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Abstract

context-dependent from ubiquitous TF binding?

regulatory activity.

Background: Context-dependent transcription factor (TF) binding is one reason for differences in gene expression
patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But
can such ChlP-seq data predict TF binding in other cellular contexts and is it possible to distinguish

Results: We compared ChiIP-seq data on TF binding for multiple TFs in two different cell types and found that on
average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more
frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize
cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain
differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of
common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors,
weak and isolated peaks are less common between the cell types and are less associated with data that indicate

Conclusions: Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong
and clustered peaks represent high-confidence binding events that often occur in other cellular contexts.
Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that
by combining signal intensity with additional data—ranging from context independent information such as binding
site conservation and position weight matrix scores to context dependent chromatin structure—we can predict
whether a ChIP-seq peak is likely to be present in other cellular contexts.

Background

Transcription factors (TFs) are proteins that bind
sequence elements in DNA and thereby affect expres-
sion of neighboring or distal genes. Depending on cellular
contexts, such as hormone stimulus or the cell’s differen-
tiation state or cell type, a TF can bind to different subsets
of the TF’s potential binding sites and regulate different
gene expression programs [1]. Investigating this context-
dependent binding of TFs and the causes of binding
differences across different cellular contexts is therefore
fundamental for understanding gene regulation in general,
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and also for understanding how differential binding by
TFs contribute to disease development.

There are three main factors that determine a TF’s bind-
ing activity at a potential binding site. First, TFs bind
to specific sequence motifs [2] that favor a local DNA
structure recognized by the TF’s DNA-binding domain.
Second, the local chromatin structure needs to be favor-
able for TF binding. Specifically, the chromatin must be
sufficiently accessible to allow the TF to scan and bind to
its sequence motif [3-5]—a process that is influenced both
by high level chromatin structure and local nucleosome
positioning [5,6]. Certain post-translational histone mod-
ifications are associated with open or closed chromatin
and therefore also binding site activity, but certain TFs
may also directly bind specific histone modifications [7-9].
Similarly, DNA methylation also affects TF binding—both
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by directly affecting binding motifs and by being involved
in altering local chromatin structure [10]. Third, TF co-
activators can recruit and stabilize TF binding, whereas
repressors can out-compete or hinder binding to a poten-
tial binding site [11].

The TF binding activities that result from a given cel-
lular context form in sum a transcription regulatory net-
work. There are many different methods of inferring the
structure of such regulatory networks in silico. Some
of these methods rely on context-dependent data, such
as experimentally determined gene expression, TF bind-
ing, or chromatin structure [12], and therefore produce
networks specific to a given context. Examples include
methods that rely on gene expression data only [13,14],
and methods that integrate expression data and binding
location data [15-18].

In comparison, many traditional methods for infer-
ring regulatory networks are context-indifferent, typically
relying on sequence motifs to map putative transcrip-
tion factor binding sites (TFBS). Some of these methods
use additional data such as a putative site’s conservation
level in related species [19,20] and motif clustering [21-
24] to increase the predictions’ signal to noise ratio [25].
However, newer methods increasingly take advantage of
recently available experimental data such as genome-
wide occurrences of histone modifications and nucleo-
some occupancy [26,27] and our increased understanding
of how these modifications affect the likelihood of TF
binding [28]. Unlike previous methods that mainly rely
on sequence motifs, adding experimental data typically
makes the predictions specific to the given experimental
context.

Chromatin immunoprecipitation followed by massively
parallel DNA sequencing (ChIP-seq) is the current high-
throughput experimental technique of choice for mapping
the genome-wide state of chromatin, and this technique
is also used for experimentally identifying TFBS [12].
ChIP-seq captures TF binding as it happens in vivo, so
using ChIP-seq data alone or as a basis in more integra-
tive methods for modeling gene regulation will result in
context-specific predictions [17,18]. But how specific are
these predictions to the given context?

The few studies that have investigated cell-type speci-
ficity of TFBS show that in general, binding differences
increase with functional and evolutionary distance. A
study investigating MyoD-binding in the highly related
cell types myoblasts and myotubes found the majority
of predicted binding sites to be common in both tis-
sues [29]. Another study looking at E2F4 binding sites in
seven primary mouse tissues and a mouse cell line found
that between 65% and 85% of the cells’ binding events
overlapped [30], whereas a study of serum response fac-
tor (SRF) binding across three distinct human cell lines
found that less than half of the observed SRF binding

Page 2 of 19

sites were shared across all three cell lines [31]. Studies
comparing TFBS across homologous species have shown
that TFBS in general are even less conserved between
different species than between different cells within the
same organism [30,32,33]. Thus, whether regulatory inter-
actions determined for one cellular context can be used
to predict functional outcomes in a different context
seems to depend on both the TF itself and the context
of the comparison. However, the studies also suggest that
some TFBS appear to be active consistently across differ-
ent cellular contexts, and it is not clear what separates
such apparently context-independent TFBS from context-
dependent sites and whether the genomic context for such
sites differs for different TFs.

To address this question, we used ChIP-seq data from
two ENCODE cell lines [34] to examine cell-type specific
binding sites for seven TFs with known DNA sequence
preferences and six transcriptional cofactors with no
known sequence preferences. Five of the six cofactors
were Polymerase (Pol) III TFs [35], whereas the remain-
ing factors were Pol II TFs. We first show that although
both the number of sites and the site overlap differ sub-
stantially between TFs, stronger sites, as estimated by
ChIP-seq peak height, are generally less cell-type spe-
cific than are weak sites. Second, we find that strong
sites generally occur more frequently in regulatory regions
such as promoters and TFBS clusters and in conserved
sequences, compared to weak sites. Moreover, by analyz-
ing cell-type specific chromatin data, we find that strong
sites occur more frequently in open chromatin and at
histone modifications associated with active promoters,
compared to weak sites. Strong sites are also generally
more conserved than are weak sites. Third, we show that
differences in chromatin can be a reason for cell-type spe-
cific TEFBS—Dboth at strong and weak sites. We also show
that some of the apparent cell-type specific TEBS can be
due to differences in genotype that affect sequence motif
regions. Finally, by training a machine learning classifier
to distinguish common, context-independent sites from
cell-type specific sites, we show that site strength and
clustering are the most important parameters for iden-
tifying context-independent TFBS. Importantly, sites for
sequence-specific TFs and sequence-independent cofac-
tors and sites for Pol III and Pol II TFs shared these same
characteristics. Thus, our results suggest that context-
independent sites are strong, clustered sites in conserved
genomic regions.

Results

The number of peaks varies between cell-types

Recent genome-wide analyses of TF binding have shown
that for a few individual TFs, binding sites can vary sub-
stantially between cell-types [29-31]. But how cell-type
specific is TF regulation as measured by ChIP-seq data
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of different commonly expressed transcription factors? To
address this question, we used a robust peak detection
method [36] on publicly available ChIP-seq data [34] for
13 TFs from two cancer cell lines, K562 and HeLa-S3.
(See Additional file 1: Peaks and SNPs for predicted peak
regions). Seven of the factors (CTCF, E2F4, E2F6, GABP,
Max, c-Fos, and c-Myc) are Pol II factors with specific
DNA binding preferences, one (TAF1) is a basal Pol II fac-
tor, four (BDP1, BRF1, BRF2, and TFIIIC-110) are general
Pol III factors, and one (RPC155) is a Pol III subunit that is
enriched at Pol III transcription start sites and has strongly
correlated peak heights between K562 and HeLa-S3 [35].
The resulting peaks revealed substantial differences in the
number of putative binding sites for different TFs and cell
types (Figure 1A). The total number of peaks was sim-
ilar in both cell types; in sum HeLa-S3 had 11% more
predicted peaks than K562, but the peaks were divided
unevenly between different TFs in the two cell types. Vari-
able peak counts for different TFs could be expected as
the TFs under study serve diverse regulatory roles, but the
variability between cell types for the same TF was high.
Nearly half of the K562 peaks (47%) and more than a
third of the HeLa-S3 peaks (34%) were associated with
promoter regions; specifically, the 2000bp upstream and
200bp downstream of RefSeq genes’ transcription start
sites plus their first introns (Figure 1B). We included the
first intron in our promoter definition, as binding sites
for several TFs are enriched within first introns [37] and
such binding sites have been shown to have important
regulatory roles for specific genes (for example, the cys-
tic fibrosis transmembrane conductance regulator gene
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(CFTR) [38]). Despite the variability in the overall num-
ber of peaks per TF and cell type, the relative number of
peaks mapping to promoter regions for the same TFs were
similar between the two cell types (p-value p = 0.34 on a
two-sided Wilcoxon signed rank test).

Only a third of peaks are found in both cell types

Given the high variability in putative TFBS, we wondered
to what extent these binding sites were cell-type specific.
By comparing the genomic loci of peaks across cell types,
we found that 33% of K562 and 30% of HeLa-S3 peaks
overlapped with at least one peak of the same TF in the
other cell type. Taking into account that the relative over-
lap is limited by the cell type having the fewest peaks for
the TF, we found that the potential overlap varied between
16% (TAF1) and 93% (BRF2) (Figure 1C; median 46%).
Although the potential overlap was slightly higher for TFs
with large differences in peak counts between the cell
lines, this apparent trend was not significant (Spearman
coefficient 0.20, two-sided p-value p = 0.52).

An extreme example of seemingly different binding
between cell types is the cell-cycle associated factor E2F4,
which had 8780 peaks in K562 but only 631 (7%) in HeLa-
S3. A large fraction (81%) of the relatively few E2F4 peaks
in HeLa-S3 overlapped with K562 peaks. Others using
ChIP-chip have previously found E2F4 to have between
500 and 700 target genes with little cell-type specific bind-
ing [1,30]. This could suggest that a majority of the E2F4
peaks in K562 are not functional binding sites, but we can-
not exclude that our data are missing several true binding
sites in HeLa-S3.
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Figure 1 Discrepancy in peak count and variable peak overlap between cell types. A) Number of ChIP-seq peak regions per TF in cell types
K562 and HelLa-S3. The number of peaks varied for each TF, but there were also big differences between cell types for the same TF. B) Percentage of
peaks found in promoter regions per TF in K562 and Hel.a-S3. A promoter region was defined as the region 2000bp upstream and 200bp
downstream of the RefSeq genes’ transcription start sites plus their first intron. On average, a third of all peaks were found in promoter regions. C)
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Peaks in regions associated with tissue-independent
regulation have higher overlap than have

other regions

Because of the unexpected differences between the two
cell lines for the E2F4 peaks, we wondered whether over-
lapping peaks were enriched in genomic regions known
to have limited tissue-specific activity. A previous study
has indicated that TFs primarily mediate cell-type spe-
cific regulation through enhancers located far from core
promoter regions [9]. In accordance with this, we found
that peaks mapping to promoter regions had a signifi-
cantly higher degree of overlap across cell types than had
peaks that did not map to promoter regions (Figure 2A;
p = 0.0052 for K562 and p = 0.0034 for HeLa-S3, one-
sided Wilcoxon signed-rank test). Promoter regions were
again defined as the region 2000 bp upstream to 200 bp
downstream of transcription start sites of RefSeq genes,
together with the complete first intron of the genes. Con-
sistent with Pol III factors preferentially associating with
regions near functional Pol II promoters [35] three of
the four general Pol III TFs showed higher overlap in
these mostly Pol II promoters than in the non-promoter
regions. Similarly, the subset of Pol II TFs also showed sig-
nificantly higher overlap in the promoter regions than in
other genomic regions (p = 0.012 for K562 and p = 0.020
for HeLa-S3).

Housekeeping genes tend to maintain similar expres-
sion levels across cell types and are therefore also likely to
have similar regulation within different cell types. Indeed,
the overlap was greater for peaks mapping to promot-
ers of housekeeping genes [39] compared with promot-
ers of other genes (Figure 2B; p = 0.0093 for K562 and
p = 0.0049 for HeLa-S3). Housekeeping genes frequently
have high CpG promoters, whereas tissue-specific genes
tend to have low CpG promoters [40,41]. Accordingly,
peaks in high CpG promoters had significantly higher
overlap than had peaks in low CpG promoters (Figure 2C;
p =24 %10"% for K562 and p = 4.9 x 10~ for HeLa-S3).
Thus, as expected, peaks mapping to tissue-independent
regulatory regions showed a higher degree of overlap
between cell types than did peaks mapping to other
genomic regions.

Cell-type-specific peaks map to different genomic regions
in the cell types

Some of the “missing” overlap could perhaps be explained
by alternative transcription factor binding sites, where a
binding site active in only one cell type could have another
nearby site active in the other cell type. To test this possi-
bility, we counted the number of overlaps when allowing
increasingly larger regions surrounding the original peak
regions (Figure 2D). We found no striking increase in
the number of overlaps, however—even when looking at
regions larger than 10,000bp. Consequently, most of the
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cell-type unique peaks are found at completely different
loci in the two cell types.

Differences in TF expression can partly explain differences
in peak counts

The variability in peak numbers could suggest that some
TFs have more binding activity in one cell type compared
to the other. As one important determinant of binding
activity could be TF availability, we looked at how the TF
mRNA expression levels, as measured by RNA sequenc-
ing, correlated with the number of peaks. We found some,
but insignificant, correlation between TF expression and
peak numbers (Pearson coefficient r = 0.46, two-sided
t-test p-value p = 0.21 in K562; r = 0.54, p = 0.11 in
HeLa-S3). Using the differences in expression and peak
count between the two cell types gave similar results
(Figure 2E; r = 0.47, p = 0.20), but removing the expres-
sion outliers c-Fos and c-Myc gave a large and sig-
nificant correlation (r = 0.89, p = 7.2 * 10~3). This sug-
gested that the difference in peak count could partly
be related to difference in mRNA expression levels of
the TFs.

Of course, the mRNA level does not necessarily alone
determine the TF’s actual protein-level [42] and binding
activity could be influenced by other variables, such as
for example post-translational modifications, chromatin
differences, and co-factor availability.

High peaks are less cell-type specific and more associated
with active gene regulation than are low peaks

The height of a ChIP-seq peak indicates the TF’s bind-
ing activity or strength at the site. Moreover, peak height
can give a measure of the likelihood for the TFBS to
be active in a given cellular context, as spurious bind-
ing events occurring within a fraction of the cells will
give low ChIP-seq peaks. We therefore wondered whether
cell-type specific binding or binding within regions con-
sistent with regulatory activity, such as promoters or open
chromatin, varied with increasing peak height (Figure 3
and Additional file 2: Figure S1 and Additional file 3:
Figure S2).

For 10 out of 13 TFs in K562, there were significantly
more overlaps among higher peaks compared with lower
peaks (Figure 3). The trend was particularly clear for the
very highest peaks, save for c-Fos and BRF2—the latter
having only 15 peaks in K562. This could mean that cell-
type specific binding is generally weaker than the binding
in common binding sites, but the observation likely also
reflects that spurious binding (stochastic noise) is more
prevalent among low peaks.

High peaks were generally more associated with reg-
ulatory regions such as promoters (8 TFs significant)
and CpG-rich regions (10 TFs significant). The TFs that
showed little or no association were not expected to be
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Figure 2 Explaining regions of increased peak overlap and TF expression difference. A) Relative overlap (see Figure 1C) of peaks mapping to
promoter regions compared with other peaks. Peaks in promoter regions overlap more than peaks in other genomic regions. B) Relative overlap of
peaks in promoters of housekeeping genes (list from [39]) compared with peaks in other promoters. Peaks in promoters of housekeeping genes
overlap more than peaks in promoters of other genes. C) Relative overlap of peaks in CpoG-rich promoter regions compared with peaks in CpG-poor
promoter regions. D) Alternative local binding sites. The y-axis shows the number of K562 peaks that overlap with a peak in Hel.a-S3 when, one by
one, each given peak region in K562 is extended by 0, 500, 1,000, 4,000 and 10,000 bp (half to each side of the peak). The number of overlaps does
not increase markedly when considering larger regions surrounding the peaks. E) TF expression difference between cell types versus TF peak count
difference between cell types. The x-axis gives the difference in number of ENCODE Caltech paired-end RNA-seq reads mapping to a TF gene in
K562 versus HelLa-S3 (see Methods). The y-axis gives the difference in number of peaks regions in K562 vs Hela-S3. Both differences were
normalized to the range {-1, 1}. P-values for t-tests on slope of linear regression lines are shown with all TFs included (dashed line; p = 0.2) and

Expression difference

without the expression outliers c-Fos and c-Myc (dotted line; p = 7.2 1073).
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Figure 3 Higher peaks overlap more and have more consistent support in other data marking regulatory regions. Peaks in K562 for each TF

(panel columns) were binned in 10 equally-sized groups with increasing peak height (ordered along x-axis) and the average values for different
genomic characteristics (panel rows) were computed for each group (y-axis). From top to bottom row, the genomic characteristics are: “Hela-S3":
percentage of peaks in K562 that overlap with a peak in Hela-S3.; “Promoter”: percentage of peaks that overlap with promoter regions.; “CpG rich”:
percentage of peaks that overlap with CpG-rich regions,; “DNase”: average count of DNase-seq reads in peak region—a measure of chromatin
accessibility,; "H3K4me3": average count of H3K4me3 ChlIP-seq reads in a peak region—a measure of chromatin activity; “phyloP": average phyloP
scores in peak region for a 28-way placental mammals multiple alignment—a measure of sequence conservation.; “PWMscore”: average maximal
PWM score in peak region (where available).; “ClusterTF": average number of peaks in peak cluster. See Methods section for definition of promoters,
CpG-rich regions, and clusters and for details on other genomic data. The blue line in each panel is a linear regression line between peak height bin
and genomic characteristic; the dark gray areas surrounding these lines are 95% confidence intervals; blue stars mark significant regression line
slopes (p < 0.05).
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associated with Pol II promoters; CTCF acts primarily
in intergenic and intronic regions [43]), whereas BDP1,
BRF1, BRF2, RPC155, and TFIIIC-110 are Pol III factors.
The Pol III factors BDP1 and TFIIIC-110 and the Pol III
subunit RPC155 did indeed show significant correlation
between peak height and overlap with Pol III promoters
(Additional file 4: Figure S3; see Methods for description
of Pol III promoter regions). Also, nearly all (79 of 81)
BRF1 peaks in K562 were associated with Pol III promoter
regions, whereas too few BRF2 peaks mapped to the Pol
III promoters for a pattern to be evident. High peaks were
also associated with increased chromatin accessibility as
measured by sensitivity to DNase (10 TFs significant) and
a higher enrichment in the histone mark for transcrip-
tionally active promoters H3K4me3 (10 TFs significant),
in accordance with previous findings [26].

Even though others have demonstrated poor conserva-
tion of binding sites across species for some TFs [30,32],
we noted that higher peaks generally resided in regions
of higher sequence conservation for many TFs (6 and 4
TFs significant in K562 and HeLa-S3, respectively). The
main exception was CTCE, which showed a significant
negative correlation between peak height and sequence
conservation.

High peaks were also generally more associated with
sequence motifs (peaks for 5 of 7 TFs in K562 and 7 of
7 TFs in HeLa-S3 were positively correlated with PWM
scores). However, c-Fos peak heights in K562 correlated
negatively with PWM scores for the AP-1 motif, which c-
Fos recognizes as a dimer with co-factor Jun. One possible
explanation could be that competition with Jun homod-
imers and Jun-ARF2 heterodimers for the AP-1 motif may
have pushed c-Fos to bind more in non-canonical motif
regions [44]. Alternatively, as higher c-Fos K562 peaks
did not have significantly increasing overlap with HeLa-
S3 peaks, but did have significantly increasing association
with promoters, CpG-rich regions, open chromatin, and
sequence conservation, c-Fos or its antibody may have
cross-reacted with a different TF in K562.

Using discriminative motif discovery on the 10% high-
est and 10% lowest c-Fos peaks (see Methods), we found
that the highest c-Fos peaks in K562 had motif sequences
such as CCAAT and CGCGG, which resemble binding
profiles for NF-Y and parts of AP-2, but we did not
find any AP-1 binding motif or variant thereof. When
using sequences from another TF (CTCF) as negative
data and running motif discovery with high and low c-
Fos peaks separately as positive data, we again could not
find the AP-1 motif in the high peaks (Additional file 5:
Figure S4C), whereas the top motif discovered on the low-
est peaks was the canonical AP-1 consensus motif (Addi-
tional file 5: Figure S4B). We therefore strongly suspect
that the highest c-Fos peaks in K562 are the result of some
experimental artifact.
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As an additional measure of regulatory activity, we
looked at how peaks from all TFs clustered together, under
the assumption that clustered peaks indicate a region of
high regulatory activity [45]. For all TFs save BRF2, higher
peaks were significantly correlated with a higher number
of TFs in the cluster. Finally, as ChIP-sequencing has a bias
for GC-rich fragments [12], we did a separate analysis on a
GC-controlled subset of the data. This GC-balanced sub-
set (Additional file 6: Figure S5) had the same trends as
the original full dataset (Figure 3). Consequently, any GC-
content bias in the ChIP-seq data could not explain the
correlations between peak height and different regulatory
data seen in Figure 3. Together, these results suggest that
high peaks associated with strong and conserved bind-
ing sites tend to be cell-type independent or common
for many cellular contexts, whereas low peaks associated
with weak binding tend to show larger variation between
cell types.

Differences in chromatin state suggest cell-type specific
regulation

High TF peaks both had a higher degree of overlap
between cell types and were more associated with open
chromatin and active transcription, compared to low
peaks. However, it was still unclear to what extent cell-
type specific differences in high and low peaks were
related to differences in chromatin structure or to spu-
rious binding events. We therefore compared chromatin
data for K562 and HeLa-S3 in the regions that contained
the 30% highest overlapping and non-overlapping peaks
and repeated the comparisons for the 30% lowest peaks.

In general, chromatin was more accessible and had a
higher signal for the active histone mark H3K4me3 in the
cell type where the cell-type specific peak regions were
found, compared to the same regions in the other cell type
(Figures 4 and 5). Differences in chromatin accessibility,
as measured by DNase sensitivity, were significant on a
Kolmogorov-Smirnov test for 10 of 13 TFs in K562 and
for 9 TFs in HeLa-S3. Differences in H3K4me3 signal were
significant for 10 TFs in K562 and 9 in HeLa-S3.

For the lowest 30% of peaks we expected to see smaller
differences between the chromatin state in peak and non-
peak regions, as a smaller difference would be consis-
tent with increased stochastic noise due to more spu-
rious binding within the peak data. Indeed, although
the differences in DNase sensitivity and H3K4me3 signal
were more consistent for the weak than for the strong
peaks (11 TFs significant for DNase both in K562 and
HeLa-S3; 11 TFs in K562 and 13 TFs in HeLa-S3 for
H3K4me3; Additional file 7: Figure S6 and Additional file
8: Figure S7), the median difference in chromatin acces-
sibility and H3K4me3 signal was greater for higher peaks
(Additional file 9: Figure S8). It is therefore likely that a
larger fraction of the low than of the high cell-type specific
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signals in K562 than in Hela-S3 (A) and vice versa (B).

Figure 4 Differences in chromatin accessibility in cell-type specific peak regions suggest cell-type specific regulation. Chromatin
accessibility as measured by DNase sensitivity for the two cell types in peak regions that are cell-type specific for K562 (A) and Hela-S3 (B) and in
peak regions that are common for both cell types (blue bars in A and B). Only the 30% highest peaks are analyzed. A) Box-plots showing for
K562-specific TF peak regions, the distributions of DNase-seq signal in K562 (red) and HeLa-S3 (green), and for TF peak regions common to K562 and
Hela-S3, the distribution of DNase-seq signal in K562 (blue). The DNase-seq signal was the read per million-normalized number of reads mapping to
each peak region divided by the region length. BRF2 has only one box-plot as all BRF2 peaks overlapped in the two cell lines. B) Similar data as in (A),
but for HeLa-S3-specific peak regions the DNase-seq signal in Hel.a-S3 (green) and K562 (red) and for peak regions common to K562 and Hela-S3

Most of the TFs have comparable DNase-seq signals at the common peak regions in the two cell lines (compare blue bars in A and B). Moreover,
most of the TFs show symmetric signals at the cell-type specific peak regions, such that the regions that are specific for K562 have higher DNase-seq
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peaks is a result of spurious binding events or stochastic
noise in the data.

Different genotypes can contribute to binding differences
Another factor that could contribute to differences in
binding between cell types is single nucleotide polymor-
phisms (SNPs), as K562 and HeLa-S3 are established
from two different individuals with different genotypes.
We aligned available DNA sequencing data for K562
and HeLa-S3 to the reference genome (hgl8) and by
using SNPs from the HapMap database and the aligned
sequence reads, we calculated the most likely geno-
type for each cell type for the SNPs in peak regions
(see Methods).

In total, 12% of the peaks harboured at least one
SNP. Relative to peak count, more overlapping peaks had
SNPs (13.9%) than K562-specific (11.8%) or HeLa-S3-
specific (12.1%) peaks. But a relatively higher number of
SNPs in cell-type specific peaks were homozygous with

different alleles in the cell types (18%, 17.8%, and 10% for
K562-specific, HeLa-S3-specific, and overlapping peak
SNPs, respectively).

We reasoned that the SNPs that were homozygous for
one allele in one cell type and homozygous for another
allele in the other cell type could affect TF binding if
the SNP resided in a high-scoring TF motif (Figure 6A).
Indeed, the peaks that were cell-type specific and con-
tained such SNPs had significantly higher motif scores in
the cell type having the peak compared with the other cell
type (Figure 6B; p = 1.9 %+ 107* and p = 1.1 % 107> on
one-sided paired t-tests for K562 and HeLa-specific peaks,
respectively). Among 73 K562-specific peaks that fitted
the SNP and motif criteria stated above, 49 had higher
motif scores in K562 and 24 had higher scores in HeLa-S3.
Among 82 HeLa-S3-specific peaks, 60 had higher motif
scores in HeLa-S3 and 22 in K562.

Genotype-related differences were also evident in peaks
common between the two cell types. Specifically, for the
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Figure 5 Differences in H3K4me3 signal in cell-type specific peak regions suggest cell-type specific regulation. H3K4me3 enrichment for
the two cell types in peak regions that are cell-type specific for K562 (A) and HelLa-S3 (B) and in peak regions that are common for both cell types (A
and B). Only the 30% highest peaks are analyzed. A) Box-plots showing for K562-specific TF peak regions, the distributions of H3K4me3 ChIP-seq
signal in K562 (red) and Hel.a-53 (green), and for TF peak regions common to K562 and Hela-S3, the distribution of H3K4me3 ChlIP-seq signal in
K562 (blue). The H3K4me3 ChlIP-seq signal was the read per million-normalized number of reads mapping to each peak region divided by the
region length. BRF2 has only one box-plot as all BRF2 peaks overlapped in the two cell lines. B) Similar data as in (A), but for HeLa-S3-specific peak
regions the H3K4me3 ChlIP-seq signal in Hela-S3 (green) and K562 (red) and for peak regions common to K562 and Hela-S3 the H3K4me3 ChiP-seq
signal in HelLa-S3 (blue). The H3K4me3 ChlIP-seq data show the same patterns as the DNase-seq data (see Figure 4).

SNPs that had different homozygous genotypes and were
located in high-scoring motif regions, the difference in
motif score between the genotypes correlated positively
with the difference in peak height between the cell lines
(r 0.22, p = 0.09). This correlation was especially
strong and significant for the 10% highest peaks, both for
the peaks that had SNPs in high scoring motif regions (r =
0.59, p = 9.9%1073) and for the peaks that had SNPs in any
location within the peak region (r = 0.43, p = 4.5% 1073).
Thus, differences in genotypes do affect TF binding and
can explain some of the binding site differences between
cell lines.

Peak height and clustering are the most important factors
for cell-type specificity

Our results so far indicated that the cell-type specificity
we observed among ChIP-seq peaks was related to a num-
ber of different factors that included peak height and
locus, sequence properties of the peak region, and the
region’s cell-type specific chromatin context. But which
factors are the most important indicators of cell-type

specific TF binding and to what extent do combinations of
factors determine cell-type specific binding?

To address these questions, we used a machine learning
approach. Specifically, we created support vector machine
(SVM) classifiers [46] to separate cell-type specific peaks
from peaks that are found in multiple cell types. The
SVM’s feature set for each peak included both cell-type
specific information such as chromatin state, and cell-type
independent information such as sequence conservation;
see Table 1 for a full list of features. Using peaks from
K562 as a reference and comparing overlap and cell-type
specific data with the corresponding regions in HeLa-
S3, we trained for each TF one SVM classifier to predict
the K562 peaks that overlapped with HeLa-S3 peaks. We
then used 10-fold stratified cross-validation to estimate
the SVM classifiers’ predictive performance in terms of
their receiver operating characteristic (ROC) curve and
ROC-score (Additional file 10: Figure S9A).

To assess which SVM features were most important for
correct classification, we removed a single feature group
at a time from the SVM and measured how this affected
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Figure 6 Genotype differences in sequence motifs can give cell-type specific peaks. A) A specific example of how different alleles can create
differences in sequence motifs, possibly causing cell-type specific TF-binding. SNP rs7138374 (chr12:130,642,970) is located at the highly conserved
position 7 in the highest scoring AP-1 sequence motif in a K562-specific c-Fos peak region. K562 is homozygous for the A allele (green letter) and
has a peak (illustrated here by a curve; top of panel). HeLa-S3 is homozygous for the T allele (red letter), which disrupts the motif, and has no peak
(illustrated by absence of curve; middle of panel). The bottom part of the panel shows the sequence logo for the AP-1 sequence motif. B) A
comparison of PWM motif score distributions in K562- and Hela-S3-specific peaks that contain SNPs in the highest-scoring sequence motif regions
in the peaks, and where these SNPs are homozygous but have different alleles in the two cell types. The two leftmost box-plots compare for the
K562-specific peaks that contain such homozygous SNPs, the PWM motif scores for the K562 and Hela-S3 genotypes (K562/K562 and K562/Hela,
respectively); the two rightmost box-plots compare for the HelLa-S3-specific peaks that contain such homozygous SNPs, the motif scores for the
Hela-S3 and K562 genotypes (HelLa/Hela and Hela/K562, respectively). The K562-specific peaks have significantly higher motif scores for the K562
genotype (K562/K562) than for the Hela-S3 genotype (K562/Hela), whereas the Hela-S3-specific peaks have significantly higher motif scores for
the Hela-S3 genotype (HelLa/Hela) than for the K562 genotype (Hela/K562; p = 1.9 % 10~*and p = 1.1 % 10™>, one-sided paired t-tests for K562-
and Hela-specific peaks, respectively).

Table 1 SVM Features

No Name Group Comment

1 Height Height Peak height (percentiles)

2 Length Length Peak length

3 Promoter Promoter Overlap with promoter (boolean)

4 TSS dist TSS dist Dist. to closest transcription start site (max 20.000)
5 Cluster TFs Cluster Number of TFs in overlapping cluster

6 Cluster avg height Cluster Avg peak height in overlapping cluster

7 Chromatin avg Chromatin Avg DNase signal in two cell types

8 Chromatin diff Chromatin DNase signal diff between two cell types

9 H3K4me3 avg H3K4me3 Avg H3K4me3 signal in two cell types

10 H3K4me3 diff H3K4me3 H3K4me3 signal diff between two cell types
11 H3K27me3 avg H3K27me3 Avg H3K27me3 signal in two cell types

12 H3K27me3 diff H3K27me3 H3K27me3 signal diff between two cell types
13 CpG freq CpG CpG frequency in peak region sequence

14 High CpG CpG Equal to 1 if sequence is high in CpG

15 Low CpG CpG Equal to 1 if sequence is low in CpG

16 PhyloP PhyloP PhyloP conservation score in sequence region

The SVM predictors were given these data as input for training and were classifying peaks as overlapping or not (that is, cell-type specific).
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the SVM’s cross-validation performance (Figure 7A). peak height was important to most TFs. As for individual
Although the results were somewhat different for each  TFs, the two TFs with the fewest peaks in their datasets,
combination of TF and feature, one result was clear: peak ~ BDP1 and BRF1, had larger score variation than the other
clustering and peak height were the only features that had ~ TFs. As a result, the TFs appeared to benefit from remov-
a strong positive impact on the prediction for the majority  ing some features. Finally, removing information about
of the TFs. Peak clustering was particularly important for  the distance to the closest transcription start site (TSS)
classifying E2F4 and E2F6 peaks, whereas information on  had an expected negative impact on TAF1, which is a
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Figure 7 Most important features for classification of peak cell-type specificity. A) Difference in average 10-fold crossvalidated ROC-score for
each TF SVM classifier after removing all features within a feature group (see Table 1), compared to including all features. Y-axis shows the change in
ROC-score after removing the corresponding feature for the given TF. Removing peak clustering or peak height gives a decrease in ROC-score for
most TFs. B) As (A), but after removing confounding factors from the analysis. Specifically, only the 10% highest and 20% most clustered peaks were
used, and peak height and cluster features were removed from the SVM training and test datasets. Only the five TFs that had more than 100
remaining peaks in both the overlapping and the cell-type specific datasets were considered. The importance of features varies for each TF.
Distance to TSS seems to be more informative than the binary promoter feature, and removal of the cell-type specific mark for active chromatin
(H3K4me3) gives the highest performance penalty overall.
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core component of the Pol II basal transcription factor
TFIID [47].

Given the major importance of peak height and clus-
tering for classifier performance, and in light of previous
results (Figure 3), we reasoned that including these fea-
tures made it difficult to assess any importance of other
features. We also suspected that some of the features
could contain redundant information, as removing sin-
gle features had relatively little impact on performance.
We therefore removed peak height and clustering from
the dataset and grouped features into the following three
groups: cell-type specific features (chromatin accessibility
and histone modification status), promoter and sequence-
associated features (promoter, TSS distance, CpG con-
tent), and conservation feature (phyloP). The results
(Additional file 11: Figure S10) showed that cell-type spe-
cific and promoter-associated features were important for,
respectively, most (all except E2F6) and some (CTCE,
E2F6, c-Fos, and c-Myc) of the sequence-dependent
TFs, whereas only promoter-associated features were
important for some of the general TFs (TFIIIC-110 and
RPC155). Sequence conservation, however, was not an
important factor for identifying cell-type specific peaks in
this dataset.

Peak height and clustering were the dominant factors in
explaining cell-type specificity and could therefore con-
found the effects of other features when analyzing the
total set of all peaks. We therefore did a separate analy-
sis of the highest and most clustered peaks, as differences
between cell types for these peaks should be due to other
factors than peak height and clustering. Specifically, we
first identified the subset of peaks that were among the
10% highest and that also occurred among the top 20%
largest peak clusters; that is, in clusters containing peaks
from six or more TFs. Second, we did a feature removal
analysis on the five TFs that had more than 100 remaining
peaks in both the overlapping and the cell-type specific
datasets. Although none of the features on this reduced
dataset showed the same consistent pattern as the height
and cluster features did on the complete dataset, five of
the eight features (Length, TSS, H3K4me3, H3K27me3,
and CpG) had a positive impact on the prediction for
the majority of the five TFs (Figure 7B). Moreover, only
one feature (Prom) had a negative impact on the predic-
tion for the majority of the TFs. These results confirmed
that additional factors beside peak height and clustering,
including cell-type specific data on histone modifications,
are important for identifying cell-type specific TF binding.

Models for identifying cell-type specific peaks are
consistent between cell lines

The feature analysis suggested that even though peak
height alone was a critical factor for identifying cell-type
specific peaks, other features could also help predictions.
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To further assess the effect of adding additional features,
we therefore developed two reference models, which we
refer to as Height and HPP. These models were also based
on SVMs, but contained fewer features; Height used only
peak height as its single feature and HPP used peak height,
phyloP conservation score, and PWM score (Figure 8A;
see Additional file 10: Figure S9A for the ROC curves).

Consistent with the feature analyses, the SVM model
that included all features (termed SVM in Figure 8), was
significantly better than the two reference models (p =
4.9 %10~* and p = 7.8 * 1073 for Height and HPP, respec-
tively, on a Wilcoxon signed-rank test). The HPP model
was also significantly better than Height (p = 7.8 * 1073).
The Height model only had a higher ROC-score than the
full SVM model on the BRF1 dataset. This is likely due
to a low number of training examples for the more com-
plicated SVM method, as there were only 81 BRF1 peaks
in K562. Consistent with previous results (see c-Fos peak
overlap in Figure 3), peak height alone was insufficient to
predict overlapping c-Fos peaks.

So far we had tested how the models performed when
classifying new unseen peaks from the same cell types
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Figure 8 Best prediction performance with all features. A)
ROC-score for each TF classifier using the SYM model with all features
(SVM), with peak height only (Height), and with peak height, phyloP
conservation and PWM score (HPP), after 10-fold stratified
cross-validation on the dataset consisting of K562 and Hela-S3 peaks.
B) ROC-score after 10-fold stratified cross-validation when training
classifiers on K562 and Hela-S3 peaks, and then testing for overlap
with peaks from a third cell type, GM12878.
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(K562 and HeLa-S3) used during training, but would the
models generalize to a different cell type? To address this
question, we used a stratified 10-fold cross-validation pro-
cedure where we first trained the models on a subset of
K562 peaks that were common and cell-type specific com-
pared with HeLa-S3 peaks. We then tested the models
on a different subset of K562 peaks that were common
and cell-type specific compared to peaks in the GM12878
ENCODE cell line; that is, we trained the models on K562
and HeLa-S3 data and tested the models on K562 and
GM12878 data. Importantly, none of the peaks in these
train and test sets overlapped and the cell-type specific
features (Chromatin, H3K4me3, and H3K27me3) were
derived from two different cell types in the train (HeLa-
S3) and test (GM12878) sets. We trained and tested the
models on the five TFs with ChIP-seq data available in all
three cell types.

Whereas the Height and HPP models had similar per-
formance in the new cell type (p = 0.22 and p = 043,
respectively; one-sided Wilcoxon signed rank test), the full
SVM model had a significant drop in performance (p =
0.031); see Figure 8B and Additional file 10: Figure S9B.
This drop resulted in the full SVM model having lower
ROC-scores than the Height model had on three of the
five TFs. The largest differences between the SVM and
Height models were on the Max and c-Fos data, sug-
gesting that the SVM model was over-fitted on these
particular TFs. Indeed for c-Fos, the different features in
the SVM were more inconsistent between the three cell
types than for the other TFs (7 of 14 feature trends dif-
fered, compared with 5 of 12 for TAF1 and at most 2
of 14 differing trends for the three other TFs; compare
Figure 3, Additional file 2: Figure S1, and Additional file 3:
Figure S2).

These inconsistencies between the cell types also
strongly affected the Height and HPP models on the
c-Fos data. As already mentioned, Height could not pre-
dict c-Fos peaks that overlapped between K562 and HeLa-
S3, whereas the HPP model trained on K562 and HeLa-S3
data could not predict peaks that overlapped in K562 and
GM12878. Of the five TFs, c-Fos had the least consistent
binding sites between the three cell types (Additional file
12: Figure S11). c-Fos is less specific in recognizing the
AP-1 site compared to dimer-partners Jun and ATF2 [44],
so some of the differences could be because c-Fos used
different co-factors in the three cells. This explanation is
consistent with c-Fos having three different trends in peak
heights and PWM scores for the three cell lines. Moreover,
Jun expression level was four times as high in HeLa-S3 as
in K562, and the strong c-Fos peaks in HeLa-S3 had good
AP-1 consensus motifs compared to weaker peaks (Addi-
tional file 2: Figure S1). However, as previously mentioned,
we cannot exclude that c-Fos or its antibody had cross-
reacted with a different TF in K562. Apart from c-Fos,
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however, the models could consistently separate cell-type
specific from cell-type independent TFBS.

Discussion

There is limited knowledge on how regulation by tran-
scription factors in general varies between different cel-
lular conditions, and what causes specific transcription
factor binding. Most newer approaches for inferring gene
regulatory networks rely on experimental data that partly
limit the inferred networks to a specific cellular context.
While this makes it possible to focus on the interactions
that are active in the particular context under study; it also
means that it can be difficult to completely map the gen-
eral regulatory network by using these approaches [21].
Because ChIP-seq is increasingly used for inferring gene
regulatory networks, and is also used to validate predic-
tions of other methods [48], it is important to understand
to what extent ChIP-seq data are limited to a specific cel-
lular context. Here we have investigated ChIP-seq data
for a number of TFs and examined possible causes of
observed differences in binding.

Our initial analysis indicated that in general, the num-
ber and location of binding sites as given by ChIP-seq peak
data varies substantially between HeLa-S3 and K562—
even for the same TF. The average peak overlap of 30% we
found is in accordance with previous findings on TF bind-
ing specificity among different cell-lines [31], and we note
that similar levels of overlap have been found for regions
of open chromatin between a number of different cell
lines [28].

These binding differences can partly be explained by
cell-type specific regulation. Specifically, our results show
that chromatin accessibility, histone modifications, and
genetic variations in peak regions can explain some of the
cell-type specific peaks. Another factor that could estab-
lish alternative binding contexts is a difference in avail-
ability of TF co-factors across cell types [11]. Although
we found significant differences in co-factor expression
and PWM score distributions between the cell types (see
Additional file 13: Table S1 and Methods), because of
limited and noisy PWM and interaction data it is dif-
ficult to quantify the overall effect of co-factor differ-
ences. Stochastic noise does appear, however, also to be
a major factor in causing binding differences. Specifically,
we found that peak height and additional TF binding
events (clustering) are the most important features for
discriminating between overlapping and cell-type specific
peaks. When focusing on the 10% highest and 20% most
clustered peaks, the average overlap increased to 58% and
68% for the K562 and HeLa-S3 peaks and open chromatin
and histone modifications were important for separating
cell-type specific from common peaks. Low peaks, in con-
trast, were less associated with features supporting regula-
tory activity (Figure 3), including condition-independent
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features such as PWM score and sequence conservation,
indicating that a larger fraction of the low peaks than
of the high peaks represents stochastic noise or spurious
binding events.

Both high and low affinity binding sites are, however,
known to have biological importance in regulating gene
expression [49,50]. Merely setting a high cut-off on peak
height to reduce noise [51] will therefore risk losing many
functional sites. Conversely, using peak height to infer
whether a candidate TFBS will have binding activity in
other cellular contexts risks introducing false positive reg-
ulatory interactions. Our SVM classifier can partly solve
both these problems, as the SVM is a better alternative
than peak height alone for identifying TFBS that are com-
mon between cell types, when sufficient training data are
available. Alternatively, combining peak height with evo-
lutionary conservation and TF motif scores (our HPP
model) gives good predictions when less data are avail-
able. Being less complex than the SVM model, the HPP
model also is less prone to overfitting than the SVM
model, as seen when the models were tested on a third
cell type. As all three methods for finding common TFBS
sites are data-driven, however, all three methods can suf-
fer from inconsistent data, such as the c-Fos datasets.
Apart from c-Fos and TFs with limited data, both the SVM
and HPP models outperformed the simple peak height-
based model for finding consistent TFBS. These models
can therefore also be used to remove noise and identify
high-confidence TFBS in ChIP-seq data.

Peak height and clustering are the most important fea-
tures for the SVM. Consequently, if context-specific peaks
are indeed much more noisy than context-indifferent
peaks, the SVM classifiers are perhaps to a greater
degree learning to differentiate between real binding sites
and noise, and to a lesser degree learning to differenti-
ate between context-independent and context-dependent
binding sites.

Our results show that low peaks are less consistent
than high peaks, but what are then potential causes for
these inconstancies? Weak, apparently random TF bind-
ing, non-specific antibody binding, and sequencing errors
combined with peak calling artefacts [12,36] can con-
tribute random noise, but one intriguing possible con-
tribution is cell culture subpopulations that have slightly
different cellular contexts. Cell cultures, such as the three
cultures used in the ChIP-seq experiments we based our
analyses on, are generally a heterogenous mix of individ-
ual cells in slightly different biological states. For example,
unsynchronized HeLa cells growing in culture consist
of different subpopulations of cells that are in different
cell cycle phases and have slightly different transcrip-
tional states [52]. Population-wide measurements, such
as ChIP-seq data, from such unsynchronized cell pop-
ulations represent an average of these individual states.
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Consequently, binding events that are biologically consis-
tent but only occur within a small fraction of the cells,
because these cells are in a transient transcriptional state,
will give low or undetectable ChIP-seq peaks that can
appear to be random events. Supporting this explanation,
the 30% lowest cell-type specific peaks in the ChIP-seq
data showed more consistent differences in DNase sensi-
tivity and H3K4me3 signal between the cell lines than the
30% highest peaks showed (Figures 4 and 5 and Additional
file 7: Figure S6 and Additional file 8:Figure S7), even
though the differences in DNase sensitivity and H3K4me3
signal were smaller for the low than for the high peaks
(Additional file 9: Figure S8). Small but consistent differ-
ences in DNase sensitivity and H3K4me3 signal together
with low TF peaks indicate that these TF binding events
occur within small but consistent subpopulations of the
cell cultures. More focused experiments in synchronized
cell cultures may therefore be necessary to completely and
correctly map context-dependent regulatory networks.

Conclusions

Many methods for inferring gene regulatory networks are
based on ChIP-seq-predicted transcription factor bind-
ing sites, but little is known about how specific these
data are to the experimental context. Here we find that
on average a third of ChIP-seq predicted transcription
factor binding sites overlap between the cell lines K562
and HeLa-S3. This number is in accordance with pre-
vious findings on cell-type specificity and suggests that
regulatory networks inferred uncritically from ChIP-seq
data will, in general, generalize poorly to different cel-
lular contexts. However, some subgroups of peaks are
less context-specific than others. Specifically, peaks in
regions associated with tissue-independent regulation,
such as CpG-rich promoter regions, and more gener-
ally, high and clustered peaks associated with strong
and conserved binding sites, tend to be more cell-type
independent.

Even though some of the discrepancy between the two
cell types can be caused by cell-type specific regulation of
chromatin and co-factors, the results indicate that most
of the discrepancy—especially among the low peaks—is
due to stochastic noise in the ChIP-seq data. Our results
do, however, not exclude that different sub-populations
contribute to the discrepancy. Specifically, the small but
consistent differences in DNase sensitivity and H3K3me3
signal we observed for the 30% lowest peaks are consistent
with distinct sub-populations within the data. Neverthe-
less, context-independent attributes, such as PWM score
and sequence conservation, are more associated with
stronger and more overlapping peaks than with weak and
isolated peaks.

Moreover, both sequence-specific TFs and sequence-
independent cofactors shared the same characteristic of
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stronger peaks being more cell-type independent. Indeed,
even the sites for the Pol III subunit RPC155, which is
enriched at Pol III promoters and shows highly corre-
lated peak heights between different cell lines [35], were
more cell-type independent and more associated with
Pol III promoters when the sites corresponded to strong
compared to weak peaks. Consequently, it is likely that
stochastic binding events instead of consistent cell cul-
ture sub-populations explain most of the observed cell-
type specific binding events for the low and isolated
peaks. Accordingly, methods that try to build context-
independent gene regulatory networks from ChIP data
could benefit from focusing on high and clustered peaks
in conserved genomic regions. Our SVM method can help
identify such peaks.

It might be a while before binding sites of most TFs
are mapped in a majority of tissues and cell lines. Until
then, any available ChIP-seq data, however noisy and
condition-specific, is likely to serve as our best source
of information on the location and context of regulatory
elements.

Methods

ChIP-seq data and peak calling

The ChIP-seq data were based on public genome-wide
ChIP-seq datasets from the ENCODE project [34], avail-
able from the UCSC Genome Browser as Yale TFBS
and HAIB TFBS tracks [53]. Data was downloaded for
13 TFs (see Figure 1) for cell types K562 and HeLa-
S3, and for 5 TFs (CTCF, GABP, Max, TAF1, c-Fos) for
GM12878. The raw tagcount data was then processed by
our own peak detection method [36] which we briefly
describe here:

ChIP-seq peaks were identified in sample and replicate
data by two different peak-finder programs, MACS [54]
and SISSRs [55]. Both programs were run using inde-
pendent background samples to correct for biases in the
background tag distribution. To reduce the number of
false and spurious peaks identified, only peaks identified
by both programs, and in the replicate for MACS, were
used in the benchmark. Peak regions were then shortened
to 100-400bp by a peak-trimming procedure to reflect the
resolution in ChIP-seq data.

Defining overlap regions and peak clusters

Data from the cell type K562 was used as a reference in
further analysis unless stated otherwise. A peak in a cell
type was defined as overlapping with another peak in a
different cell type if the two peak regions shared at least
one base pair. Relative overlap was calculated as the num-
ber of overlaps divided by the number of peaks in the cell
type (K562 or HeLa-S3) having fewest peaks for the given
TF. Promoter regions were defined as the region 2000
bp upstream to 200 bp downstream of transcription start
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sites of RefSeq genes (as of October 22. 2009), together
with the first intron of the gene. Pol III promoters were
defined as the regions -2000bp upstream and +200bp
downstream of tRNA transcription start sites from the
tRNAscan-SE Genomic tRNA Database [56] (downloaded
June 11. 2012).

CpG frequencies and CpG region types were com-
puted as in [41]. Specifically, CpG-rich regions were
defined as regions having at least one subregion of
length 500 bp with GC content > 55% and CpG fre-
quency > 75%; CpG poor regions having CpG frequency
< 48%. The list of housekeeping genes were downloaded
from [39].

Peaks were clustered by first extending each peak region
to a total length of 2000bp. Peaks overlapping within the
extended region were then identified as belonging to the
same cluster [45].

TF expression

Paired-end RNA-seq reads were downloaded from the
ENCODE Caltech RNA-Seq track in the UCSC Genome
Browser. Both available replicates were used and the num-
ber of reads mapping to each RefSeq exon was counted.
The count was normalized on exon length and averaged,
to get the expression for a given RefSeq. Counts were also
normalized on total number of reads within one exper-
iment when comparing across experiments. The expres-
sion for a TF was averaged from all RefSeqs whose gene
symbol mapped to the TF and had at least 1 read mapping
to an exon.

Peak binning, chromatin differences, and PWM score
To investigate how peak height correlated with other
genomic features, we binned peaks in 10 approximately
equally-sized groups according to peak height (i.e. num-
ber of tags mapping to peak region). Each peak got a
measure of chromatin accessibility using data on DNa-
sel hypersensitivity from the ENCODE Open Chromatin
track available from the UCSC Genome Browser: Using
the tag files with aligned reads from the DNasel hypersen-
sitivity sequencing (DNase-seq) experiments, we counted
the number of tags that overlapped with each peak region
and divided by the peak region length and total number of
tags (in millions) in the experiment to control for variation
in peak region length and differences in sequencing depth
between experiments. We used version 2 of the dataset
and all available experimental replicates. Likewise, data on
H3K4me3 and H3K27me3 was taken from the ENCODE
UW Histone ChIP track. The average phyloP score in each
peak region was calculated from the phyloP28Way pla-
cental mammals multiple alignment scores, also available
from UCSC.

An in-house developed program was used to calcu-
late PWM scores [48]. The maximal PWM score on the
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sequence from both strands in the peak region was used
as the PWM score of the peak. The PWMs were taken
from release 2008.2 of the Transfac Professional Database
[57] and the Jaspar database [58], downloaded on October
12th, 2009. A pseudo-count of 1 was added to each base
position to avoid any potential zeros when calculating the
log-odds score. The background distribution of each base
was calculated by counting the number of times each base
occurred in the whole hgl8 genome and dividing by the
sum for all four bases. See Additional file 14: Table S2 for
a list of which PWMs were used.

Genotyping and SNP analysis

Raw reads from ENCODE [34] ChIP-seq data for K562
and HeLa-S3 were downloaded from the Yale TFBS
and HAIB TFBS tracks available in the UCSC Genome
Browser [53]. The reads were aligned to the hgl8 [59]
genome using Novoalign [60]. Novoalign supports align-
ment using [UPAC ambiguity codes. To account for allele
bias, we made a “masked” version of the reference genome
with these ambiguity codes at locations of SNPs in dbSNP
[61]. As the “reference genome” input to Novoalign, we
used the regions consisting of the peak regions flanked by
30 nucleotides upstream and downstream in the masked
reference genome. Reads with low alignment quality or
multiple alignment positions were filtered out. SAMtools
[62] was used to merge files with aligned reads to do
genotype calling. Genotypes were called using SAMtools’
default settings. SAMtools takes into account the number
of reads, quality of reads, and quality of single bases at the
position of variation. SNPs were filtered using annotated
SNPs from the HapMap database [63]. Allele frequencies
were calculated based on ratio of reads with reference
and alternate allele. Additional file 1: Peaks and SNPs
includes all peak regions and the SNPs mapping to the
peak regions.

Cofactors

A list of potential co-factors for each TF was made by
combining data from the Fantom consortium [11] and
the annotated interactions in the Transfac database [57].
Differentially expressed co-factors were defined as those
co-factors being among the top 5% most differentially
expressed TFs in the list. We applied the Kolmogorov-
Smirnov test for difference (p < 0.05) in the distribution
of PWM scores for the known co-factor PWMs in a 1000
bp region surrounding the cell-type specific peaks of K562
and HeLa-S3.

Discriminative motif discovery in 500 bp regions cen-
tered on cell-type specific peaks was done with DREME
[64], using an E-value cutoft 0.01 and with 4 as the mini-
mal k-mer length. Motifs were matched against Transfac
[57] and Jaspar databases [58] with TomTom [65], using
threshold 0.1 and with 3 as minimal overlap length. All
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gene symbols from the matched PWMs in the Transfac
Factor table or Jaspar were filtered to keep only approved
gene symbols as defined by HGNC [66]. The resulting
gene symbols were then matched against our list of poten-
tial co-factors.

SVM features and classification setup

The list of features for the SVM method is available in
Table 1. Peak height was transformed into percentiles
(separately for each TF and cell-type grouping). Peak
length was the length in nucleotides of the trimmed ChIP-
seq peak. The promoter feature was 1 if the peak over-
lapped at least 1 bp with the promoter region (defined
above), or else 0. TSS distance was the maximum of the
distance to the closest TSS and 20.000, so as to limit the
range of the feature. The clustering features included a
count of the number of peaks in the peak cluster (if any)
and average peak height in cluster. See above for details on
how the clustering was done.

The chromatin and histone data for each peak were cal-
culated as explained above. For the features we calculated
the average read count in the peak region in two cell types,
and also the difference in read count between the cell
types. CpG features were computed as explained above (in
“Defining overlap regions and peak clusters”). The phy-
loP feature was calculated for each peak region by using
a weighted average of all the signal values that overlapped
with a peak region, weighting each value by the length of
the signal region.

Two 10-fold crossvalidation tests were performed on all
three methods using peaks from the K562 cell type. The
first test investigated the ability to recognize which K562
peaks overlapped with HeLa-S3 peaks when trained and
tested on different parts of the K562 dataset. The second
tested how the methods could predict which K562 peaks
overlapped with GM12878 peaks when being trained on
data from comparing K562 peaks with HeLa-S3.

When doing feature elimination on single features,
all features within a single feature group were removed
from the dataset before training and testing. Feature
elimination was also done with larger groups of fea-
tures, as explained in Results. All of the tested meth-
ods were based on the same Support Vector Machine
setup for consistency. The classification was performed
using a combination of own code and the PyML
machine learning framework [46,67]. We chose to use
an SVM-based classifier because of our previous experi-
ence with the algorithm, and because SVMs have been
used extensively and with success on high-dimensional
and large classification problems in computational
biology [46].

Availability
The ChIP-seq peak region data are available upon request.
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Additional files

Additional file 1: Peaks and SNPs. This tab-separated file includes all
peaks and the SNPs mapping to the peak regions. The fields are peakiD,
cell type, TF, chromosome, peak start, peak stop, height, overlapK562,
overlapHela-S3, overlapGM12878, overlapPromoter, SNPs. The SNP field is
further delimited by a dash (—) for each SNP in the peak region. Each SNP
is described by ID, genotype (0=as reference, 1=alternate allelle),
genotyping quality score estimated by SAMtools [62] (Q), frequency of
alternate allelle (AF), and number of reads containing position (DP). The
values describing a SNP are separated by semicolons.

Additional file 2: Figure S1.Higher peaks in HeLa-S3 have more
consistent support in other data marking regulatory regions. As Figure 3,
but for Hel.a-S3 peaks instead of K562. Overlap is here measured as
percentage of Hel.a-S3 peaks that overlap with K562 peaks.

Additional file 3: Figure S2. Higher peaks in GM12878 have more
consistent support in other data marking regulatory regions. As Figure 3,
but for GM12878 peaks. Overlap is here measured as percentage of
GM12878 peaks that overlap with K562 peaks.

Additional file 4: Figure S3. Pol Il promoter overlap correlates with peak
height for Pol lll-associated factors. Similar to Promoter data in Figure 3, but
for overlap with Pol lll promoters, (defined as the regions -2000bp
upstream and +200bp downstream of tRNA transcription start sites from
the tRNAscan-SE Genomic tRNA Database [56]). The Pol lll-associated
factors and subunits BDP1, RPC155 and TFIIIC-110 all show significant
correlation between peak height and promoter overlap.

Additional file 5: Figure S4. Different motifs in low and high c-Fos peaks.
A) The canonical AP-1 motif taken from the Transfac database [57] (matrix
identifier VSAP1_Q4_01). B) The highest scoring motif discovered in low
c-Fos peaks in K562 is similar to the canonical motif. €) The 23rd highest
scoring motif in high c-Fos peaks in K562 has the best resemble to the
canonical motif, but is still quite different from the motif

depicted in A).

Additional file 6: Figure S5. After balancing GC-content, higher peaks in
K562 still have more consistent support in other data marking regulatory
regions. As Figure 3, but for a GC-balanced subset of K562 peaks. For each
TF, peaks were binned into 10 equal-interval bins based on GC-content
after removing the top and bottom 5% (GC-outliers). Then, for each height
bin, we randomly sampled the same number of peaks from each GC-bin to
keep GC-content approximately equal in each height bin. The trend in the
data is similar to the trend in Figure 3.

Additional file 7: Figure S6. Low cell-type specific peaks have differences
in chromatin accessibility. As Figure 4, but for the 30% lowest peaks. The
30% lowest peaks show clear differences in chromatin accessibility.

Additional file 8: Figure S7. Low cell-type specific peaks have differences
in active histone modifications. As Figure 5, but for the 30% lowest peaks.
The 30% lowest peaks show clear differences in active histone markings.

Additional file 9: Figure S8. High cell-type specific peaks have a larger
difference in chromatin signal than low peaks. A) Peaks were binned in
equally-sized bins sorted on peak height. The upper panel (K562) shows
the difference in median DNase-seq read count pr bin between K562 and
Hela-S3 for K562 specific peaks, whereas the lower panel shows the
difference between Hela-S3 and K562 for Hela-S3 specific peaks. B) As A),
but for H3K4me3 signal instead of DNase accessibility. Within the set of
peaks that are unique to a cell type, the higher peaks have larger difference
in chromatin accessibility and active marks between the cell types than
lower peaks. This suggests that higher cell-type specific peaks are more
likely to be due to cell-type specific regulation of the chromatin.

Additional file 10: Figure S9. ROC curves. A) ROC curves on 10-fold
stratified cross-validation on K562 and Hel.a-S3 training and testing data.
X-axis is true positive rate, Y-axis is 1-false positive rate. B) ROC curves on
10-fold stratified cross-validation on K562/Hel.a-S3 training and GM12878
testing data.

Additional file 11: Figure S10. Most important feature group for

classification. Difference in ROC score after first removing confounding
factors (peak height and clustering), and grouping features into three
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groups (cell-type specific, promoter/sequence, phyloP) and then removing
a given feature group. Error bars show average ROC score change on 10
cross-validation folds plus/minus one standard deviation.

Additional file 12: Figure S11.K562 peaks overlap. Overlap in different
cell types for all K562 peaks. CTCF and GABP have many common peaks
between all the cell types, whereas c-Fos have few common peaks
between all cell types.

Additional file 13: Table S1. Significant co-factors. This table shows the
co-factors having significant expression differences between K562 and
HeLa-S3. Co-factors shown in bold text also had a PWM available and
significant difference in PWM score distributions between cell-type specific
peaks.

Additional file 14: Table S2. PWMs. The position weight-matrix
identifiers of the PWMs taken from Transfac Professional [57] (6) and Jaspar
[58] (1) databases. PWMs were not available for the TFs BDP1, BRF1, BRF2,
RPC155, TAF1, and TFIIIC-110. If more than one PWM was available for a
given TF, the PWM with the highest information content after division by
PWM length was chosen. Also shown are the sequence logos made from
the motif sequences using WebLogo [68].
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