo tran-
scriptome assembled for P. xylostella compared the silk-
worm Bombyx mori, which diverged approximately 120
million years ago (Wheat & Wahlberg, in review). How-
ever, the GO terms that are liable to be shared between
these two Lepidoptera are themselves likely to be highly
biased, as the greatest number of B. mori genes having
annotations are those in common with the genomic
reference species Drosophila melanogaster. Given the
deep divergence of D. melanogaster from B. mori, which
last shared an ancestor approximately 330 million years
ago (Wheat & Wahlberg, in review), the only genes
likely to be functionally annotated are those with highly
conserved function and constrained evolutionary dy-
namics. Such housekeeping genes are thus very likely to
be those highly expressed in P. xylostella, and thus un-
biased with respect to the annotated genes in B. mori.
The Birzele et al. [17] study used Velvet to assemble
their transcriptome. This is of concern given recent
comparative assessment of transcriptome assembly soft-
ware packages, which found Velvet to perform among
the worst software programs for use upon their tran-
scriptome dataset [37]. We therefore wished to use an
assembler which had previously been shown to perform
well [37] and so chose the CLC method.

In order to assess the performance of RNA-Seq, we
addressed several steps of this approach, beginning with
de novo transcriptome assembly. The effect of sequen-
cing technology and volume of data upon the quality of
the de novo TA was assessed by comparing 8 different
TAs using RNA-Seq data for H. sapiens. In comparison
to previous examinations of assembly performance that
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have used simulated data [37,38], using data from H.
sapiens gave us a unique combination of genomic
insights and real world data. We find, as have others,
that the standard metrics commonly applied may lead to
a sub-optimal choice of TA [37]. While metrics solely
based on contig lengths suggested that TAs composed of
only Illumina reads performed best, in-depth investiga-
tion using genomic resources showed a different picture.
By using BLAST to identify putative orthologous rela-
tionships between TA contigs and the predicted gene set
of humans, the aligned region between the two could be
determined. By dividing this aligned length by the full
length of the predicted gene provides a ratio indicating
how much of the coding region a TA contig has success-
fully reconstructed. Here we have used this approach to
calculate the entire amount of the predicted gene cov-
ered by all the different TA contigs in a given assembly,
and referred to this as the contig reference ratio (CRR).
After such comparison between TA contigs and their
putative ortholog appeared in the first de novo transcrip-
tome assembly [12], similar ratios have been developed
(e.g. [39]). We find the three most informative ratios are
for: 1) all possible TA contigs (all CRR), 2) the longest
TA contig per ortholog (longest CRR), and 3) the sum of
the ortholog length covered by all the TA contigs, which
is then divided by the full length of the ortholog (sum
CRR). While informative, all CRR, which was used by
O’Neil et al. 2010 [39], inflates assumed TA performance
since several contigs for the same gene may be quanti-
fied while providing no information as to the total
amount of each ortholog a given TA covers. Longest
CRR is perhaps the single best metric for assessing TA
performance. Ideally, the best TA would predict single
contigs that covered the full length of each transcript, as
well as the different isoforms, without any over predic-
tion. Here we have used the longest CRR only once, for
assessing our TAs (Additional file 2: Figure S1) and this
provided very similar insights to that of our sum CRR
results. Throughout our paper we have almost entirely
used a sum CRR because we wish to know how much of
each gene we have covered in our TA, since maximizing
coverage is necessary in order to generate a good scaf-
fold for mapping the RNA-Seq data and this information
is combined on a per gene basis.

Availability of the CCDS predicted gene set allowed us
to ascertain the level of TA coverage for each gene. Al-
though pure Illumina-based TAs had fewer and longer
contigs than both the pure 454 TA and the hybrid TAs
(composed of both Illumina and 454 reads), the pure
[lumina TAs also had a much lower coverage of the
transcriptome compared to the hybrid assemblies, at
both the individual gene and total transcriptome level.

Using the hybrid TA as a scaffold produced RNA-Seq
mapping results that were similar to directly mapping to
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the CCDS predicted gene set from the H. sapiens gen-
ome. Although there were approximately 2000 fewer
genes mapped when using the TA as compared to the
CCDS gene set, the correlation in whole gene expression
values between these two methods was extremely high
(Spearman’s p = 0.94). Similar high levels of correlation
were observed across technical replicates when mapped
to the hybrid TA assembly. While additional improve-
ments could be made in the de novo approach, the cor-
relation between the two approaches is already much
higher than that observed in comparisons between
RNA-Seq and microarray results (Spearman’s p = 0.73;
[40]). Thus, hybrid TA assemblies, combining Illumina
and 454 reads, emerge as the best assemblies and scaf-
folds for RNA-Seq mapping. We should note that this
study has utilised Illumina RNA-Seq data that was avail-
able at the time, technology is advancing at a rapid rate
and the quality of de movo transcriptomes that can
be assembled with the latest sequencing data (e.g. Illu-
mina’s HiSeq 2000: http://www.illumina.com/systems/
hiseq_2000.ilmn) will likely surpass what we show here.
Thus this study should be taken as a comparative study,
and a conservative guide.

After mapping RNA-Seq reads to a TA (whether it be
a de novo assembled one, or a transcriptome already
available for the species), the contigs need to be assigned
to genes for grouping and functional annotation. In non-
model species, the ability to obtain significant biological
insights into gene expression variation is limited by gene
functional annotation. In model systems obtaining gene
expression values and assigning these to a growing num-
ber of genes of likely biological function is well devel-
oped. Non-model systems necessarily must tap into this
reservoir of data using BLAST and assumptions of gene
function homology, and the genome or gene set of a
related but potentially very divergent species. While this
approach can be successful (e.g. [12,37]), what effect
does increasing evolutionary distance from the focal spe-
cies have upon functional insights?

Gibbons and colleagues investigated the accuracy of
ortholog prediction between increasingly divergent spe-
cies, using RNA-Seq data from one species and genomic
proteome data from a GRS [41]. They observed a de-
crease in the number of successfully identified orthologs
(contig/GRS gene pairs) with increasing divergence.
Their study spanned a time-frame of 300 million years
from the target species, with the two youngest GRS
being 40 and 150 million years divergent from the focal
species. Here we sought to investigate whether a nega-
tive effect of divergence is observed within the 0-150
million year time frame. Although we expected that as
evolutionary distance increased between the GRS and H.
sapiens there would be a significant decrease in the
number of genes in the GRS gene sets that found a hit
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in the de novo TA, this effect was weak up to 100 million
years of divergence (Figure 8a). A similar effect was
observed when assessing the amount of each gene that
was covered by TA contigs. Thus there is little negative
effect of using GRS as reference datasets for the group-
ing contigs as divergence increases up to 100 million
years, although beyond this age, the number of genes
having good coverage assigned decreases.

These results also suggest that the use of proxy GRS up
to 100 million years divergent from H. sapiens for group-
ing TA contigs might result in only a small bias on expres-
sion levels compared to directly mapping RNA-Seq reads
to the CCDS dataset. Within this time frame proxy GRS
are also likely to enable successful measurement of expres-
sion levels as a high correlation in expression between
these two methods was found in all cases, even when
comparing Mus musculus (mouse), which is c. 75-91 mil-
lion years divergent from H. sapiens (Figure 8d; [30-32].
However, expression results using these divergent species
as proxy references also suffered from a level of incorrect
assignment of TA contigs to genes, and this negative effect
was found to increase with evolutionary distance
(Figure 8c). While this effect was moderate using GRS
species up to 100 million years divergent, comparisons
using Platypus as the GRS showed both a dramatic in-
crease in incorrectly assigned TA contigs and a lower cor-
relation with the CCDS mapped expression values
(Figure 9b). This identified error was mirrored in the gene
set enrichment analyses, as incorrect contig assignment
should be greatest for genes that have higher evolutionary
rates, or conversely, lower for constrained genes
(Figure 8c). Error is likely to accrue during the BLASTx
search of the TA contigs against the GRS dataset, and in-
deed when this BLASTx was repeated for two of the GRS
using more stringent parameters of identity less error was
encountered. However, a repercussion of this was reduced
coverage of the transcriptome in terms of genes that could
be annotated.

Several important limitations of our approach should be
noted. First, there are certainly many species that do not
have a genomic reference species less than 100my. While
our approach would certainly aide such projects, research-
ers should be aware of the error and bias inherent in such
analyses. Fortunately, as the genomics era progresses avail-
able genomic reference species will increase. Second, a
large class of genes will lack homology between species,
and this will increase with divergence. Such orphan genes
are likely to be involved in species-specific adaptations
and potentially the most ecologically and evolutionary
interesting aspects of a species transcriptome [see [42] for
a review]. Therefore, there is a high likelihood that
insightful results reside in careful analysis of that part of
the transcriptome that does not hit a proxy reference gen-
ome and for which no known biological function is
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established. Our analyses suggest that de novo analysis of
orphan genes will be most insightful when such genes are
assembled to their full length. Careful examination of TA
contigs for long open reading frames flanked by both 5’
and 3’ UTRs may prove useful for such assessment (e.g.
looking for the polyadenylation signal). Overcoming the
bias against studying orphan genes is a challenge facing
the entire research community.

A third limitation arises due to variation in recent gene
duplication events among individuals, commonly referred
to as Copy Number Variants (CNV). When young, CNVs
can be very difficult to detect in RNA-Seq data. When
mapping RNA-Seq reads back to a full genome, which is
usually derived from a single individual, differences among
individuals in their CNV with reference to the genome
can result in reads from several independent loci being
mapped to a single locus, resulting in a spuriously inflated
measure of single locus expression. This is certainly the
case in the de novo approach we use here to obtain whole
gene expression levels, as the contigs we assign to the
same gene may derive from incomplete transcript assem-
bly as well as recent duplication events. Expression differ-
ences detected between biological groups using this whole
gene approach necessarily must be studied in more detail,
to assess the causal basis of the signal. We argue that this
is true in both model and non-model systems alike, where
there are likely to be significant differences between the
scaffold genome and the individuals having their RNA
sequenced. Finally, this is similarly true for splicing iso-
forms, as our whole gene approach pulls together expres-
sion across exons for the entire gene. To the extent that
differences among groups arise from expression differ-
ences solely in specific exons, this will give rise to expres-
sion differences that necessarily must be investigated
further to determine whether this difference is evenly dis-
tributed across the entire gene. A final point of import-
ance is regarding the choice of transcriptome assembler.
Many papers are still emerging where groups have used
poorly performing assembly software to assemble their
transcriptome data. Our results might not be obtainable
with such software, especially as few programs handle hy-
brid data well. Thus we encourage researchers to be aware
of the latest advances in transcriptome assembly and use
methods shown to perform well with their generated data
[37]. In sum, our whole gene expression quantification
provides a robust starting place for the identification of
gene expression differences whose biological basis will re-
quire more detailed study, as should be common in any
RNA-Seq study regardless of genomic resources.

Conclusions

Our findings indicate that RNA-Seq data from non-model
species can be successfully de novo assembled into quality
transcriptomes. These assemblies can then be used with
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high performance, as scaffolds for mapping RNA-Seq read
data for quantitative whole gene expression analyses. In
order to functionally annotate de novo transcriptomes,
proxy genomic reference species up to approximately 100
million years divergence from the target species can be
utilised, generating results similar to those produced from
using high quality predicted gene sets as scaffolds. Al-
though there is a reduction in the size of the annotated
portion of the transcriptome assembly when using proxy
reference species, and there is a significant amount of
error, these effect sizes are relatively small until past
100my divergence. The use of more stringent parameters
in BLAST searches reduces this error, but this also
decreases the number of genes that are able to be anno-
tated, thus producing a trade-off researchers should be
aware of. The level of bias in the genes that are able to be
annotated in the resultant transcriptome is also an import-
ant consideration, as highly divergent (and often the most
interesting) genes are potentially missing from the ana-
lyses. As sequencing technology advances, as it will already
have done since this study, the quality and amount of
RNA-Seq data that will be produced and the ability of
researchers of all disciplines to assemble and annotate
transcriptomes of non-model species will increase dramat-
ically, making all species amenable to such studies in the
future.

Methods

RNA-Seq data

In order to assess the potential of de novo RNA-Seq ana-
lysis for non-model species, datasets from both Illumina
(http://www.illumina.com) and 454 GS FLX (http://
www.454.com) were needed from a species having a
wealth of genomic information. Searches of available
databases revealed that sufficient data was available for
Homo sapiens. RNA-Seq data for all analyses were gen-
erated from the same RNA reference sample (Human
Brain Reference RNA) of the MicroArray Quality Con-
trol (MAQC) project (MAQC Consortium 2006; [43]).
Data from two Illumina ([Genbank: SRA012427:
SRX018974-79], 3 sets of paired-end Illumina runs, one
run per lane; [Genbank: SRA010153: SRX016366] - one
full plate of Illumina, 7 lanes) and one 454 GS FLX
([Genbank: SRA003647: SRX002933 & SRX002935] - 11
runs, each one a half plate) experiments were down-
loaded from the Sequence Read Archive (SRA) at NCBI
(http://www.ncbi.nlm.nih.gov). The data were imported
into the CLC Genomics Workbench 4.7 (http://www.
clcbio.com) and the reads quality and adaptor trimmed
from fastq data (where appropriate) using the default
settings (Ambiguous limit=2, quality limit=0.05). See
Additional file 1: Table S1 for the size of the RNA-Seq
datasets and the number of reads incorporated into a de
novo transcriptome assembly.


http://www.illumina.com
http://www.454.com
http://www.454.com
http://www.ncbi.nlm.nih.gov
http://www.clcbio.com
http://www.clcbio.com

Hornett and Wheat BMC Genomics 2012, 13:361
http://www.biomedcentral.com/1471-2164/13/361

Predicted gene sets

A predicted gene set for Homo sapiens was downloaded
from the consensus coding sequence (CCDS) database
[44] at NCBI, build 37.1 (http://www.ncbi.nlm.nih.gov/
CCDS/CcdsBrowse.cgi). This gene set was filtered using
custom python scripts to identify and remove alternative
splice variants and recent gene duplications by self
BLAST. For each CCDS that found a hit using BLASTn
against another CCDS with>95% DNA identify for at
least 100 nucleotides and an e-value<= 1x10-6, the
shorter of the two, or its exact duplicate, was removed.
The resulting filtered dataset is hereafter referred to as
the CCDS dataset.

Predicted gene sets of 5 species of increasing evolu-
tionarily divergence from H. sapiens were downloaded
from Ensembl, release 63 (www.ensembl.org). These
were self BLAST filtered as above, but at the protein
level (BLASTp), with removal of the shorter sequence
when amino acid identity >90% over 33 amino acids
with an eval <= 1x10°. The species used and approxi-
mate divergence times from H. sapiens are Chimpanzee
(Pan troglodytes, ~5-10my), Orangutan (Pongo abelii,
~13-18my), Macaque (Macaca mulatta, ~20-35my),
Marmoset (Callithrix jacchus, ~33-50my), Mouse (Mus
musculus, ~75-91my) and Platypus (Ornithorhynchus
anatinus, ~160-162my) [30-33].

de novo assembly and mapping of RNA-seq reads
RNA-Seq data were de movo assembled into tran-
scriptome assemblies in various combinations using
CLC Genomics Workbench. General parameters for
assembly were as follows: mismatch cost set at one
and both insertion and deletion cost set at two.
Other parameters used in the transcriptome assem-
blies were dependent upon the sequencing platform
of the data used. For paired-end Illumina data the
minimum and maximum distances between the pairs
was 150nt and 250nt. For 454 data, which were un-
paired, the assembly parameters also included a
length fraction of 0.4 and a similarity limit of 0.85.
The minimum contig size for all assemblies was 200
nucleotides. Scaffolding was not performed for the
assemblies in this study. Assembly statistics are
available in Additional file 1: Table S1.

Paired-end Illumina RNA-Seq data were mapped to
each de novo TA and also to the human CCDS data-
set using the following parameters in CLC Genomics
Workbench. The maximum number of mismatches
allowed was two; the minimum length and similarity
fraction was set at 0.8; and the maximum number of
hits per read was 10. Broken pairs were included in
the counting scheme and only unique mappings were
counted for expression analyses.
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Bioinformatics

To uniquely assign each TA contig to its best hit CCDS,
BLASTn was used and the results filtered according to
two criteria: > 95% DNA identify for at least 100 nucleo-
tides and an e-value<= 1x10°. Unique assignment of
each TA contig to its putative ortholog in the predicted
gene set of a given divergent species used BLASTX, at
the cut-off levels: bitscore > = 50, e-value < = 1x10°°, over
a length of 33 amino acids. A second more stringent
cut-off level was used in an assessment of the level of
error incurred during the BLASTx: bitscore>= 100, e-
value<= 1x102°, over a length of 33 amino acids.
Orthology assignment between H. sapiens and the other
mammalian predicted gene sets, all at the amino acid
level using BLASTp, were determined using the robust
method of Reciprocal Best Hit [27-29] BLAST at the
cut-off levels: >60% DNA identify for at least 33 amino
acids and an e-value<= 1x107°. Custom scripts were
written for running and parsing all BLAST commands
and outputs. NCBI's BLAST version 2.2.25 was used
both locally and at the Centre for Scientific Computing
(CSC), Finland. Gene enrichment analyses compared the
distributions of GO and KEGG categories between
selected lists using the FATIGO tool of the online soft-
ware suite Babelomics (http://babelomics3.bioinfo.cipf.
es; [45]). CCDS genes were assigned their Ensembl
header and these identities as input for Babelomics,
which assigned functional categories based upon them.
The lists were quality assessed prior to use by ensuring
only one copy of each gene was used. Parameter settings
for FATIGO were as follows: GO levels analysis not in-
clusive (join levels); Direct annotation through ontology
levels; Filter terms by number of annotated genes in DB
(Your input genes). A two-tailed Fisher exact test was
performed for each FATIGO analysis (n=30). All other
statistical analyses were performed using the software
package JMP version 8 (SAS, Inc.).

Additional files

Additional file 1: Table listing the RNA-Seq data used in the de
novo transcriptome assemblies (TA) and the basic assembly metrics
for each transcriptome assembly.

Additional file 2: Figure depicting the CRR distribution of the
single longest TA contig for each CCDS gene, for the different TAs.

Additional file 3: Panels of figures depicting pairwise comparisons
of expression data produced when mapping different technical
replicates of RNA-Seq lllumina data to varying templates.

Additional file 4: Panels of figures depicting pairwise comparisons
of expression data produced when mapping different technical
replicates of RNA-Seq lllumina data to varying templates.

Additional file 5: Plot comparing the RNA-Seq expression levels
produced from either mapping reads directly to the CCDS dataset,
or to a de novo transcriptome assembly.

Additional file 6: Table listing the functional GO and KEGG
categories that are significantly (p < 0.05) over- or under-represented
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in the total list of GRS orthologs of CCDS genes that have a TA hit,
compared to the total list of CCDS genes.

Additional file 7: Table listing the functional GO and KEGG
categories that are significantly (p < 0.05) over- or under-represented
in a list of GRS orthologs of CCDS genes that only have correctly
assigned TA hits, compared to the total list of CCDS genes.

Additional file 8: Table listing the functional GO and KEGG
categories that are significantly (p < 0.05) over- or under-represented
in the list of residuals that equal 0 in a plot of expression levels
obtained when mapping TA contigs directly to the CCDS gene set
versus mapping the same TA contigs to the GRS dataset (and then
using the orthologous genes for comparison purposes).
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