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Abstract

Background: Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce
the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable
protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the
transcriptional response of Atlantic salmon (Salmo salar) to a high marine protein (MP) or low fishmeal, higher plant
protein replacement diet (PP), formulated to the same nutritional specification within previously determined
acceptable maximum levels of individual plant feed materials.

Results: After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance,
feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological
changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was
performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2,
Agilent 4x44K). The dietary comparison revealed large alteration in gene expression in all the tissues studied
between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher
expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and
transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP.
The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell
proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish
fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein
metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue.

Conclusions: The PP diet resulted in significant effects on transcription in all the 3 tissues studied. Despite of these
alterations, we demonstrated that high level of plant derived proteins in a salmon diet allowed fish to grow with
equal efficiency as those on a high marine protein diet, and with no difference in biometric quality parameters.
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Background
Aquaculture production has been the fastest growing
animal food-producing sector globally for over half a
century, with production growing at an average rate of
8.1% per year since 1961[1], representing almost 50% of
human consumed fish [1,2]. Additionally, the capture
from wild fisheries has plateaued with approximately
three quarters of wild fisheries fished to capacity, overf-
ished or recovering [3]. Atlantic salmon (Salmo salar)
production alone now reaches over 1.5 million tonnes
per year [4]. Total production in 2008 is estimated at 1.4
million tonnes, representing a 6% increase on 2007 [5].
The positive growth trend of the industry is expected to
continue, reflecting the rising demand for healthy
human food products high in protein and marine oils.
Piscivorous fish, which include salmonids, require high
protein diets and until recently this was almost exclu-
sively derived from wild caught non food fish such as
anchovies and sardines. It has become apparent that
with increasing fish meal demand due to the expanding
aquaculture industry the proportion of protein in diets
cannot be sustained by use of fish meal alone. During
2003, 20% of total fish meal usage for aquaculture feed
production was utilized by the salmon industry [6], but
continued development of diets has reduced the inclu-
sion of fish meal in salmon diets from 500 gkg™ to 350 g
kg™ by replacement with alternative protein sources [7].
Plant proteins currently represent the only economic
and sustainable protein alternative to fish meal and are
increasingly being used in commercial fish feed, with the
most common being soybean meal (SBM) or soybean
protein concentrate (SPC) which have a high protein
content and contain the majority of essential amino
acids required by salmonids. All plants contain a num-
ber of anti nutritional factors (ANFs) as part of their
inherent defence mechanisms, effected by lectins, sapo-
nins, phytic acid and proteinase inhibitors amongst
others [8]. In early attempts to use plant proteins in fish
diets ANFs were often co purified with the proteins,
leading to metabolic dysfunction in fish liver [9], inflam-
mation in the intestine [10,11], reduced protein depos-
ition [12], and an impaired immune response [13].
Currently used plant replacement diets use a combin-
ation of different plant proteins, with SPC often the
major component [14]. Processing of soy protein to SPC
with alcohol-extraction removes the majority of ANFs
facilitating use of these products in fish feeds at a high
inclusion level without causing enteritis or other gross
morphological changes [15]. Replacement of up to 50%
of the fish meal with a mixture of plant proteins is pos-
sible in rainbow trout without affecting fish growth, and
even complete replacement of fish meal with SPC has
been reported [16,17]. Other successful plant proteins
used regularly in aquaculture include wheat gluten at up
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to 40% of fish meal replacement in feed for salmon and
trout (Hardy 1996), corn gluten and sunflower meal at
up to 30% replacement, which show no adverse effects
on salmonid growth performance [18-20]. Extensive
studies investigating responses of Atlantic salmon to
such diets indicate that a replacement of fish meal close
to 100% can be used without negative effects on salmon
growth providing the proteins are highly purified and
the amino acid profile is well balanced [21]. High levels
of pea protein concentrate do still cause enteropathy in
salmon though [22].

In this paper we report a whole transcriptome based
study on post-smolt Atlantic salmon fed on a low mar-
ine protein diet, where marine protein fish meal was par-
tially replaced with a combination of plant derived
proteins, compared to fish fed a diet high in fish meal.
The high plant protein (PP) diet contained a balanced
combination of soy protein concentrate, corn gluten and
wheat gluten, and was supplemented with lysine and
methionine to ensure the requirement for essential
amino acids was met. The fish were fed for 77 days fol-
lowing which growth, feed efficiency and quality biomet-
ric parameters were measured and tissues were collected
for histopathological changes and gene transcription
analysis. The transcriptional response was examined
using an Atlantic salmon“salar_2” microarray platform
(Agilent) [23], enriched for genes involved in protein
metabolism, lipid metabolism and immune function.

Results

Feeding trial

During the 77 day feeding trial fish were fed either a
high marine protein (MP) diet or a plant protein re-
placement (PP) diet (Table 1), and both groups doubled
in weight over this period. No significant differences
were seen between the groups in growth performance,
feeding efficiency, condition factor or organ indexes
(Table 2). There were also no significant mortalities in
any of the tanks.

Histology

A number of histological changes were found, however
different types of anomalies were observed in tissues of
individuals from both treatment groups and such
changes were observed in low frequency indicating that
the fish were in a good condition (Table 3). There was
no significant dietary effect for any histological change
except the frequency of perivascular and peri-biliar duct
infiltrations in the liver, where 21% of fish fed the MP
diet exhibited this change compared to 3.8% of fish fed
the PP diet (Table 3). A number of fish from both diets
showed a mild fatty change in the liver, but this was not
restricted to a particular dietary group (Table 3). Equally,
some anomalies in heart were observed at a low level in
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Table 1 Dietary formulations

PP MP
Raw Materials (% of inclusion)
Fish meal (%) 260 510
Fish oil (%) 192 17.3
Wheat (%) 63 119
Maize gluten (%) 100 3.0
Sunflower meal (%) 15.0 10.0
Rapeseed meal (%) 3.0 30
Wheat gluten (%) 13
Soy protein concentrate(%) 18.0 30
Premix (%) 04 04
Monocalcium phosphate (%) 05 03
Lysine (%) 03
Methionine(%) 0.1
Proximate Analysis (% in feed)
Protein (%) 448 443
Qil(%) 235 24
Ash(%) 6.8 89
Moisture(%) 77 85
Marine protein (as % of total Crude Protein) 39% 78%

Dietary formulation of high marine protein diet (MP) and plant protein diet
(PP). Values represent percentage inclusion or content. Marine content
calculated for total protein. The Fish oil is a commercial Chilean fish oil.

both dietary treatments. For the intestine, no changes
were observed in pyloric caeca or mid intestine, whereas
for the distal intestine an inflammatory infiltration in the
submucosa and lamina propria was observed but at a
low level in both diets, with no significant difference in
occurrence between dietary groups (Table 3).

Transcriptomic responses
Fish fed the PP diet showed changes in transcriptome in
all 3 tissues examined compared to fish fed the marine

Table 2 Growth performance and somatic indexes

PP MP

Mean +/—SD Mean +/—SD
Initial Weight (g) 110.6 08 110.8 04
Final Weight (g) 2314 19 2370 32
SGR (%) 1.09 0.02 1.12 0.02
FCR 0.87 0.01 0.90 0.03
SFR (%) 0.95 0.02 1.00 0.04
Condition factor 1.08 0.00 1.06 0.03
Csl 0.08 0.00 0.08 0.01
HSI 1.09 0.07 1.06 0.02
IS 232 0.20 240 0.20

Growth performance and somatic indexes. SGR represents the specific growth
rate of fish, FCR is the feed conversion ratio, SFR is the specific feeding rate,
CSl is the cardiac somatic indice, HSI is the hepatic somatic indice and ISI is
the intestinal somatic indice.
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protein rich diet MP. In total 8,151 oligo features were
found to be expressed at different levels as a result of
the dietary manipulation. For subsequent analysis only
significant (p <0.05) features with a fold difference of
greater than 2 were analysed further (1961 mRNAs).
The intestine exhibited the greatest differential gene ex-
pression with 1,236 genes significantly different in ex-
pression level between fish fed the PP diet and MP diet.
Of these 615 genes were higher in expression and 621
lower in PP fed fish. In skeletal muscle 505 genes had an
expression higher than two fold with 132 higher in PP
fed fish and 373 lower and in liver 220 genes were found
modified with 161 higher and 59 genes lower in PP fed
fish vs MP fed fish (Table 4).

There were no genes expressed at different levels in
common between all the tissues examined indicating
there was not a systematic response to the diets. How-
ever there was a co regulation of features between the
mid intestine and skeletal muscle with 9 genes higher in
both tissues of PP fed fish vs MP fed fish and 10 lower
in both. Similarly in the liver and intestine 6 genes were
found to be significantly different in common, with 5
genes higher in expression and 1 gene lower in the PP
fed fish. To further investigate the biological significance
of the differently expressed gene sets we used gene
ontology analysis to help identify biological processes
that were significantly different in tissues following the
feeding trial.

Annotation of the microarray allowed 77% of the fea-
tures to be allocated to a functional protein and 55% of
these proteins were assigned a gene ontology (GO) iden-
tifier. This allowed statistical analysis for enrichment for
GO biological processes to help interpret the changes in
the transcriptome following the feeding trial (Figure 1)
to gain a holistic view of which biological processes were
significantly modified following feeding the PP diet.

Genes expressed at different levels in mid intestine

The intestine is the major tissue to come into direct
contact with any feed components and for this reason
may be very sensitive to dietary changes. This is shown
here by the intestine having the greatest transcriptional
response in terms of the number of genes expressed at
different levels and the magnitude of different expression
of these genes. Several biological processes were signifi-
cantly different in the PP diet fed fish, related to intes-
tinal functions including immune and stress related
processes, protein metabolism, energy and mitochon-
drial activity, lipid metabolism and transport (Table 4).

Immune and stress response
Genes encoding proteins related to both innate and
acquired immune function were expressed at different



Tacchi et al. BMC Genomics 2012, 13:363
http://www.biomedcentral.com/1471-2164/13/363

Table 3 Histopathological observations/changes
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Organ Changes PP MP P-value*
Liver No significant findings 39.0% 333% 0.39
Mild fatty change 38.1% 314% 0312
Mild to moderate fatty change 8.6% 7.6% 0.801
Moderate fatty change 8.6% 8.6% nd.
Moderate to severe fatty change 0.0% 1.9% 0.156
Severe fatty change 0.0% 0.0% nd.
Perivascular infiltration 2.9% 6.7% 0.196
Peri biliar ducts infiltration 3.8%° 21.0% <0.001
Necrotic foci w/infiltration 1.0% 0.0% 0317
Mild congestion 0.0% 1.0% 0317
Focal necrosis 0.0% 2.9% 0.082
Mild sinusoidal dilatation 0.0% 1.0% 0317
Biliar ducts esclerosis 0.0% 2.9% 0.082
Biliar ducts proliferation 0.0% 0.0% nd.
Foci of inflammatory cells 0.0% 1.0% 0317
Heart (ventricle) No significant findings 99.0% 98.1% 0.562
Severe infiltration and myodegeneration 1.0% 1.0% nd.
Infiltration, no myodegeneration 0.0% 1.0% 0317
Presence of melanin granules 0.0% 0.0% nd.
Mid-intestine and Pyloric caeca No significant findings 100% 100% nd.
Distal intestine No significant findings 97.1% 95.2% 0472
Infiltration of submucosa and lamina propria, 2.9% 4.8% 0472

widened of lamina propria within folds (simple and complex),
prominent goblet cells/low number of supranuclear vacuoles

Histopathological observations/changes. Values (in percentage) represent occurrence where n=105. Significantly different when P <0.05, different superscript

letters indicate significant differences within each row-wise comparison.

levels by the dietary treatments. For fish fed PP innate im-
mune parameters were found to be both higher and lower
in expression indicating a dynamic response. Modulators
of the immune response were higher in PP fed fish, such
as MyD88, a key transcription factor associated with in-
duction of an inflammatory response and P105 subunit of
an inhibitory protein that sequesters NF-«xB in the cyto-
plasm. Another transcription factor, interferon regulatory
factor (IRF) 1 was also higher, and potentially increased
expression of interferon responsive genes including Mx,
Vig-2, interferon induced protein 35 and virus induced
TRIM protein. Genes encoding cytokine receptors (IL-17R)
and regulators of cytokine function including the suppres-
sor of cytokine signalling (SOCS)-7) were also higher. A
number of genes related to innate immune responses were
also lower, and included IL-17D, MCSER and chemokines
such as CCL3, CXC13 and IL-8 (CXCLS8). Other innate
immune serum proteins were also lower in expression
including serum amyloid A, and a number of lectins.
Genes related to proteins in the acquired immune re-
sponse were mostly higher in expression in fish fed the PP
diet compared to the MP diet. For example, T cell re-
ceptor chains (a and y) and their signalling subunits CD3

epsilon and gamma/delta were higher as were genes
involved with antigen presentation such as 2 microglobu-
lin and MHC class II). Related to antibody production by
B cells, a B-cell linker protein that regulates B-cell func-
tion and development was higher in PP fed fish as was a B
cell enhancing factor.

Regarding stress related genes, PP fed fish showed an
elevated expression of glutathione-S-transferase and a
thioredoxin interacting protein, involved in reducing
oxidative stress, while heat shock proteins (HSP) B-7,
B-11, 30 and 70a were all suppressed.

Cell proliferation and apoptosis

The intestinal transcription of genes encoding proteins
related to cell proliferation (tumor necrosis alpha-induced
protein 2, tetraspanins-14 and —16 and melanoma-derived
growth regulatory protein) and the cell cycle (DNA topo-
isomerase 2-alpha, replication factor C subunit 3, FGFR3
protein, cyclin A1) were found to be higher in PP fed fish;
whilst transcription of caspases 3, 8 and 14,which are dir-
ectly involved in apoptosis, were found to be lower in ex-
pression relative to fish fed MP.
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Table 4 Genes significantly different in mid intestine of fish fed PP diet

Probe name' ACC? FC+SEM3 Identity*

Immune function and stress related

Ssa#CK897125 CK897125 76+1.1 B-cell linker

Ssa#CL60Contig3 X70167 52+12 MHC class Il antigen beta chain

Ssa#STIR13675 TC71772 50+13 CD209f

Ssa#NP9934055 NP9934055 48+14 T cell receptor alpha

Ssa#STIR21272 TC82967 43412 Interferon inducible mx protein

Ssa#535685629 535685629 43+10 TCR-gamma

Ssa#tS$30239635 $30239635 28+12 IRF1

Ssa#STIR10385 TC67231 25+1.1 Vig-2 protein

Ssa#STIR15805 TC74805 24+10 cd3 epsilon

Ssa#STIR05606 BT056756 24+1.1 32 microglobulin

Ssa#gi156446662 EF579742 20+1.2 MyD88

Ssa#CL81Contig1 BT072778 20+1.1 Virus induced TRIM protein

Ssa#S37438814 $37438814 20+10 CD3 gamma/delta

Ssa#STIRO0071_2 DW580947 20+12 Interferon induced protein 35

Ssa#518833713 518833713 —75%12 Serum lectin 2

Ssa#CK882427 CK882427 -32+13 Serum amyloid A

Ssa#S35474845 S35474845 -30£1.1 HSP 3-7

Ssa#S535677496 S35677496 -29£1.1 CCR3

Ssa#S31986130 $31986130 27412 Macrophage colony stimulating
factor receptor

Ssa#518892409 518892409 =-27+1.1 IgM

Ssa#STIR03818 NM_001141099 -24+£13 CXCi13

Ssa#STIR19205 TC79827 -23£1.1 HSP 70a

Ssa#STIR13083 TC70912 -23+12 SAMHD1

Ssa#S35663823 535663823 —-22+12 Complement clq

Ssa#535583279 535583279 -21£10 IL-17D

Ssa#S35517748 S35517748 -20£1.1 HSP 30

Ssa#535536386 $35536386 —-20+1.1 HSP B-11

Omy#gi31087931 AY160984 -20+£12 IL-8

Ssa#TC106255 TC106255 -20£1.1 Galectin-4

Cell proliferation and apoptosis

Ssa#535582566 535582566 71+£12 Caspase-14

Ssa#CL201Ctg1 NM_001139921 24+10 Caspase-3

Ssa#S535693335 $35693335 22+10 Caspase 8

Ssa#S32005165 $32005165 -94+10 DNA topoisomerase 2-alpha

Omy#S34421775 S34421775 —-66+15 Replication factor C subunit 3

Omy#CA346576 CA346576 —45+12 Tetraspanin-14

Ssa#CA038824 CA038824 -39+£1.1 Fgfr3 protein

Omy#534313679 S34313679 -36+14 Cyclin A1

Omy#522901990 $22901990 -34+10 Chromodomain-helicase-DNA-binding
protein 7

Ssa#S47728937 S47728937 -31%1.1 Tetraspanin-16

Ssa#535496360 535496360 -29+10 DNA-repair protein complementing XP-A cells

Ssa#S535490761_S S$35490761 —27+1.1 Transcription factor HES-1

Ssa#STIR38390 TC108636 -27+13 RNA helicase

Ssa#S535531441 $35531441 —24+1.1 Melanoma-derived growth

regulatory protein
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Table 4 Genes significantly different in mid intestine of fish fed PP diet (Continued)

Ssa#STIR17200 TC76867 —-24+10 Tumor necrosisalpha-induced protein 2
Protein metabolism
Ssa#535499913 535499913 65+1.0 Titin
Ssa#531974046 S31974046 42+1.1 Cathepsin C
Ssa#530293144 S30293144 39+15 Proteasome subunit alpha type-5
Ssa#STIR05302 BT046757 32411 Proteasome subunit beta type-7
Ssa#CL233Ctg1 BT072668 30£10 Cathepsin Z
Omy#515290109 515290109 30+1.2 Keratin el
Ssa#STIR25562 TC89420 30+ 11 Troponinskeletal muscle
Ssa#STIR20536 TC81827 29+1.1 Cathepsin A
Ssa#STIR24947 TC88495 28+1.2 Keratin 18
Ssa#DY714088 DY714088 27+10 Ribosomal protein S6 kinase b
Ssa#KSS4531 KSS4531 26+ 1.1 Ubiquitin-conjugating enzyme E2
Ssa#STIR08978 TC65424 22+10 Eukaryotic translation
initiation factor 4e
Ssa#DY712052 DY712052 20+1.1 Gamma-tubulin complex
component 4
Ssa#t$30279979 $30279979 20+12 Eukaryotic translation initiation
factor 2 subunit 1
Ssa#530240560 $30240560 2012 B-actin
Ssa#kSS1565 KSS1565 20+10 Proteasome subunit alpha type-6
Ssa#KSSb2668 KSSb2668 20+1.2 Tubulin beta-1 chain
Ssa#STIR39880 TC110797 20+1.1 Proteasome subunit
alpha type-7
Ssa#531996856 531996856 20+1.1 E3 ubiquitin-protein
ligase RNF128
Ssa#STIR19643 TC80514 -39+13 Myosin light chain 1-3
Ssa#TC76471 TC76471 —-36+12 Tropomyosin-1 alpha chain
Ssa#AJ425777 AJ425777 —-27+13 60 S ribosomal protein L34
Ssa#STIR11900 1C69277 -25+1.1 Myosin ic
Ssa#S35582711 $35582711 -23+£10 Tropomyosin-1 alpha
Ssa#S535505113 S35505113 -22+1.1 60 S ribosomal protein 130
Ssa#FC072705 FC072705 21411 40 S ribosomal protein S10
Omy#CX150249 CX150249 -21+10 60 S ribosomal protein L36
Lipid metabolism
Ssa#CB509140 CB509140 253+12 Fatty acid-binding protein
Ssa#531963508 531963508 145+15 Apolipoprotein A-l
Ssa#STIR00045_2 AY170327 52+10 PUFA elongase 5A
Ssa#STIR00100_2 CK887422 4710 Delta-6 fatty acyl desaturase
Omy#518154618 S18154618 44412 Glycolipid transfer protein
Ssa#STIR00093_4 AF478472 43+1.1 Delta-5 fatty acyl desaturase
Energy and mitochondrial activity/kinases
Ssa#tSTIR00144_4 TC64612 42+10 Glyceraldehyde-3-phosphate
dehydrogenase
Ssa#STIR39924 TC110855 26£12 Cytochrome P450
Ssa#532006874 532006874 23£1.1 Peroxisomal membrane
protein 11 C
Ssa#S30263228 S30263228 24+1.1 Succinate dehydrogenase
Ssa#S35661441 S35661441 20+£10 Fructose-1.6-bisphosphatase 1

Ssa#$32000347 $32000347 —-25+12 Hemoglobin subunit beta-1
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Table 4 Genes significantly different in mid intestine of fish fed PP diet (Continued)

Cellular transport

Ssa#tS30284157 $30284157 236+12 Solute carrier family 22
Ssa#STIR21606 (83482 9.1+12 Solute carrier family 16
Ssa#tDW575876 DW575876 72+13 Solute carrier family 39
Ssa#STIR19539 TC80341 46+10 Solute carrier family 31
Ssa#STIR19539 535536215 28+10 Solute carrier family 25
Ssa#S35454393 $35454393 21411 Solute carrier family 27
Omy#TC172518 TC172518 —-22+1.1 Beta globin

Ssa#CK991045 CK991045 —-20+10 Hemoglobin subunit alpha

Protein metabolism

Feeding the PP diet the expression of genes involved in
protein metabolism was significantly different compared
to MP. For example, protein synthesis related genes in-
cluding elongation factor, translation initiation factors 2
and 4e and ribosomal protein S6 kinase b were higher,
while a number of 60 S ribosomal protein encoding
genes were lower relative to MP fed fish. Protein degrad-
ation encoding genes were more highly expressed as
shown by lysosomal proteases, cathepsins A, C, and Z,
ubiquitin proteasome route (UbP) of proteolysis, and
proteasome subunits a5, a6, a7 and B7. Genes involved
in targeting of proteins for degradation in the UbP were
also higher including ubiquitin conjugating enzyme E2
and ubiquitin E3 ligases. Genes encoding the structural
proteins troponin, tubulin, titin, actin and keratin were
all found to have a higher expression level whereas a
number of myosin mRNAs were lower in expression.

Lipid metabolism

A higher transcript level of genes involved in lipid
transport and metabolism was observed, with higher
transcription of fatty acid-binding protein, apolipopro-

tein A-I, apolipoprotein B and delta-6 fatty acyl desatur-
ase, delta-5 fatty acyl desaturase, PUFA elongase 5A and
glycolipid transfer protein, respectively.

Energy and mitochondrial activity/kinases

There was an induction of many genes related to energy
metabolism in pathways such as glycolysis (glyceralde-
hyde-3 phosphate dehydrogenase), the tricarboxylic acid
cycle (succinate dehydrogenase) and gluconeogenesis
(fructose 1-6- bisphosphate) which were expressed at a
higher level in PP fed fish relative to the MP fed fish.

Cellular transport

Transport of solutes into and from a cell is an energy
demanding process. Genes involved in membrane trans-
port were higher in expression in fish fed the PP diet,
and included a number of solute carrier family members
such as SCF22 (organic cation transporter), SCF 27 (fatty
acid transporter), SCF 25 (mitochondrialphosphate car-
rier), SCF 39 (zinc transporter), SCF 16 (monocarboxylic
acid transporter), and SCF 31 (copper transporter). Two
genes encoding haemoglobin subunits (hemoglobin sub-
unit alpha-4 and hemoglobin subunit beta-1) and beta

601

Mid intestine

Higher expression in
PP fed fish

N

610

Mid intestine

Lower expression in
PP fed fish

Figure 1 Venn diagram showing numbers of genes identified as expressed at different levels by microarray analysis. Summary of
numbers of genes higher and lower expressed. The genes presented are all significantly different in expression (p < 0.05) with >2 fold change
in expression.
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Table 5 Genes significantly different in liver of fish PP diet
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Probe name' ACC? FC+SEM 3 Identity*

Immune function and stress response

Ssa#S35601811 535601811 27+10 MPV17 protein
Ssa#gi156446662 EF579742 24+1.1 MyD88

Omy#518150823 S18150823 22+1.1 Amine oxidase

Ssa#STIR13675 TC71772 20+10 CD209f

Ssa#CK874360 CK874360 20+1.1 Heat shock 70

Ssa#STIR36546 TC105929 -28+1.1 C-type MBL-2 protein
Ssa#NP797925 NP797925 —24+1.1 MHC class | alpha 2
Ssa#STIR04816 NM_001140849 —-24+12 Hepcidin

Ssa#NP9934311 NP9934311 -22+1.1 T cell receptor alpha
Ssa#548440415 SA48440415 -22+13 SMAD3

Ssa#535663823 535663823 =-21+£11 Complement c1q

Cell proliferation and apoptosis

Ssa#CA041082 CA041082 26+12 Transforming growth factor beta receptor
Ssa#535486979 535486979 25+10 Cell death activator CIDE-3
Ssa#S535559076 S35559076 23+£10 Angiopoietin-related protein 4
Ssa#S30276711 $30276711 2311 Activin receptor type-1B
Ssa#S535582821 535582821 23+£10 Serine protease HTRA1
Ssa#STIR31305 TC98147 22+1.1 Annexin A3

Omy#518150823 $18150823 22+10 Amine oxidase

Protein metabolism

Ssa#tDW574268 DW574268 2411 Ribosomal protein S18
Ssa#STIR03071 BT048999 2311 Proteasome beta type 3
Ssa#tKSSb2684 KSSb2684 22+12 Peptidyl-prolyl cis-trans isomerase
Ssa#STIR16404 TC75662 22+1.1 Calpain

Ssa#STIR04151 NM_001141015 21+10 Ribosomal protein 139

globin, however, were found to have a lower relative ex-
pression level.

Genes expressed at different levels in liver

Several biological processes were significantly different
in liver that can be related to immune parameters, stress
responses, and protein and lipid metabolism, with key
genes shown in Table 5.

Immune and stress response

Genes encoding proteins involved in innate immunity
such as complement clq, C-type MBL-2 and a dendritic
cell specific lectin CD209f which binds mannose carbo-
hydrate molecules, and hepcidin a major liver associated
antimicrobial peptide were lower in PP fed fish. A lim-
ited number of genes related to adaptive immunity were
also found to be expressed at different levels, with MHC
class I and SMAD 3 lower in expression level, whereas
MyD88 was higher in fish fed the PP diet relative to MP
fed fish. Moreover, genes involved in the oxidative

response (MPV17 protein, amine oxidase and heat shock
cognate 70 kDa protein) were also higher in fish fed the
PP diet.

Cell proliferation and apoptosis

The PP diet stimulated/modified hepatic cell turnover as
indicated by higher expression of serine protease HTRA1
and annexin A3 and the stimulation of apoptotic processes
through genes involved in TGF beta pathways (cell death
activator CIDE-3 and angiopoietin-related protein 4).

Protein metabolism

Hepatic protein metabolism was clearly stimulated in PP
fed fish since all genes significantly different in expres-
sion were higher in these fish, including ribosomal
protein S18a, ribosomal protein 139 and peptidyl-prolyl
cis-trans isomerise. Similarly genes involved in protein
degradation were more highly expressed as seen with
the non-lysosomal protein calpain and the proteasome
subunit (3.
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Page 9 of 21

Probe name' ACC? FC+SEM3 Identity*

Immune function

Ssa#STIR12634 TC70300 50£12 Vig-2

Ssa#STIR00067_2 u66477 32+13 Interferon inducible Mx protein

Ssa#CK894557 CK894557 -112+14 MHC class Ib antigen

Ssa#STIR00132_2 NM_001140254 —-74+13 Tumor necrosis alpha-induced protein 2

Omy#NP565601 NP565601 —-64+14 T-cell receptor beta

Ssa#531982089 531982089 —54+1.1 Platelet-activating factor receptor

Ssa#STIR12498 TC70105 —46+12 y-ip (CXCL10)

Ssa#S48440415 548440415 -34+1.1 SMAD3

Omy#515331473 $15331473 -32+12 Interferon-inducible protein Gig2-like

Ssa#535544087 535544087 -31+£13 B-cell CLL/lymphoma 7 protein
family member B

Ssa#STIR13083 TC70912 -36£10 SAMHD1

Omy#518153399 S18153399 -24+£1.1 CD80

Ssa#KSS5035 KSS5035 —22+12 Interferon regulatory factor 2-binding protein

Ssa#STIR00071_3 DW580947 -23+1.1 Interferon -induced protein 35

Ssa#STIR08451 TC64790 —22+12 Heat shock protein 47

Ssa#S535480903 535480903 -20+12 Heat shock protein 30

Ssa#STIR29454 TC95297 —21£1.1 Beta defensin 1

Cell proliferation and apoptosis

Ssa#S$35602638 535602638 37+14 Tripartite motif 39

Ssa#TC110067 TC110067 35+15 Cell death inducing protein

Ssa#STIR08668 TC65039 EAER Bh3 interacting domain death agonist

Ssa#STIR12507 TC70118 30+£13 Syndecan 4

Ssa#STIR02208 BT049868 —386+1.2 Caspase 14

Ssa#535559333 535559333 —-41+13 Ankyrin repeat domain-containing protein 54

Omy#TC151190 TC151190 29412 Nucleostemin

Ssa#535550715 $35550715 -28+12 Growth hormone-inducible
transmembrane protein

Ssa#535585784 535585784 -26+£1.1 Caspase-8

Ssa#tkSS5035 KSS5035 —24+12 Interferon regulatory factor 2-binding
protein 2-B

Protein metabolism

Ssa#S35682089 535682089 42+13 Ubiquitin-like protein 1

Ssa#STIR17445 TC77227 26+13 Actal protein

Ssa#STIR21465 TC83266 25+12 Actin-binding

Ssa#STIR03710 BT048358 20412 Proteasome subunit beta type-9

Ssa#STIR00115_4 BT045917 20+12 Tropomyosin-1 alpha chain

Ssa#532008331 532008331 -36+17 40 S ribosomal protein S16

Ssa#CL224Ctg1 NM_001140473 -28+15 Receptor-interacting serine/threonine-protein
kinase 4

Omy#CX150460 CX150460 —27+1.1 60 S ribosomal protein L27

Omy#515320960 515320960 -26+£1.1 Cathepsin D

Ssa#TC111443 TC111443 =-25+1.1 Serine/threonine-protein kinase 35

Ssa#FC072705 FC072705 -23+10 40 S ribosomal protein S10

Ssa#535583213 535583213 -21+12 Serine/threonine-protein kinase PINK1

Ssa#S35591236 535591236 21411 Histidine triad nucleotide-binding

protein 3
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Table 6 Genes significantly different in skeletal muscle of fish PP diet (Continued)

Energy metabolism

Ssa#STIR39924 TC110855 25111 Cytochrome P450

Ssa#S532006874 532006874 22411 Peroxisomal membrane protein 11 C

Ssa#kSS5038 KSS5038 —-40+13 Phosphoglycerate kinase

Ssa#STIR19484 TC80264 -31+13 Cytochrome c oxidase polypeptide viii

Ssa#CL200Ctg 1 BT059338 -28+13 L-lactate dehydrogenase B chain

Ssa#S30282925 530282925 —27+1.1 Peroxisomal 3.2-trans-enoyl-CoA
isomerase

Omy#CX150319 CX150319 —24+12 Cytochrome ¢ oxidase subunit Il

Ssat#tSTIR13627 TC71700 21112 Cox18 cytochrome c oxidase

Ssa#EL698167 EL698167 -20+1.1 Malate dehydrogenase 1

List of selected mRNAs found to be higher or slower in expression following the feeding trial in mid intestine (a), liver (b) or skeletal muscle (c) and grouped
according to functional classes (shown in bold). The selection was based on manual assignment of function and genes with greatest fold differences in expression
are presented, the genes that are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests and greater than 2-
fold change. 'Indicates the unique code for the feature on the microarray, Accession number of the cDNA sequence. 3Fold-change for genes higher or lower
expressed in fish fed PP relative to fish fed MP diet. *identity of the probe target as determined by BLASTX and BLASTN searches.

Genes expressed at different levels in skeletal muscle

The GO analysis showed a number of processes to be
significantly different in skeletal muscle that can be
related to protein metabolism, immune function and en-
ergy metabolism (Table 6).

Immune and stress response

Regarding the innate immune status, PP fed fish showed
lower expression level of inflammatory related genes
such as platelet-activating factor receptor, SAMHDI,
tumor necrosis alpha-induced protein 2, and the anti-
microbial peptide beta defensin 1. Likewise, fish fed the
PP diet showed a suppression of genes involved in the
adaptive immune response, i.e. TCR , MHC class I,
SMAD 3, CD80 (a T cell activator). Interferon y induced
proteins y-ip (CXCL10), Gig2-like and both interferon-
induced protein 35 and IRF2-binding protein were also
lower in fish fed the PP diet. In contrast, Mx and Vig-2
which are responsive to type I interferon were higher
expressed in PP compared to MP. Lastly, the stress
induced genes HSP 30 and 47 were lower in expression
in PP fed fish relative to MP fed fish.

Cell proliferation and apoptosis

Genes involved in cell proliferation were lower expressed in
the PP fed fish, including ankyrin repeat domain-containing
protein 54, nucleostemin and growth hormone-inducible
transmembrane protein. Several genes involved in apoptosis
were found to be higher such as cell death inducing protein
and bh3 interacting domain death agonist although in con-
trast whereas both caspase 8 and 14 showed lower tran-
script levels in the PP fed fish.

Protein metabolism
Genes involved in protein synthesis such as several 60 S
and 40 S ribosomal proteins were lower in expression in

skeletal muscle of PP fed fish. A number of enzyme
genes that modify essential amino acids (eg serine/threo-
nine-protein kinase PINKI1, serine/threonine-protein
kinase 35, receptor-interacting serine/threonine-protein
kinase 4 amongst others) were also lower in expression.
Likewise, a major lysosomal peptidase, cathepsin D was
lower in expression in PP fed fish, however, two compo-
nents of the UbP were higher expressed in PP (ubiqui-
tin-like protein precursor and proteasome subunit
beta type-9).

Genes encoding proteins involved in muscle structure
and physiology (actal protein, actin-binding homolog la
and tropomyosin-1 alpha chain) were also more highly
expressed in skeletal muscle of fish fed the PP diet.

Energy metabolism

Genes related to energy metabolism were transcription-
ally modified with peroxisomal membrane protein 11 C
and cytochrome P450 being higher in expression
whereas cytochrome c oxidases (COX2, 8 and 18) were
found to be lower in PP fed fish compared to MP fed
fish. In addition genes involved in glycolysis (phospho-
glycerate kinase 1 and L-lactate dehydrogenase B chain)
and gluconeogenesis (malate dehydrogenase 1) were
found to be expressed lower in PP fed fish.

Co-regulated genes

Only a small number of genes were co regulated between
tissues following the feeding trial. No genes were signifi-
cantly higher or lower regulated in all the tissues in this
experiment. The greatest co regulation was observed be-
tween mid intestine and skeletal muscle, with 9 genes sig-
nificantly higher and 10 genes significantly lower in PP
compared to MP. Genes that were more highly expressed
in mid intestine and liver of fish fed the PP diet compared
to the MP diet play a role in energy metabolism, such as
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Figure 2 (See legend on next page.)




Tacchi et al. BMC Genomics 2012, 13:363
http://www.biomedcentral.com/1471-2164/13/363

Page 12 of 21

(See figure on previous page.)

Figure 2 Gene ontology (biological processes) found to be significantly enriched following the feeding experiment in mid intestine
(a), liver (b) and skeletal muscle (c). Only GO categories for which >3 genes were represented are included.

cytochrome P450, a membrane-associated protein located
in the inner membrane of mitochondria and peroxisomal
membrane protein 11 C that induces peroxisomal prolif-
eration proteins involved in the pentose phosphate path-
way. Genes that showed lower expression in mid intestine
and liver have a role in protein synthesis (40 S ribosomal
protein S10) and in the immune response, such as
SAMHD1 a nuclease involved in innate immune
responses by acting as a negative regulator of the cell-
intrinsic antiviral response. Five genes were higher
expressed in both intestine and liver of fish fed the PP
diet, including immune related genes, such as CD209f and
MyD88 and only 1 gene (complement clq) showed lower
expression in both tissues. Skeletal muscle and liver did
not have any higher expressed gene in common and only
3 genes (membrane-bound O-acyltransferase domain-
containing protein 7, SMAD 3 and the non annotated
gene (NP_998306) were significantly lower between these
two tissues (Figure 2; full list of genes expressed at differ-
ent levels is given in supplementary Table 1).

Confirmation of expression by real time PCR

Real time PCR analysis was performed on a number of
genes for each tissue to confirm microarray data
(Table 7). The real time PCR expression data was nor-
malized with HPRT1 as the expression of this house-
keeping gene was not found modulated by microarray
analysis. For all genes the expression pattern showed the
same trend between microarray and real time PCR ana-
lysis (Figure 3).

Discussion

With the continual expansion of aquaculture of piscivor-
ous fish there is a global requirement to reduce the de-
pendence on wild caught fish for the generation of
fishmeal and fish oil. There are a number of studies that
have explored the transcriptional response to plant and
vegetable oil replacements in fish diets, often when
100% replacement experimental diets are used results in
reduced growth [24,25]. When both proteins and oils
were replaced [24] in rainbow trout microarray analysis
of liver indicated processes such as protein metabolism
and cell cycle being altered, however the reasons for
these changes could either have been combined effect of
lowered essential fatty acids or changes in amino acid
profile. There is also growing body of work demonstrat-
ing the genotype diet interaction in rainbow trout
[25-27] and Atlantic salmon [28], with the latter conclud-
ing transcription of key metabolic regulators that respond

to plant based feeds depend on the fish’s genotype. Com-
mercial salmon feed formulations partially replace fish
meal with plant derived proteins, with varying effects on
fish physiology and performance including fish growth
and food conversion [24,29]. This paper examined the
physiological and performance effects with transcrip-
tional responses in mid intestine, liver and skeletal
muscle in salmon to a post smolt feed containing
high levels of plant derived proteins with low fishmeal
content compared to a low plant protein-high fish-
meal diet. The tissues examined play different physio-
logical roles in the fish all of which may be affected
by dietary changes as reflected in the different response
profiles seen in these tissues. In common with a number
of other transcriptomic studies on nutritional effects
(where extreme dietary manipulations are avoided) the
impact of the different diets appears quite subtle suggest-
ing limited changes to physiological and metabolic path-
ways [30]. Although, in general, the scale of gene response
is quite low, distinct changes in all tissues examined do in-
dicate that there are responses occurring as a result of the
dietary components.

When interpreting the findings it is important to take
a comparative holistic approach whereby apparent down
regulation of genes in fish fed one diet may in fact be
the result of up regulation in fish fed the other dietary
treatment and vice versa. In this paper the expression is
analysed relative to the marine profile (MP) diet.

Histological changes

The occurrence of histological changes was very similar
for fish fed either diet, with low frequencies observed
for the majority of parameters measured. The main
histological observation was a mild fatty change in liver,
which is considered normal under intensive rearing
conditions. This anomaly appeared to have no clinical
effect, and was not prevalent for either dietary group.
Although there was a higher incidence of peri-biliar
duct infiltration in liver of fish fed the MP diet no other
histological changes were observed to indicate an in-
flammatory response. This reduced infiltration in the
liver by the biliary ducts may be related to the altered
immune gene expression in the liver. In mammals viral
infections can result in biliary atresia [31] and specific-
ally can be related to immune related injury to bile
ducts following infiltration of CD4" T and production of
interferon y [32]. At this stage we are unable to tell if
the reduction in the structures is a direct result of the
nutritional components or due to the altered hepatic



Tacchi et al. BMC Genomics 2012, 13:363

http://www.biomedcentral.com/1471-2164/13/363

Table 7 Primers used for real time PCR for expression analysis, Acc is accession number from NCBI

Page 13 of 21

Gene name Primer name Primer sequence(5-prime to 3-prime) Acc Product size  AnnT  Tissue

Fabp2 FatF GCTCTGTACTAGCTCTCCTCCC CB509140 156 bp 55 °C Mid intestine
FatR GGCGTACAGTTTGACTATGCAC

Caspase-14 Cas14F CGATTATACACCCGGACTATGG S35582566 155p 55°C Mid intestine
Cas14R CCTATCAAGTGTGAATCCATGC

TCR alpha TCRaF GGAAGACTCTGCTCTGTACCAC U50991 147 bp 55°C Mid intestine
TCRaR GCTGTGGTATTTCTTGACTTC

IgM heavy chain IgMF GCTTATAGCCATAGTACTACTG 518892409 169 bp 55°C Mid intestine
IgMR GCATAGCTGCCCCATATCGC

Tpm1 Trop1F CGAAGATGAGAGAGATAAAGTGC TC76471 134 bp 55°C Mid intestine
Trop1R CCTCCTCAACCAGCTGGATACG

RFC3 ReplF GCTGACTCACTGCATTCCTCCTG $34421775 163 bp 55 °C Mid intestine
RepIR GAAGGCCTCTAGGTGGTAAATGG

HTRA1 HTRATF GGTCATCTTCATACAGAGAGG 535582821 152 bp 55°C Liver
HTRATR GCTTAGAGAATACCATCTTGC

TGF beta receptor TGBF CCACAAGAAGCCAGCTGTCAG gi|209735249 135 bp 55 °C Liver
TGFBR CTAGCCAGGTATCTCTATCATGG

MRPS18A 28 SF CCATTGATTCAGTGAAGCCCATC DW574268 158 bp 55°C Liver
28 SR CCTGCTGTGAGTTGACATGC

Timd2 TcellF CCATGGACAACCACACACACTG CA368982 141 bp 55°C Liver
TcellR CCAGTAGAATGGACACCAGGATC

Hepcidin | HepF GCTTCTGCTGCAAATTCTGAGG 9i|209736931 157 bp 55°C Liver
HepR GTACAAGATTGAGGTTGTGCAG

TCR alpha TCRaF GGAAGACTCTGCTCTGTACCAC U50991 147 bp 55°C Liver
TCRaR GCTGTGGTATTTCTTGACTTC

CcDIP CellF CCATGTCTGAGACCTACTCTATG TC110067 243 bp 55 °C Skeletal muscle
CellR GATAGTCACTTGATGTCCAGTG

actal protein ActaF CCTGTAAACTGTGAATGCGTC TC77227 156 bp 55°C Skeletal muscle
ActaR CCAAAGTTTTATATCAGCTGC

TGF beta 1 TGF1bF GCTCGGAGTGTGAGACAGAACTG $15319964 187 bp 55°C Skeletal muscle
TGF1bR CACTTGACGCAACAGAAACACTCC

RT1-CE5 MHC1bF GGAAAGATCTCCTGAAGACTTGAG CK894557 101 bp 55 °C Skeletal muscle
MHC1bR CGTTTATGAGAAGTTCAGC

60 S rib prot 60SF GCTTCTTACCATGGTTCTTCAG DR695852 140 bp 55°C Skeletal muscle
60SR GGTCAAGATCCCATCCACCATC

Heat shock protein 30 HeatF CCATCCAACCAGTCTCCTACAAGC EG804126 303 bp 55°C Skeletal muscle
HeatR CCTCCTCAGCAGATAATGGATTC

Hprt HprtF CCGCCTCAAGAGCTACTGTAAT EG866745 255 bp 55°C All tissues
HprtR GTCTGGAACCTCAAACCCTATG

immune gene expression in between the two diets. The
distal intestine is often the target organ for anti-nutrien-
tal factors, in particular those present in SBM and pea
protein concentrate [22], inducing histological changes
including shortening of simple and complex mucosal
folds with widening of central stroma, inflammatory cell
infiltration in the submucosa and lamina propria with a
mixed leukocyte population [33,34]. In this study both

dietary groups presented fish with distal intestine anom-
alies but with low frequencies, and no significant differ-
ence between diets. These results together with those
reported by Sanden et al. (2005) [35] indicate soybean
products, including the alcohol soluble fraction, may be
used within formulation constraints without inflicting
gross histopathological anomalies in the intestine of
Atlantic salmon.
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a Mid intestine Figure 3 Quantitative real-time PCR confirmation of genes
" expressed at different levels in mid intestine (a), liver (b) and
% skeletal muscle (c) of fish fed the PP diet compared to fish fed
< 35 ®qPCR the MP diet for 6 genes identified by microarray analysis. Bars
3 ol ) represent mean + standard error of five fish, asterisks indicate
% 30 4 . Microarray significant (p < 0.05) differences. The genes chosen for the intestine
‘é 25 | I were: Fatty acid-binding protein (Fabp2), Caspase-14 precursor, TCR
T 00 - alphg, Igl\/l heavy chain, Trgpomyosin—W alpha chain (Tpm1) and
g Replication factor C subunit 3 (RFC3). The genes selected for the
g 15 - liver were: Serine protease HTRA1, TGF beta receptor, 28 S
_E 10 | o . é\é‘(\ Ribosomal protein S18a (MRPS18A), T-cell immunoglobulin and
: I * $\* mucin domain (Timd2), hepcidin | and TRC alpha. The gene chosen
% 5 - i iI @‘& Q@“f ((<')a for the skeletal muscle were: cell death inducing protein (CDIP),
ﬁ 0 - : : : A : -/\ : % actal protein, Transforming growth factor beta-1 (TGF beta 1), MHC
2 | é\y @ .y « T < class Ib antigen (RT1-CE5), 60Sribosomal protein L6 (60 S rib prot)
5 O & & (%%Q - * i and Heat shock protein 30.
;‘,_10 1@ %3 « . \ J
o
g
Transcriptome changes in the mid intestine
b Liver The fish intestine has multiple functions which will be
3 =qPCR the first to respond to changes in nutritional intake; par-
5 Microarray ticularly digestion and absorption of nutrients and im-
g s “ mune responsiveness to ingested pathogens, antigens
k2 6 I and new antigens generated by the gut flora via gut asso-
g 4l . . ciated lymphoid tissue [36]. The intestine contains three
g b * distinct regions: the proximal intestine containing pyl-
%2j I I o & i the mid and distal intestine. Nutrient absorp-
S i - &8 & &8 oric caeca, the mid and distal intestine. Nutrient absorp
g o < < < tion occurs in all regions via enterocytes, by passive and
g | & «ép“‘ % I I . facilitated diffusion and active transport [37], with the
3 ° I * I highest rates of uptake in the proximal section [37,38].
g 4 * - * The intestine of piscivorous fish can be particularly sen-
5 6 - sitive to plant derived ANFs and non-starch polysacchar-
%’ 8 4 I ides (NSP) in feed, resulting in altered permeability in
S * trout feed 44% 44% SBM [7,39] and enteritis in the distal
E 10~ intestine of salmon given a high dietary inclusion of
SBM [33]. The inflammation/enteritis may be similar to

¢ 0. Skeletal muscle = gPCR a hypersensitivity reaction [33,40]. Often these effects
% Microarray are temporary and quickly disappear when the intestinal
= . tract is no longer exposed to the ANFs [11,33,41].
% 5 T - * s Processing of plant products for fish feed is under con-
% I i I * I & g - tinual improvement and some current plant derived pro-
g o | | . | & | s | $ tein concentrates have very low contaminating factors or
8 N e & botanical impurities. In addition knowledge of ANF con-
f g & 2 taining plant feed materials has increased to the point
§ 5 I where commercial feed formulations permit plant
2 ) 1 * derived proteins at acceptable inclusion levels where no
g Tl * negative health effects or impacts on growth and per-
£ 101 [ formance occur. This was confirmed in the current
3 " study by the histology assessment where no gross mor-

45 J phological changes associated with plant ANFs were

observed. In addition there was no difference in growth
or feed utilisation efficiency during the feeding period,
where a doubling of weight was achieved. However there
were more subtle changes to biological processes that
were not apparent during the classical physiological
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evaluation but were detected by global transcriptomic
analysis. In this trial the mid intestine showed the great-
est transcriptome response of the tissues studied, reflect-
ing the sensitivity of the intestinal cells to dietary
factors. Processes modified in the intestine were related
to immune parameters, cell proliferation, apoptosis,
protein metabolism, energy metabolism, transport and
lipid metabolism.

Fish fed the PP diet showed higher expression of genes
involved in inflammation suggesting a possible dysfunc-
tion in immune regulation. Our findings support previ-
ous studies on gut intraepithelial and systemic T cells in
fish which showed rainbow trout IELs are rich in T cells
[10,42]. Additionally the expression of TSC22D3, a regu-
lator of T cell receptor mediated cell death, was found
higher in PP, this protein may be induced by glucocorti-
coids [43,44] activated by components in the PP diet.
Together these results support previous reports that
trace levels of substances with allergenic properties may
cause expression of genes indicative of a hypersensitivity
reaction in the intestine [45].

Interestingly genes involved in the inflammatory re-
sponse were both higher and lower expressed in PP
compared to MP. In particular genes involved in NF-xB
pathway were induced such as the signalling adaptor
molecule MyD88 and the inhibitory proteins of the IkB
family, NF-kB1 p105 which sequesters NFxB in an in-
active form in the cytoplasm [46]; inhibition of this path-
way results in the production of proinflammatory
cytokines [47]. MyD88 is also part of the signalling path-
way that induces type I IFNs through the interaction of
the MyD88—TRAF6—-IRF7 complex [48]. IRF1 [49] had
higher expression in fish fed the PP diet, this transcrip-
tion factor may have activated interferon responsive
genes in PP fed fish including Mx [50], virus induced
gene (vig) -2 [51] and a virus induced TRIM protein
[52]. PP fed fish also had higher expression of (SOCS)-7,
which functions to reduce inflammation [53], potentially
counteracting the expression of genes related to the in-
flammatory response in the intestine. Other genes
involved in the innate immune response were expressed
at lower level in fish fed PP. IL-8 is a chemokine that
attracts neutrophils to a site of inflammation [54],
whereas IL-17D coordinates the clearance of extracellu-
lar bacteria and contributes to the pathology of many
autoimmune and allergic conditions in Atlantic salmon
[55]. The lower expression of these genes in fish fed the
PP diet may indicate there was not a proinflammatory
response to the PP diet compared to MP diet.

Several antioxidant genes were expressed higher in PP
fed fish mid intestine indicating protection against oxi-
dative damage. The free radicals could be either en-
dogenously produced by immune cells or present in the
diet. Alternatively a potential lower concentration of
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antioxidants in the PP feed, due to the lower fishmeal
content, may require the antioxidant system within the
fish to be increased accordingly. The overall low expres-
sion of heat shock protein mRNAs, suggests a limited
stress response in the intestine. Additionally, two genes
directly involved in apoptosis process (caspase-3 and14)
were expressed at higher level in PP potentially indicat-
ing increased apoptotic activity of mid intestinal cells in
these fish compared to MP fed fish.

The intestine has an extremely high rate of cellular
turnover and hence generally high levels of protein syn-
thesis and protein degradation. Protein metabolism
genes relating to both synthesis and degradation were
found generally to be higher in PP fed fish suggesting an
increase in intestinal protein turnover. Genes related to
both transcription and translations were at a higher level
such as translation initiation factors, elongation factors
and the ribosomal protein S6 kinase. Interestingly, a
number of mRNAs encoding ribosomal proteins were at
a lower expression in PP. This may relate to the stability
of the mRNAs or multiple use of the ribosomal subunits
during translation. In parallel to general increase in syn-
thesis genes related to protein degradation were also at a
higher level in PP such as cathepsins and components of
the ubiqutin proteasome pathway [56,57]. The higher
protein turnover is likely to be energy demanding and
this is related to an increase in genes encoding proteins
involved in oxidative energy metabolism. Together these
changes in expression suggest modulation in control of
protein turnover in the intestine with components of
both synthesis and degradation being altered which may
reflect an increased activity of the intestine in fish fed
the PP compared to the MP diet.

Cellular membrane transport related genes were higher
expressed in PP, which could suggest that salmonids are
able to adaptively modulate the densities of transporters
to match changes in diet composition. Lipid metabolism
and transport were also affected even though the PP diet
contained the same fish oil content as the MP diet.
mRNAs encoding two apolipoproteins were higher in ex-
pression in PP fed fish reflecting a greater mobilization
and transport of cholesterol and fatty acids in the intes-
tine, possibly an adaptive response to the lower dietary
cholesterol content in PP compared to MP diet. Fatty acid
metabolism genes were higher expressed in the PP diet in-
cluding both FAD5 and 6, a PUFA elongase and other
genes related to cholesterol metabolism. FADs are critical
enzymes in the biosynthesis of long-chain highly unsatur-
ated fatty acids (HUFA) from shorter chain PUFA [58,59].
These lipid metabolism differences between PP and MP
are of interest as the intestine is often over looked regard-
ing these processes and cholesterol, even if the essential
fatty acids are present at required levels, other factors in-
cluding cholesterol may change, revealing the complex
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nature of the early digestion and modifications of nutri-
ents in the mid intestine.

Transcriptome changes in the liver

The liver receives nutrients and compounds from the in-
testine and needs to respond to any substances that may
have detrimental effects on the fish.

Transcriptome and proteomic studies on salmonids
show nutritionally related modifications in both liver
mRNAs and proteins due to feeding status [60,61] and
diet composition [9,62-64].

The PP fed fish showed a significant difference to fish
fed MP for genes related to immune function with a
lower expression of innate factors such as lectins and
hepcidin. Acquired immune system components were
also found at lower level including T cell receptors,
MHC I and II and components of the TGF-p pathway.
TGF-B has an important role in the maintenance of
T-cell [65] and B-cell homeostasis [66] by regulating cell
proliferation process and apoptosis in these cells. This
result, with the higher expression of genes involved in
cell death such as CIDE-3 and angiopoietin-related pro-
tein 4, indicates that apoptosis may be a mechanism
induced by the PP diet salmon liver. This is not surpris-
ing as apoptosis plays a central role in the differentiation
and maintenance of the liver [67]. A balancing effect on
the apoptotic TGF- pathway is seen in the induction of
several genes encoding proteins related to cell prolifera-
tion (such as HTRA1 serine protease and annexin A3).
In particular, HTRA1 serine protease inhibits signalling
mediated by TGF-p family proteins [68], playing an im-
portant role in contrast to cell death, whereas annexin
A3 has a role in the signalling cascade during liver re-
generation [69]. Other researchers have found the im-
mune system to be altered following vegetable oil
replacement in salmon [28] and in sea bass [70].

Genes involved in oxidative stress response (MPV17
protein, amine oxidase and HSP 70 kDa protein) were
higher in liver of fish fed PP compared to MP. This is
interesting to note as increases in antioxidant genes were
also noted in a salmon diets that had marine oil replaced
with vegetable oils [28] in the liver. In rainbow trout
HSP expression in liver was increased following SBM
rich replacement diets [9,62,63,71], the induction of
these genes may indicate a diet-induced stress response
in fish fed the PP diet. Moreover, during general high
protein turnover to deal with misfolded proteins [72] as
may be the case of fish fed PP diet.

It is interesting to note that few lipid related metabolic
genes were found significantly different in the liver. Vigi-
lin, a protein implicated in both biosynthesis and metab-
olism of lipids and steroids, facilitates removal of excess
cholesterol from cells [73] and secondly apolipoprotein
A IV which facilitates transport of cholesterol to the
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liver were both expressed at higher level in fish fed PP
compared to MP. The high expression of apolipopro-
teins in fish fed diets containing high levels of plant pro-
teins has previously been observed [9,74] and is most
likely indicates reduced cellular cholesterol in fish fed
the PP diet due to decreased dietary cholesterol, asso-
ciated with low fishmeal content, and/or in response to
trace levels of phytoestrogens [75] and phorbol esters
[76] co purified with the plant proteins.

Transcriptome changes in the skeletal muscle

Genes related to processes such as protein metabolism,
energy metabolism, cell proliferation, apoptosis and im-
mune function were all significantly different in PP fed
fish compared to MP. Transcripts related to protein me-
tabolism such as ribosomal protein mRNAs, transcrip-
tion and translation initiation factors were generally
lower in PP fed fish compared to MP fed fish indicating
lower protein synthesis. In parallel, protein degradation
related genes were also less, for example the ubiquitin
proteasome pathway and lysosomal peptidase proteins,
together these would suggest a lower protein turnover
activity in the muscle tissue in PP group. Both protein
synthesis and degradation are highly energy demanding
processes [77] and the indication of lower protein turn-
over, may suggest reduced energy wastage [61,78,79].
This idea is strengthened by lower expression of COX2
and COX8 and other genes encoding proteins involved
in glycolysis and gluconeogenesis in fish fed PP. Genes
involved in cell proliferation were also expressed at
lower levels in PP fed fish indicating further energy sav-
ing. Together these changes in biological processes may
indicate efficient metabolic activity following feeding of
the plant protein enriched diet.

Biological tissues with high metabolic rate require
mechanisms to deal with free oxygen radicals, on the
other hand those tissues where the metabolic rate is
reduced, for example when protein turnover is decreased
a reduction in oxidative stress response may be observed
as was observed in this study. Additionally a number of
HSPs 30, 47 and a heat shock transcription factor la
were all at lower levels in PP reflecting the reduced pro-
tein turnover and requirement of stabilising many newly
translated proteins. Genes involved in cell proliferation
and related to cell death including two caspases (cas-
pase-8 and 14) were also lower expressed in fish fed PP
compared to the MP diet. The induction of bh3 interact-
ing domain death agonist, a pro-apoptotic member of
the Bcl-2 protein family [80] and the suppression of cas-
pases is in accordance with apoptosis of skeletal muscle
in mammals where the Bcl2/bax system was found cru-
cial for muscle apoptosis, whilst the caspase activity
appeared inhibited [81].
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Differential expression of a number of immune related
genes, particularly a decrease in interferon responsive
genes including y-ip [82], Gig2-like [83] and interferon-
induced protein 35 [84] were also expressed at lower
level in PP. Other pro-inflammatory agents including
platelet-activating factor receptor was also at a lower
level PP, which regulates several pro-inflammatory func-
tions such as chemokine and eicosanoid receptors [85].
An antimicrobial peptide beta defensin 1which is a cen-
tral component of the non-specific defences [86] was
also found lower in PP. Relating to the adaptive immune
factors, TCRB, MHCI and CD80 were all at lower levels
in PP. Although we have observed differences in genes
related to immune function in skeletal muscle of fish fed
PP, the low level of inflammation and the subsequent
immune response observed in the intestine did not cause
a large immune shift in the muscle tissue. Instead, the
lower expression of such genes, may allow fish fed PP to
spend less energy resources on immune function for use
in growth [61].

Conclusions

In conclusion, the present study confirm that a moderate
level of plant protein derived proteins in a salmon diet
allowed fish to grow with equal efficiency as those on a
high marine protein diet, and with no difference in bio-
metric quality parameters. The PP diet formulated with
higher levels of soy protein concentrate, corn gluten,
sunflower meal and wheat gluten resulted in significant
effects on transcription in the mid intestine, liver, and
skeletal muscle. The PP diet induced tissue specific
changes in gene expression, with the mid intestine show-
ing activation of the adaptive immune response indicat-
ing potential for hypersensitivity and an increase in
protein turnover, although no difference in histopatho-
logical changes were observed in the proximate, mid or
distal intestine. In liver cell proliferation and apoptosis
indicate cellular reorganization and the general suppres-
sion of processes such as immune response. In contrast
skeletal muscle tissue showed reduced protein metabol-
ism and decrease in immune gene expression suggesting
less energy expenditure in this tissue. The presence of
only few genes in common between tissues may be due
to the relatively mild changes that occurred and the
complex nature of studying gene expression between tis-
sue types on conservative dietary changes. These results
improve the understanding of mechanisms and pathways
activated by fishmeal replacement; in particular substitu-
tion by plant derived proteins and suggests that such
diets can function well in Atlantic salmon aquaculture,
hence to some extent reducing the burden on wild
caught fish for fish meal. Additionally these results can
assist in selection of molecular biomarkers useful for
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the development of new alternative feeds in salmonid
aquaculture.

Methods

Fish husbandry and sampling

One hundred and five juvenile mixed sex Atlantic sal-
mon of approximately 100 g were maintained in 6 repli-
cate 1 m® tanks at SGS Chile Ltd., Puerto Mont, Chile,
at 10.1°C and 27.6% salinity. Fish were fed a plant pro-
tein diet (PP) or a high marine protein diet (MP), both
of which were formulated to the same digestible protein
and energy content within formulation constraints of a
commercial feed specification (CPK 100, 3 mm, 24/44
lipid: protein, BioMar S.A., Chile) (Table 1). The feeding
trial was conducted in triplicate tanks per dietary treat-
ment and lasted for 77 days. At the end of the feeding
period all fish in each tank were bulk weighed and 35
fish from each tank were killed by percussive stunning
for individual biometric measurements of round weight,
fork length, gutted weight, and weight of liver, heart or
intestine for calculation of specific growth rate (SGR),
feed conversion ratio (FCR), specific feeding rate (SFR),
condition factor, and somatic indices of hepatic (HSI),
cardiac (CSI) or intestinal (ISI) organs. Liver, heart and
intestine was excised from distinct anatomical regions of
the same individuals and fixed in 10% buffered formalin
for histological assessment. All fish were sampled 30
minutes following the final meal to ensure there were no
differences in postprandial gene expression. An add-
itional 12 fish from each tank were sampled for mid in-
testine, skeletal muscle and liver and immediately
stabilised in RNAlater (Ambion) at 4°C overnight then
stored at —20°C until RNA extraction for gene expres-
sion analysis.

Growth/feed parameters were calculated as follows

FCR = feed consumed (g)/biomass increase (g)

SGR (% body wt dYH=[(nW, - InW1)/days] x 100;

W = start weight (g), W5, =final weight (g), days = days in
the growth period

SER (%) = SGR x FCR

HSI, CSI, ISI (%)=[organ weight (g)/round weight
(g)] x 100

Condition factor = [round weight (g) x 100]/[fork length
(em)]?

Biometric parameters were analyzed for significant differ-
ences by Anova using InfoStat v 2009 software (University
of Cérdoba, Argentina), with p <0.05 considered signifi-
cant. Data is presented as means + standard deviation for
each dietary treatment.

Histology assessment
Fixed tissues were submitted to dehydration process fol-
lowing paraffin embedding (Aquagestion, Puerto Montt,
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Chile). Sections (5 pm) were stained with hematoxylin and
eosin (H & E) and examined under a light microscope.
Micrographs were examined “blind” by the same experi-
enced pathologist. Liver sections were evaluated for lipid
degeneration level (fatty change) and the integrity of the
whole organ. Heart tissue was evaluated for the presence
of inflammatory infiltrates, myodegeneration and other
possible abnormalities. Intestinal morphology was evalu-
ated according to the following criteria: a) widening and
shortening of intestinal folds, 2) loss of supranuclear
vacuolization in enterocytes in the intestinal epithelium, 3)
widening of central lamina propria within the intestinal
folds, and 4) infiltration of (mixed) leukocytes in the lam-
ina propria and submucosa [33]. The occurrence of histo-
logical changes for each dietary treatment were analysed
by Kruskal-Wallis non-parametric Anova with InfoStat v
2009 (University of Cérdoba, Argentina), with p<0.05
considered significant.

RNA isolation

RNA was extracted from 100 mg of tissue by homogen-
isation in 1 ml TRIZol (Invitrogen) using tungsten car-
bide beads (3 mm, Qiagen) and shaking (300 times per
min) following the manufacturer’s instructions. The
RNA pellet was washed in 500 pl 80% ethanol, air dried
and resuspended in RNase free H,O. The concentration
was determined by spectrophotometry (Nanodrop
ND1000, LabTech) and the integrity of the RNA was
determined by electrophoresis (Agilent Bioanalyser
2100). The RNA was then stored at —80° until required.

Microarray analysis

Microarray platform:

Microarray experiments were performed using a
custom-designed, Agilent-based microarray platform
with 4 x 44 K probes per slide (Salar_2; Agilent Design
1D:025520). The array contained primarily an Atlantic
salmon resource with 34,441 features from Atlantic sal-
mon coding sequences but additionally a further 9,111
features from rainbow trout (Omncorhynchus mykiss)
sequences - the latter being selected when no homolo-
gues appeared to be available within Salmo salar data-
sets. Full details of the microarray platform and design
are shown in Tacchi et al. 2011 [23].

Hybridization and analysis

For microarray analysis, 4 pools of RNA were produced
for each tissue from fish fed PP and MP diets. Each RNA
pool was an equimolar RNA mix from four different fish
chosen randomly from each group. The microarray hy-
bridisation was performed using a reference design, using
a reference RNA sample, which comprised an equimolar
mix of RNA extracted from all individual fish and tissue
samples. Each experimental sample (labelled with Cy3™)
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was hybridised against this reference sample (labelled with
Cy5™) in a 2-colour experiment. mRNA amplification,
labelling and hybridization was performed as follows:
mRNA was amplified using a MessageAMP™ aRNA
Amplification Kit (Ambion). Briefly, 2 ug total RNA was
reverse transcribed and the cDNA was used as a template
for in vitro transcription in the presence of amino allyl
modified dUTP, which allowed the generation of amplified
antisense RNA (aRNA). For labelling, aRNA (3 pg) was
denatured at 70°C for 2 min in a volume of 10 pl to which
3 ul of 0.5 M NaHCO; and 2 pl Cy dye (dye Cy3™ or
Cy5™ mono-reactive dye pack, Amersham) was added.
Incorporation of dyes was performed for 1 h in the dark,
and after excess label was removed using a DyeEx' ™ 2.0
spin kit (QIAGEN) the amount incorporated was checked
with a Nanodrop ND1000 (LabTech) spectrophotometer.
Prior to hybridisation, 825 ng of each labelled template
was fragmented in the presence of 11 pl of 10X blocking
agent, 2.2 pl of 25X Fragmentation buffer (Agilent), and
made up to a final volume of 20 pl with nuclease-free
dH,O. The solution was then incubated in the dark at 60°C
for 30 min, after which 57 pl of 2X GEx Hybridisation
buffer (Agilent) was added to each sample and 103 pl of
each hybridisation solution was dispensed on the Agilent
4x44K Atlantic salmon “Salmo salar2” oligo array (Agilent
array design, 025520, Array express platform A-MEXP-
1940). The hybridisations were performed in a Microarray
Hybridisation Oven (Agilent) overnight (18 h) at 65°C.
Following hybridisation, the slides were washed in Gene
Expression Wash buffers 1 and 2 (Agilent) following the
manufacturer’s instructions. The slides were then scanned
using a GenePix personal 4100A Scanner (Axon Instru-
ments) at a resolution of 5 um and saved as *. TIF files.
Images were extracted and initial analysis was performed
by Feature extraction v9.5.3 (Agilent) performing back-
ground correction of feature intensities (within the soft-
ware). A Lowess normalisation of background corrected
data was next conducted and all intensity values <1.0 were
set to 1.0. Statistical analysis of the arrays was performed
using Genespring GX analysis platform (version 9.5; Agi-
lent Technologies). Quality control of the data was per-
formed within Genespring and included removal of
saturated probe features, non-uniform features, popula-
tion outliers and those features showing intensities not
significantly different from background in the Cy3 or Cy5
channels. After these relatively stringent procedures,
20,095 of the original 43,730 array features were main-
tained for subsequent analyses. The experimental hybridi-
sations are at European Bioinformatics Institute archived
under accession number E-MEXP: E-TABM-1207.
Significant differential expression between fish fed the
PP diet and fish fed the control diet was established by
t-test analysis (p <0.05). Further filtering on fold change
was conducted, and only transcripts showing more
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than two-fold change in expression were further
characterised.

Analysis of gene ontology

Enrichment for gene ontology (GO) biological processes
was performed on all cDNA features that had GO iden-
tifiers associated using the GOEAST program [87]. Fish-
er's exact test was performed within the GOEAST
program to determine if GO identifiers occurred more
often in a group than would appear by chance. For GO
analysis only biological process GO identifiers were con-
sidered that occurred more than 3 times.

Real time PCR

The cDNA was synthesized using 2 pg of total RNA as
previously described [88]. Real time PCR was performed
on a number of genes to confirm the microarray analysis
results using the same RNA samples. For cDNA synthe-
sis, 2 pg of total RNA was denatured (70°C, 3 min) in
the presence of 1 pl of oligo-dT;, (500 ng pl™), left at
room temperature for 5 min to allow annealing, then
stored on ice. The resulting cDNA was diluted to a final
volume of 50ul in RNA/DNA free water (Sigma). For
real time PCR, 3ul of cDNA was used as template with
gene specific primers (Table 7). A 2x iQ SYBR Green
supermix (Bio-Rad) was used for qPCR, which was per-
formed in a 96-well plate using the DNA Engine Opti-
conTM system (M] Research, Inc.) with the following
program: 95°C for 5 min, then 35 cycles of 94°C for 30° s,
55°C for 30 s and 72°C for 30 s, with a final extension
of 72°C for 5 min. A negative control (no template)
reaction was also performed for each primer pair. A
sample from the serial dilution was run on a 2% agarose
gel and stained with ethidium bromide and viewed
under UV light to confirm a band of the correct size
was amplified. A melting curve for each PCR was
determined by reading fluorescence every degree between
72°C and 95°C to ensure only a single product had
been amplified. Atlantic salmon hypoxanthine phosphor-
ibosyl transferase 1 (HPRT1) [89] was used as control
for normalization of expression since this gene was
found not to be modulated by the diet treatments from
the microarray analysis. The relative expression level of
the genes was determined using the Pfaffl method [90].
Efficiency of the amplification was determined for each
primer pair using serial 10 fold dilutions of pooled cDNA,
performed on the same plate as the experimental samples.
The efficiency was calculated as E =10 ©') where s is the
slope generated from the serial dilutions, when Log dilu-
tion is plotted against ACT (threshold cycle number). Pri-
mers were design to have a Tm of 55°C, and where
possible, to cross an exon-exon junction sites to avoid
amplification of genomic DNA. Exon-intorn junction sites
were determined comparing Salmo salar ¢cDNA with
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genomic sequences for orthologous genes from Danio
rerio, Gasterosteus aculeatus, Oryzias latipes, Takifugu
rubripes and Tetraodon nigroviridis obtained from
Ensembl (http://ensembl.org/).

The results obtained by real time PCR were analyzed
using the Pfaffl method [90]. The qPCR measurements
were analyzed by T-test, performed using R software,
with p<0.05 considered significant. The expression data
is presented as means * standard error.
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