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Abstract

global scale.

are distinct for different groups of histone marks.

Background: Combinations of histone variants and modifications, conceptually representing a histone code, have
been proposed to play a significant role in gene regulation and developmental processes in complex organisms.
While various mechanisms have been implicated in establishing and maintaining epigenetic patterns at specific
locations in the genome, they are generally believed to be independent of primary DNA sequence on a more

Results: To address this systematically in the case of the human genome, we have analyzed primary DNA

sequences underlying patterns of 19 different methylated histones in human primary T-cells and patterns of three
methylated histones across additional human cell lines. We report strong sequence biases associated with most of
these histone marks genome-wide in each cell type. Furthermore, the sequence characteristics for such association

Conclusions: These findings provide evidence of an influence of genomic sequence on patterns of histone
modification associated with gene expression and chromatin programming, and they suggest that the mechanisms
responsible for global histone modifications may interpret genomic sequence in various ways.

Background
The basic unit of eukaryotic chromosomes is the nucleo-
some, comprised of DNA wrapped around a histone
octamer complex [1]. Nucleosomes can adopt distinct
chromatin structures, associated with specific post-
translational modifications of histone proteins at their
N-terminal tails [2]. Such histone modifications can be
stably maintained through cell divisions and are strong
candidates to serve as marks for epigenetic regulation.
Epigenetic modifications either influence the accessibility
of cis-regulatory elements in genomic DNA or recruit
chromatin-binding proteins to regulate gene expression.
The histone code or epigenetic code theory proposes that
the combinatorial nature of histone modifications and his-
tone variants represents information that greatly extends
the content and display of genetic information alone [3-8].
As one approach to testing this model, a number of studies
have begun to define genome-scale maps of various histone
modifications and other chromatin constituents and to
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relate such maps to cellular phenotypes in organisms from
yeast to human [9-11]. Significantly, the ENCODE project
reported a high-resolution epigenetic landscape of 1% of
the human genome that could be used to accurately predict
gene expression in a variety of cell types [12] and increasing
amounts of ENCODE whole-genome data are becoming
available on genome browsers [13].

While much has been done to explore the nature of the
histone code and how it is “read”, little is known about how
and where the code is written in the first place [14]. A pre-
vailing hypothesis is that histone- and DNA-modifying
enzymes, although lacking DNA sequence specificity them-
selves, can be targeted to specific sites by trams-acting
co-factors such as transcription factors that bear sequence
specificity or even by various classes of RNA, including
noncoding RNAs and small RNAs [15] (Figure 1). Histone
or DNA modifications at these sites would then spread in
cis until they encounter barrier or boundary elements
defined by patterns of histone replacement or by CTCF
binding to form coherently marked epigenetic domains
[16—18]. The fact that epigenetic modifications can encom-
pass large regions of genomic DNA and that epigenetic
marks display certain plasticity further supports this
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Figure 1 Alternative models for the formation of epigenetic domains in complex genomes. In a sequence-independent model (left),
histone-modifying enzymes respond to local signals, but subsequent establishment and maintenance of epigenetic modifications within larger
domains are largely independent of the overall sequence composition of that domain. The extent of the domain, however, might be determined
by other local sequence-specific features such as boundary elements. In a sequence-dependent model (right), recruitment and spreading of
histone-modifying enzymes is guided by features of the primary genomic sequence throughout the domain, with different sequence features
specifying or influencing different modifications across domains genome-wide.

hypothesis [19]. Under this model, the body of epigenetic
domains should be largely independent of primary DNA se-
quence (Figure 1, left).

Alternatively, however, it is possible that the genomic
sequence could influence different epigenetic domains
and that primary DNA sequence itself could thus bias
their formation and/or maintenance on a genome-wide
basis (Figure 1, right). This hypothesis can account for
chromatin state persistence across cell cycles and even
through generations [20]. Consistent with the predic-
tions of this model, several recent studies have demon-
strated that some epigenetic marks, such as the position
of methylated CpG islands [21-23] or the presence of tri-
methylated forms of histone H3 at lysine 4 (H3K4me3)
or at lysine 27 (H3K27me3) [24], are correlated with
particular features of complex genomes. Furthermore,
binding of CTCF to cis elements has been shown to
form well-positioned nucleosome arrays around them,
providing a potential mechanistic link between primary
genome sequence and chromatin state [25]. Recently, it
has been shown that mammalian chromosomes are
organized into megabase-size domains stable across cell
types and conserved across species, with specific ge-
nomic features marking their boundaries [26]. While
these findings support the genomic influence model in
specific local instances, it remains a question whether
the histone code, consisting of many different types of

histone modifications and variants, is associated with
primary DNA sequence genome-wide.

In this study, we have tested this hypothesis for the
human genome by investigating correlations of genomic
regions associated with a wide range of methylated histones
with the underlying DNA sequence. To achieve this, we
used high-resolution, genome-wide epigenetic maps and
applied a machine learning approach called Support Vector
Machine (SVM, reviewed in [27]), which can be used suc-
cessfully to computationally predict other epigenetic states
[22,28]. Like other machine learning algorithms, SVM has
the ability to recognize patterns in a given dataset (used for
training), and the resulting models can then be tested with
previously unseen examples and new predictions can be
made accordingly. Thus, an association between genome
sequence and epigenetics can be tested by investigating
whether or not primary sequence alone is sufficient to pre-
dict the genomic location of the histone code.

Results

Genomic sequence alone discriminates regions enriched
or depleted for most methylated histones in human CD4+
cells

To investigate whether histone marks in general are
associated with underlying genomic sequence, we ana-
lyzed a dataset containing the profiles of 19 different
methylated histones from genome-wide ChIP followed
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by deep sequencing experiments (ChIP-Seq) in human
CD4+ T-cells [29]. (Of the 20 marks reported by Barski
et al. [29], H3K29me2 was excluded because of low se-
quence coverage in the original dataset.) We asked
whether genomic sequence could distinguish between
regions that are enriched or depleted for these histone
marks in this cell type.

To select such regions for analysis, we first simulated
a null distribution of the tag frequency (tags/region) for
each mark, from which we determined selection criteria
that limit the false discovery rate to only 1% at each ex-
treme (one example is shown in Figure 2A). Based on
these criteria, we identified +2 kb regions that surround
either transcription start sites (TSS) or non-genic, non-
repetitive regions in the genome as significantly
“enriched” or “depleted” relative to the null distribution
(or “neutral” if the frequency of the histone mark was
not different from the null distribution) for each of
19 methylated histone states. Overall, TSS and non-
genetic regions display very different epigenetic profiles
(Figure 2B and Additional file 1: Table S1). Many TSS
regions are significantly enriched for H3K4mel-3,
H3K9mel, H3K27mel, H4K20mel and H2BK5mel,
while many non-genic regions are notably enriched for
H3K27me2 and H3K9me2-3 but depleted for H3K4me2
and H4K20mel (Figure 2B). Given these differences, we
analyzed TSS and non-genic regions separately through-
out to avoid potential inherent differences between these
two types of sequences. Sequence information for each
region was captured by the content of all occurring k-
mers (k = 1,2,3,4,5).

To avoid potential over-fitting problems associated
with many machine learning approaches when the
number of variables greatly exceeds the number of
samples [30], we used a large sample size (up to
1,000 depleted and 1,000 enriched regions randomly
selected from the genome, Additional file 2: Table
S2) for each methylated histone and performed SVM
classification experiments. Each classification experi-
ment involved training a SVM model using 1,000
regions randomly sampled from the above 2,000
regions, and testing its prediction performance on
the rest. This classification procedure was reiterated
ten times to minimize sampling bias. If genome se-
quence has no influence on histone modification
placement, SVM models should randomly assign
sequences to be “enriched” or “depleted” (thus, pre-
diction accuracy =50%). However, for all 19 histone
marks in TSS regions and for 14 histone marks in
non-genic regions, the prediction accuracy of the
SVM models was significantly greater than 50%
(p<0.01), with over 75% accuracy in most cases
(Additional file 3: Table S3). Three specific examples,
the classifications for a euchromatin mark H3K4me2
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and two heterochromatin marks, H3K9me3 and
H3K27me3, are shown in Figure 2C. Classification
performance of these examples was further visualized
using their Receiver Operating Characteristic (ROC)
curves (Figure 2D). Specifically, the Area Under
Curve (AUC) values from these ROC curves are
around 0.85, suggesting the models have very high
discrimination power (AUC=1.00 means perfect
classification while 0.50 means none). In contrast,
AUC values drop to ~0.50 and classification ability
is completely lost when models were trained without
the correct enrichment/depletion information among
the training samples (“permuted” in Figure 2D).
Thus, these results demonstrate that underlying se-
quence alone can discriminate, to a substantial de-
gree in most cases, regions enriched or depleted for
most methylated histone marks.

Sequence predicts the location of methylated histones
genome-wide

SVM models trained from the above 2,000 selected
sequences for each histone mark also perform consis-
tently on the remaining regions in the genome
(Additional file 3: Table S3), indicating that they
generalize well on all known TSS regions and the non-
repetitive portion of the genome. We next trained a sin-
gle model for each histone mark (with accuracy >75%),
using both TSS and non-genic regions, and applied these
models to the entire genome, including all repetitive
regions, to locate enriched regions for these histone
marks. Notwithstanding the fact that ~20% of the regions
are not unique [31] and thus were absent from the Barski
et al. ChIP-Seq experiments, we observe a striking re-
semblance between experimentally-determined histone
profiles and the predicted ones based solely on sequence,
again exemplified by H3K4me2, H3K27me3 and H3K9me3
on both a gene-poor chromosome (chromosome 4,
Figure 3A) and a gene-rich chromosome (chromosome
19, Figure 3B). The predictions for these three marks
across all chromosomes are shown in Additional file 4:
Figure S1. Zooming in on a 400-kb window on chromo-
some 19 reveals that the predicted locations of these
marks agree very well with experimental data on a local
scale (Figure 3C). In many cases, the prediction probabi-
lity even reflects the level of enrichment despite the fact
that level information was not used in determining the ini-
tial binary SVM models (Figure 3 and Additional file 4:
Figure S2). Notably, H3K4me2- and H3K27me3-enriched
region density positively correlates with both gene density
and GC content, while H3K9me3 was just the opposite
(Figure 3). These results further extend the association
between sequence and methylated histone marks to a
genome-wide scale.
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Figure 2 Classification of epigenetic marks in human CD4+ cells. (A) The frequency of sequence tags in a typical ChIP-SEQ experiment
(H3K4me3) in 4 kb regions [36] and a simulated null distribution (red line). Vertical lines represent a false discovery rate (FDR) of 1% from each
side in the null distribution (Depleted and Enriched), leaving the rest as (Neutral). (B) Based on the criteria in (A), the number of selected enriched
(dark gray), depleted (white), or neutral (medium gray) regions for each histone mark. (C) The SVM classification of three representative
methylated histone marks. Error bars represent standard deviations (s.d.) of 10 SYM predictions. (D) Receiver Operating Characteristic (ROC) curves
for the classification of three representative methylated histone marks (solid lines) and the corresponding curves for classification with

randomized sample labels (dotted lines).
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Genomic regions occupied by different methylated
histones define clusters that distinguish genic and
non-genic regions of the genome

It has been shown that different modifications of
histones can promote or interfere with one another
[32,33], resulting in co-occupancy of some marks in

the same genomic region, while others are mutually
exclusive. Alternatively, histone-modifying enzymes
may recognize similar or different sequence signals
among chromosomal domains. Sequence-based mo-
dels provide a powerful tool to explore these possible
inter-relationships even without complete experimental
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coverage. Based on the similarity among their occupied
sequences, or in other words, the ability to use models
trained with one histone type to predict others, we
performed cluster analysis on the histone marks for
which we had obtained accurate SVM models (cross-
validation rate > =75%). By cluster analysis, the 16 methy-
lated histones in TSS regions fall into three groups
(Additional file 1: Figure S3A). Many mono-methylated
histones, as well as H3K4me2-3 and H3K79me3, are
associated with a similar set of TSS regions (Additional
file 4: Figure S3A and Additional file 5: Table S4), consist-
ent with the fact that many such histone modifications
are associated with active transcription [15]. Notably,
these sequences are very different from the two dis-
tinct sequence clusters occupied by repressive marks,
H3K9me2-3 and H3K27me2-3. The two repressive marks
can also be readily distinguished from each other based
on local sequence, which again is consistent with existing
experimental data on a broad scale [34]. Interestingly,
for non-genic regions, H3K9me3 still occupies differ-
ent sequences from those associated with other histone
marks, but H3K27me3-occupied non-genic sequences
cannot be distinguished from those occupied by marks
of active chromatin (Additional file 4: Figure S3B).
These results suggest that whatever mechanisms are
responsible for placing these marks in the genome are ei-
ther directly or indirectly dependent on genomic se-
quence. Further, the data indicate that some of these
mechanisms must be different for genic and non-
genic regions.

Sequence features associated with predictions of
methylated histone patterns

While the above analyses all support the existence of
predictive genomic characteristics underlying methylated
histone patterns in the human genome, they do not by
themselves identify the particular sequences involved.
We therefore next explored the specific sequence fea-
tures supporting each of the above SVM classifications
to address the nature of the sequence bias.

For each sequence feature, we calculated an F-score, a
parameter that considers both within- and between-class
variations to estimate their individual discriminating
power [35]. A sequence feature with a high F-score has
large between-class variation and/or small within-class
variation and therefore is more likely to be discrimina-
tive. (Used in this way, sequence feature F-scores are
conceptually similar to Fy values used in population
genetics to describe allelic variants that can distinguish
different population groups.) In general, the F-scores cal-
culated from random sequence datasets are extremely
small (<< 0.01, Figure 4A). For any given methylated his-
tone dataset, most features have small F-scores and
therefore likely contribute little, if at all, to classification.
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Relatively few sequences have high F-scores (Figure 4A);
these likely correspond to the sequence features re-
sponsible for accurately predicting the observed his-
tone patterns.

To overcome the dataset dependency nature of F-score
calculations, we selected sequence features that consistently
have the highest F-scores across multiple, independent
subsets of sequences. The Pearson linear correlation
coefficients between each feature and whether or not a
region is enriched for a particular histone mark were also
computed to reveal their degrees of association. Finally,
these consistent features were assessed by SVM to
evaluate their discrimination power as single features
(Supplemental Table S5). On the basis of this analysis,
highly discriminative sequences in TSS regions display
three notable features: regions marked by methylated
histones that are associated with active transcription
(e.g. H3K4me2) are enriched for CpG-containing se-
quence features but are depleted for AT-rich sequences;
H3K27me3 regions are enriched in poly-purines and
poly-pyrimidines, but are depleted in AT-rich fea-
tures; H3K9me2 and H3K9me3 regions are enriched
for AT-rich features but depleted in GC-rich ones
(Figure 4B and Additional file 6: Table S5). In con-
trast, the patterns are much simpler among non-
genic regions: GC-richness is associated with all the
methylated histones except regions enriched in H3K9me3,
in which the association is the opposite (Figure 4B). These
features collectively reveal, at least to a first-order, the
trends of the genomic bias for methylated histone pat-
terns, based on which epigenetic information can be ac-
curately inferred from primary sequence information.

For H3K27me3, the majority of short sequences that
have high F-scores are parts of human Alu repetitive ele-
ments, SINE non-LTR retrotransposons that comprise at
least 10.8% of the human genome (calculated from
UCSC genome browser). To systematically investigate
the potential contribution to the genomic code of all
known repetitive elements, each of which can be viewed
as a unique combination of shorter sequences, we per-
formed F-score and SVM analysis among a training set
including 2,000 TSS regions. The Alu family is the only
repetitive element whose content has an unusually high
F-score and by itself it predicts ~70% of training sam-
ples (Figure 4C). In addition, Alu content is negatively
correlated with H3K27me3 enrichment (corr = -0.42).
This is consistent with a previous report that H3K27me3-
enriched regions in mouse ES cells are relatively depleted
for transposons [24]. This observation is clearly not just
a reflection of the absence of repeat-associated sequences
from ChIP experiments, because other repetitive sequences
do not have discriminative power, nor does Alu distinguish
H3K4me2 and H3K9me3 in TSS regions (not shown).
As H3K27me3 represents a repressive mechanism for
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controlling the expression of genes [24,36,37], it is likely
that Alu insertions into vicinities of these genes are select-
ively eliminated during evolution to ensure gene function
in development. Consistently, Alu elements have been
found to be excluded from tissue-specific genes but
enriched in housekeeping genes, a genomic trend appar-
ent both at the level of individual genes and at the level of
megabase-sized chromosome bands [38—41].

It is possible that SVM models simply classifies GC/AT
content, as there is a significant GC bias in the fea-
tures listed in Table S5. To test this hypothesis, we
first randomly permuted the base order of selected regions
to preserve the base composition but to randomize all
higher k-mer (k=2,3,4,5) content (“singlet permutation”;
see Methods for a description of the parameters altered in
these permutation experiments). For H3K9me3 in TSS
regions, base composition seems to be the only key factor
for accurate prediction, because none of the permuta-
tions tested significantly affected the prediction accuracy
(Additional file 4: Figure S4). In contrast, prediction on
these randomized sequences for H3K4me2 and H3K27me3
in TSS regions was completely lost, with the models
classifying all regions to be enriched (H3K4me2) or
depleted (H3K27me3) regardless of the original labels
(Additional file 4: Figure S4).

To explore further the apparent dependence of
H3K4me2 and H3K27me3 predictions on sequence con-
tent, we permuted the TSS sequences to preserve both
base composition and dinucleotide frequencies, but
altering all higher k-mer content (“doublet permutation”
in Additional file 4: Figure S4). We observed a signifi-
cant restoration in prediction rate for H3K4me2, likely
due to the restoration of correct CpG content, since pre-
diction was lost in a control experiment when we only
permuted the content of CpG-containing sequence
features while keep everything else the same (Additional
file 4: Figure S4). In contrast, while addition of the cor-
rect dinucleotide content partially restored H3K27me3
prediction, this appears to be independent of CpG con-
tent, since CpG permutation itself has little effect. These
findings suggest that models for H3K27me3 recognize
CpG-independent, higher-order (k> 2) sequence features
while models for H3K4me2 recognize CpG-dependent
features and models for H3K9me3 depend only on base
composition, not appreciably on content. Combined,
these results are consistent with the highly predictive
features identified based on F-scores and suggest that
the observed sequence bias for histone modification
exists at multiple levels.

A sequence bias for histone modification is likely a
common theme for the human genome

To test whether genomic sequence also influence his-
tone modifications in other tissues and samples, similar
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SVM experiments were carried out with ChIP-Seq data
from the ENCODE project [42]. Briefly, enriched and
depleted TSS regions were selected for three histone
marks across a number of cell lines used by ENCODE
investigators (11 lines for H3K27me3, 13 lines for
H3K4me2 and three lines for H3K9me3), followed by
SVM training/predicting the same way as described
above. Consistent with the observation made with data
from CD4+ cells, SVM models based on genomic se-
quence features are generally able to predict the histone
modification status in the same cell line, with an accu-
racy ranging from 65% to 75% across 27 different data
sets (Figure 5 and Additional file 7: Table S6). SVM
models trained with one cell line can also largely predict
the histone marks from other cell lines, although often
at slightly lower rates (Additional file 7: Table S6).

Discussion

Our results establish a strong association between the
primary DNA sequence and an extensive set of histone
methylation marks in multiple human cell lines, sup-
porting the hypothesis that at least part of the under-
lying basis for the histone code is encoded in the
genome. This study also provides an example of how
genome organization and sequence might directly im-
pact biological function(s). Furthermore, the ability of
sequence models to make such predictions provides
insights into the establishment and maintenance of
epigenetic modifications in complex genomes.

It is worth noting that, for several reasons, the predic-
tion accuracy of sequence-based models for the histone
code as outlined here is likely an underestimate. First of
all, we have considered only the linear combination of
short k-mers in local regions. Future analyses using
additional information in the sequence (e.g. non-linear
combinations of k-mers, spatial relationships of k-mers
within the genome, etc.) will be required to further ex-
plore the predictive potential of the genomic sequence
and to thus further define the genomic code [43]. Se-
cond, SVM models tend to give higher probability to
genomic regions that have high levels of a particular epi-
genetic mark, even without such information being pro-
vided in the training sets. Supplying quantitative
information to the training sets will likely enable the mo-
dels to make more accurate predictions. Finally, some
“false” predictions may arise from the noise of the experi-
mental approaches, and inclusion of additional datasets
may help identify and thus reduce that noise.

A nucleosome code has been described for nucleo-
some organization and positioning in yeast and C.
elegans [44-46]. Such a nucleosome code could influ-
ence or contribute to our selection of regions in the
human genome enriched/depleted for many histone
marks in the same way as in yeast [47]. However,
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Figure 5 SVM classification of epigenetic marks in ENCODE human cell lines. For all three histone modification data sets the overall
classification accuracy (blue), sensitivity (true positive rate, green) and specificity (true negative rate, red) from three independent replicates were

nucleosome density appears to be largely invariable ex-
cept for limited changes in response to signaling or de-
velopment [14,48]. Therefore, although nucleosome
density data that might serve as a control for our ana-
lysis are unavailable, our conclusions appear unlikely to
be biased by nucleosome placement. Furthermore, most
of our analyses are based on several kilobases of se-
quence containing many nucleosomes, which should ef-
fectively reduce the bias even if there is a local
nucleosome positioning code in complex genomes. In
addition, by separately analyzing TSS and non-genic
regions we avoided potential bias from features specific-
ally associated with transcription.

How might primary genomic sequence influence
epigenetic modification(s)? Certain types or combina-
tions of sequences could form higher-order signals with
specific conformation, which might be used to recruit
histone-modifying enzymes and/or to facilitate their
spreading in cis to form the initial epigenetic framework.
Different sequence composition may target, or have dif-
ferent affinity for, different chromatin remodeling com-
plexes [49,50]. Other sequence-specific events, including
transcription and chromatin remodeling factors, could
further tailor this framework to create specific and
dynamic epigenetic patterns downstream during deve-
lopment, in ways not necessarily dependent on sequence
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in that later context. The dataset evaluated here thus
provides only a single “snapshot” of epigenetic modifica-
tion in time, reflecting the combined results of genomic
sequence influence and subsequent cell type-specific
chromatin remodeling. Notwithstanding the proposed
general nature of the genomic bias reported here, the
situation is no doubt further complicated at specific loci
or in specific regions by various genomic features such
as insulators and barriers, replication origins, or centro-
meres and telomeres.

A prerequisite for the genomic influence hypothesis is
that the enzymes responsible for establishing epigenetic
marks recognize subtle structural difference of under-
lying genomic sequence. Consistent with this concept, it
has been recently shown that Dnmt3a, an enzyme that
catalyzes de novo CpG methylation, recognizes CpG
periodicity signals encoded in the genome [51]. Histone-
modifying enzymes could similarly utilize structural in-
formation, but not necessarily the same information,
because our preliminary results indicate that CpG pe-
riodicity is not important for prediction methylated
histone marks (data not shown). GC- and AT-rich
sequences have been shown to differ in chromatin con-
formation as well as histone modifications in yeast [52],
which further strengthens the link between sequence
and histone modifications. Further explorations of the
information encoded in the genome, especially sequence
features discovered in this study, and a deeper under-
standing of the structural hierarchies encoded in the
genome, should help to better inform how the genome
sequence is interpreted or “read” by epigenetic factors.

Conceptually, sequence could be the major driving force
influencing the epigenetic framework, which, if true, could
help explain the persistence of genome-scale epigenetic
modifications and the observed clustering of tissue-specific
or generalized functions in complex genomes. For main-
taining “housekeeping” functions across different cell types,
for example, it would seem to be much less expensive to
use the genomic sequence instead of complicated and
error-prone gene regulatory networks. This hypothesis pre-
dicts that the epigenetic framework should be largely in-
variant in cells from different developmental contexts.
Indeed, this prediction is supported by recent genome-
scale profiling studies of several histone marks in embryo-
nic stem cells and lineage-committed cells [53—55]. The
specific and dynamic epigenetic patterns that have been
demonstrated during development and the cell cycle [19]
appear to be at a much smaller and more local scale than
the overall framework laid down by sequence features
across the genome.

Conclusion
This study demonstrates a strong association between
the primary DNA sequence of the human genome and
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an extensive set of histone methylation marks described
in multiple human cell lines and thus supports the hy-
pothesis that at least part of the underlying basis for the
histone code is encoded in the genome. These findings
illustrate how genome organization and sequence might
establish and maintain epigenetic modifications in com-
plex genomes and thereby directly impact biological
function(s).

Methods

Enriched and depleted regions for histone marks in
human CD4+ T-cells

Statistics for null distribution

In order to select enriched regions, we first simulated
a null distribution based on the assumption that the
number of sequence tags observed in a region with
defined size follow a Poisson distribution [56]. Based
on this null distribution, two cutoff counts were made
at 1% and 99%, thus only allowing 2% False Discovery
Rates (FDR).

Regions surrounding known Transcription Start Sites (TSS)
We considered +2 kb sequence flanking the TSS of all
known RefSeq genes (UCSC hgl8). Duplications were
subsequently eliminated to yield 19,812 unique regions.
For each histone modification, enriched regions were
defined to have tag counts greater than the 99% line
(based on the null distribution, above), while depleted
regions have tag counts less or equal to the 1% cutoffs.
The other regions were considered “neutral” and were
not analyzed further (see Figure 2A).

Non-genic regions

To identify a set of non-genic regions for comparison
with TSS regions defined above, we first selected ge-
nomic regions that are (1) not within 100 kb of any
RefSeq genes; (2) free of known repetitive sequences and
(3) >1.5 kb. This resulted in 43,039 regions from the
current UCSC human genome assembly (hgl8). These
regions were further divided into enriched, depleted, or
neutral regions in the same way as the TSS regions, ex-
cept that the 1% and 99% cutoff counts were normalized
to the size of each region.

Sequence feature extraction

Unless specified, DNA sequences were extracted from
UCSC assembly (hgl8), and k-mer (k=1,2,3,4,5) content
(count/size) was calculated for each region, yielding a
total of 1,364 sequence features to represent the under-
lying sequence information of a particular genomic re-
gion. For models with repeat features, the content of
repeat families as well as individual repeats were
extracted from UCSC annotations.
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Support Vector Machine (SVM) training and testing
LibSVM version 2.84 software (http://www.csie.ntu.edu.
tw/~cjlin/libsvm/) was used for SVM classification. With
the assumption that the data used in this paper are
linearly separable, we used linear SVM models through-
out the analysis. In a typical classification experiment, a
proportion of the regions were selected randomly from
each dataset for training and cross validation purposes,
while an independent set was used for testing. Such
training/testing sessions were performed 10 times and
p-values were based on paired ¢-tests.

Feature selection

Briefly, we selected 100 features with highest F-scores
[35] for each 100 randomly sampled regions that were
either enriched or depleted for a specific epigenetic
mark. The above sampling/feature selection process was
repeated 100 times and features that were selected more
than 30 times were defined as highly discriminative fea-
tures. These features were tested for their correlation
with whether or not the region is enriched and for their
SVM classification performance as single features.

Whole-genome prediction for epigenetic marks

For whole-genome prediction, we used sliding windows of
2.5 kb in size with 2 kb overlaps to cover the entire human
genome. To predict the probability for each window to be
bound by an epigenetic mark of interest, we used SVM
models based on 2,000 regions enriched for a histone mark
(1,000 non-genic regions and 1,000 TSS regions, for both
enriched and depleted) with 1,364 sequence features. The
resulting predictions were made into local UCSC genome
browser tracks and visualized along with other genomic
information.

Cluster analysis of regions occupied by different modified
histones

Using datasets from Barski et al. [29], SVM models were
trained with 2,000 regions for each histone mark, and
those with a 10-fold cross-validation rates greater than
75% were used to predict other histone marks, excluding
H3K79me2 (too few regions). The dissimilarity in their
occupied sequence between any two histone marks, or
distance, was defined as the average misclassification
rates of their mutual predications. Such distances were
subsequently used to perform hierarchical cluster ana-
lysis. Dendrograms, as in Additional file 4: Figure S2,
were drawn with default color threshold (0.7) for color-
ing clusters. Clustering analysis was performed using
MATLAB™ software version 7.3.0.

Singlet, doublet sequence and CpG permutations
Singlet- and doublet-sequence permutations were per-
formed by shuffling the positions of either single
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nucleotides or dinucleotides while maintaining constant the
base composition or the dinucleotide frequency of the ori-
ginal sequences, respectively. Feature extraction was then
performed on the permuted sequences. Since it is not pos-
sible to permute CpG only without affecting other se-
quence motifs, we permuted the frequency of all
CpG-containing motifs among the sequences to simulate
the effects of CpG permutation. A necessary side-effect of
CpG permutation is that the sum of all k~-mer frequencies
within individual sequences may not be precisely 1. How-
ever, since these values are usually very small and the di-
rection of change (increase or decrease) for each k-mer
will be random, the sum is likely to be very close to
1 after the permutation.

Additional files

Additional file 1: Table S1. Summary of selected regions enriched/
depletedfor histone marks from human CD4+T-cells.

Additional file 2: Table S2. Number of samples used for SYM training/
testing in human T-cells.

Additional file 3: Table S3. SVM classification for histone marks in
human T-cells.

Additional file 4: Figure S1,52,53 and S4. Figure S1. Genome-wide
predicted locations of H3K4me2, H3K27me3, and H3K9me3 correlate with
experimentally determined profiles in the human CD4 T-cells. Figure S2.
Genome-wide predicted locations of H3K4me2, H3K27me3, and
H3K9me3 correlate with experimentally determined pro_les in the
human CD4 T-cells. Only data from chr10 is shown as an example since
plots obtained from the rest of the chromosomes look almost identical
as chr10. Each data point corresponds to the experimentally deterimined
modi_ed histone enrichment level (x-axis) in a 2.5kb region and the
prediction probability by SYM models (y-axis). Enrichment level 6 stands
for >2/6 (64 reads per kb), 5 stands for 2A5-2/6, or (52-64), and so on.
Red bars in each boxplot indicate median values, and red pluses indicate
outliers. As enrichment levels go down, the number of regions
predicated to be enriched also go down. Figure S3. Cluster analysis of
regions occupied by different epigenetic marks. The hierarchical cluster
of histone marks in (a) TSS regions and (b) non-genic regions, based on
dissimilarities in their occupied genomic- sequence (measured by SYM
misclassification rates). Figure S4. Sequence permutations and their
e_ects on classi_cation. Prediction accuracy of SYM models (trained with
original sequences, circles) for singlet (triangles), doublet (diamonds) or
CpG (squares) permuted sequences. Sensitivity represents the ability to
predict enriched regions, and speci_city for depleted regions of a
particular methylated histone mark.

Additional file 5: Table S4. Predictions between epignetic marks using
SVM models with high cross-validation accuracy(>75%).

Additional file 6: Table S5. Features with consistently high F-scores in
multiple rounds of classifications, TSS regions.

Additional file 7: Table S6. SVM classification on ENCODE cell lines for
H3K9me3, H3K27me3, H3K4me2.

Competing interests
Both authors declare that they have no competing interests.

Acknowledgements

We thank J Zhu for computational resources and discussions, and U Ohler, T
Furey, G Crawford and members of the Willard Lab for discussions and
comments on the manuscript.


http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S5.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S6.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-367-S7.xlsx

Wang and Willard BMC Genomics 2012, 13:367
http://www.biomedcentral.com/1471-2164/13/367

Author details

'Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke
University, 101 Science Dr. CIEMAS 2376, Durham, NC 27708, USA. “DOE Joint
Genome Institute, Walnut Creek, CA 94598, USA.

Received: 9 June 2011 Accepted: 18 July 2012
Published: 2 August 2012

References

1.

22.

Richmond TJ, Davey CA: The structure of DNA in the nucleosome core.
Nature 2003, 423(6936):145-150.

Kouzarides T: Chromatin modifications and their function. Cell 2007,
128(4):693-705.

Turner BM: Histone acetylation and an epigenetic code. Bioessays 2000,
22(9):836-845.

Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000,
403(6765)41-45.

Jenuwein T, Allis CD: Translating the histone code. Science (New York, NY) 2001,
293(5532):1074-1080.

Turner BM: Defining an epigenetic code. Nature cell biology 2007,
9(1):2-6.

Nightingale KP, O'Neill LP, Turner BM: Histone modifications:
signalling receptors and potential elements of a heritable
epigenetic code. Current opinion in genetics & development 2006,
16(2):125-136.

Roh TY, Zhao K: High-resolution, genome-wide mapping of
chromatin modifications by GMAT. Methods Mol Biol 2008,
387:95-108.

Rando OJ: Global patterns of histone modifications. Current opinion in
genetics & development 2007, 17(2):94-99.

Bhandare R, Schug J, Le Lay J, Fox A, Smirova O, Liu C, Naji A, Kaestner KH:
Genome-wide analysis of histone modifications in human pancreatic
islets. Genome Res 2010, 20(4):428-433.

Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY,
Robilotto R, Rechtsteiner A, lkegami K, et al: Integrative analysis of the
Caenorhabditis elegans genome by the modENCODE project. Science
(New York, NY) 2010, 330(6012):1775-1787.

Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH,
Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al: Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature 2007, 447(7146):799-816.

Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A,
Raney BJ, Wang T, Hinrichs AS, Zweig AS, et al: ENCODE whole-genome
data in the UCSC Genome Browser. Nucleic acids research 2010,
38(Database issue):D620-625.

Segal E, Widom J: What controls nucleosome positions? Trends Genet
2009, 25(8):335-343.

Peterson CL, Laniel MA: Histones and histone modifications. Curr Biol 2004,
14(14):R546-551.

Mito Y, Henikoff JG, Henikoff S: Histone replacement marks the
boundaries of cis-regulatory domains. Science (New York, NY) 2007,
315(5817):1408-1411.

Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ: Dynamics
of replication-independent histone turnover in budding yeast. Science
(New York, NY) 2007, 315:1405-1408.

Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD,
Zhang MQ, Lobanenkov VV, Ren B: Analysis of the vertebrate
insulator protein CTCF-binding sites in the human genome.

Cell 2007, 128(6):1231-1245.

Berger SL: The complex language of chromatin regulation during
transcription. Nature 2007, 447(7143):407-412.

Kadota M, Yang HH, Hu N, Wang C, Hu Y, Taylor PR, Buetow KH, Lee MP:
Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic
Influence on Chromatin State in Human Genome. PLoS Genetics 2007,
3(5):e81.

Bhasin M, Zhang H, Reinherz EL, Reche PA: Prediction of methylated CpGs
in DNA sequences using a support vector machine. FEBS Lett 2005,
579(20):4302-4308.

Das R, Dimitrova N, Xuan Z, Rollins RA, Haghighi F, Edwards JR, Ju J,
Bestor TH, Zhang MQ: Computational prediction of methylation

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.
34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

Page 12 of 13

status in human genomic sequences. Proc Natl Acad Sci U S A 2006,
103(28):10713-10716.

Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR,
Deaton A, Andrews R, James KD, et al: CpG islands influence chromatin
structure via the CpG-binding protein Cfp1. Nature 2010, 464(7291):
1082-1086.

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B,
Meissner A, Wernig M, Plath K, et al: A Bivalent Chromatin Structure
Marks Key Developmental Genes in Embryonic Stem Cells.

Cell 2006, 125(2):315.

FuY, Sinha M, Peterson CL, Weng Z: The insulator binding protein CTCF
positions 20 nucleosomes around its binding sites across the human
genome. PLOS Genet 2008, 4(7):21000138.

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B:
Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 2012, 485(7398):376-380.

Noble WS: What is a support vector machine? Nature biotechnology 2006,
24:(12)1565-1567.

Wang Z, Willard HF, Mukherjee S, Furey TS: Evidence of Influence of Genomic
DNA Sequence on Human X Chromosome Inactivation. PLoS Computational
Biology 2006, 2(9)e113.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev |,
Zhao K: High-resolution profiling of histone methylations in the human
genome. Cell 2007, 129(4).823-837.

Tarca AL, Carey VJ, Chen XW, Romero R, Draghici S: Machine learning and
its applications to biology. PLoS Comput Biol 2007, 3(6):e116.

Whiteford N, Haslam N, Weber G, Prugel-Bennett A, Essex JW, Roach PL,
Bradley M, Neylon C: An analysis of the feasibility of short read
sequencing. Nucleic acids research 2005, 33(19):e171.

Zhang Y, Reinberg D: Transcription regulation by histone methylation:
interplay between different covalent modifications of the core histone
tails. Genes Dev 2001, 15(18):2343-2360.

Turner BM: Cellular memory and the histone code. Cell 2002, 111(3):285-291.
Chadwick BP, Willard HF: Multiple spatially distinct types of facultative
heterochromatin on the human inactive X chromosome. Proc Natl Acad
Sci U S A 2004, 101(50):17450-17455.

Chen Y-W, Lin C-J: Combining SVMs with Various Feature Selection
Strategies. In Feature Extraction, Foundations and Applications. Edited by
Isabelle Guyon SG, Masoud N, Lofti Z. Physica-Verlag: Springer; 2006.

Lee T, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B,
Johnstone SE, Cole MF, Isono K-, et al: Control of Developmental Regulators by
Polycomb in Human Embryonic Stem Cells. Cell 2006, 125(2):301.

Boyer LA, Mathur D, Jaenisch R: Molecular control of pluripotency. Current
opinion in genetics & development 2006, 16(5):455.

Eller CD, Regelson M, Merriman B, Nelson S, Horvath S, Marahrens Y:
Repetitive sequence environment distinguishes housekeeping genes.
Gene 2007, 390(1-2):153-165.

Korenberg JR, Rykowski MC: Human genome organization: Alu, lines, and the
molecular structure of metaphase chromosome bands. Cell 1988,
53(3):391-400.

Chen TL, Manuelidis L: SINEs and LINEs cluster in distinct DNA fragments
of Giemsa band size. Chromosoma 1989, 98(5):309-316.

Holmquist G: Chromosome bands, their chromatin flavors, and their
functional features. Am J hum Genet 1992, 51:17-37.

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB,
Zhang X, Wang L, Issner R, Coyne M, et al: Mapping and analysis of
chromatin state dynamics in nine human cell types. Nature 2011,
473(7345):43-49.

Parker SC, Hansen L, Abaan HO, Tullius TD, Margulies EH: Local DNA
topography correlates with functional noncoding regions of the human
genome. Science (New York, NY) 2009, 324(5925):389-392.

Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore K, Wang JP,
Widom J: A genomic code for nucleosome positioning. Nature 2006,
442(7104):772-778.

loshikhes [P, Albert I, Zanton SJ, Pugh BF: Nucleosome positions
predicted through comparative genomics. Nature genetics 2006,
38(10):1210-1215.

Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y,
LeProust EM, Hughes TR, Lieb JD, Widom J, et al: The DNA-encoded
nucleosome organization of a eukaryotic genome. Nature 2009,
458(7236):362-366.



Wang and Willard BMC Genomics 2012, 13:367
http://www.biomedcentral.com/1471-2164/13/367

47.

48.

49.

50.

52.

53.

54.

55.

56.

van Leeuwen F, van Steensel B: Histone modifications: from genome-wide
maps to functional insights. Genome biology 2005, 6(6):113.

Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ,
McMahon S, Karlsson EK;, Kulbokas EJ 3rd, Gingeras TR, et al: Genomic maps and
comparative analysis of histone modifications in human and mouse. Cell
2005, 120(2):169-181.

Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee OK, Kharchenko P,
McGrath SD, Wang Cl, Mardis ER, Park PJ, et al- A sequence motif within
chromatin entry sites directs MSL establishment on the Drosophila X
chromosome. Cell 2008, 134(4):599-609.

Straub T, Grimaud C, Gilfillan GD, Mitterweger A, Becker PB: The
chromosomal high-affinity binding sites for the Drosophila dosage
compensation complex. PLoS Genet 2008, 4(12):21000302.

Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X: Structure of Dnmt3a
bound to Dnmt3L suggests a model for de novo DNA methylation.
Nature 2007, 449(7159):248-251.

Dekker J: GC- and AT-rich chromatin domains differ in conformation and
histone modification status and are differentially modulated by Rpd3p.
Genome biology 2007, 8(6):R116.

Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin landmark and
transcription initiation at most promoters in human cells. Cell 2007, 130(1):77-83.
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G,
Alvarez P, Brockman W, Kim TK, Koche RP, et al: Genome-wide maps
of chromatin state in pluripotent and lineage-committed cells.
Nature 2007, 448(7153):553-560.

Christophersen NS, Helin K: Epigenetic control of embryonic stem cell
fate. J Exp Med 2010, 207(11):2287-2295.

Lander ES, Waterman MS: Genomic mapping by fingerprinting random
clones: a mathematical analysis. Genomics 1988, 2(3):231-239.

doi:10.1186/1471-2164-13-367

Cite this article as: Wang and Willard: Evidence for sequence biases
associated with patterns of histone methylation. BMC Genomics 2012
13:367.

Page 13 of 13

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Genomic sequence alone discriminates regions enriched or depleted for most methylated histones in human CD4+ cells
	Sequence predicts the location of methylated histones genome-wide
	Genomic regions occupied by different methylated histones define clusters that distinguish genic and non-genic regions of the genome
	Sequence features associated with predictions of methylated histone patterns
	A sequence bias for histone modification is likely a common theme for the human genome

	Discussion
	Conclusion
	Methods
	Enriched and depleted regions for histone marks in human CD4+ T-cells
	Statistics for null distribution
	Regions surrounding known Transcription Start Sites (TSS)
	Non-genic regions

	Sequence feature extraction
	Support Vector Machine (SVM) training and testing
	Feature selection
	Whole-genome prediction for epigenetic marks
	Cluster analysis of regions occupied by different modified histones
	Singlet, doublet sequence and CpG permutations

	Additional files
	Competing interests
	Acknowledgements
	Author details
	References

