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Abstract

Background: Coral reefs belong to the most ecologically and economically important ecosystems on our planet.
Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution.
Understanding the molecular impact of these stressors on different coral species is imperative in order to predict
how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays
has provided deep insight into the molecular stress response of corals. Here, we have performed comparative
genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing
13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of
existing microarray platforms for use in gene expression studies (via heterologous hybridization).

Results: Our results showed that the current microarray platform for A. palmata is able to provide biological
relevant information for a wide variety of coral species covering both the complex clade as well the robust clade.
Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without
annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically
restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in
M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average
divergence rate.

Conclusions: The use of present microarray platforms for transcriptional analyses in different coral species will
greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary
differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to
identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded
genes in robust corals. Accordingly, this needs to be taken into account when using mitochondrial markers for
scleractinian phylogenies.
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Background
Coral reefs are one of the most productive and diverse
ecosystems on our planet. As such, they are of immense
ecological and economic importance. Yet, these tropical
marine ecosystems are currently threatened by a multi-
tude of factors including climate change-induced mass
bleaching events [1], disease [2,3], pollution [4,5], over-
fishing, and eutrophication [6-8]. Understanding the
effects of multiple threats to corals is necessary in order
to predict how coral populations will respond to
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reproduction in any medium, provided the or
continued disturbance. Genetic and genomic tools now
exist that allow us to understand the molecular under-
pinnings of coral health and stress [9-14].
In particular, cDNA microarrays have accelerated the

discovery of stress-responsive genes and mechanisms in
recent years in a wide range of non-model organisms
[15-17]. cDNA microarrays can assay the expression of
thousands of genes simultaneously from control and ex-
perimental specimens. Large-scale microarray studies on
marine organisms such as porcelain crabs [18], damsel-
fish [19], and gobies [20,21] have provided transcrip-
tomic information in relation to environmental
physiology. Small-scale [22,23] and large-scale cDNA
microarray studies have been carried out on different
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:christian.voolstra@kaust.edu.sa
http://creativecommons.org/licenses/by/2.0


Aranda et al. BMC Genomics 2012, 13:501 Page 2 of 10
http://www.biomedcentral.com/1471-2164/13/501
scleractinian coral species including Montastraea faveo-
lata, Acropora palmata, and Acropora millepora
exposed to environmental stress [9-13,24-27]. However,
comparative studies in other coral species are imperative
to provide insight into the molecular differences be-
tween coral species and to determine the extent to
which previous findings can be generalized. Yet, the es-
tablishment of new microarray platforms is highly time
and resource intensive. Nevertheless, microarray studies
are not necessarily restricted to the species from which
the cDNAs were generated (i.e. cDNAs from A. pal-
mata). Heterologous hybridization is the methodology
by which cDNAs from non-reference species are used
for hybridization to microarrays (e.g. cDNAs from Acro-
pora millepora hybridizing to an A. palmata micro-
array). This process has been described extensively for
different non-model organisms including birds, pri-
mates, pigs, and bony fish [28-32]. Renn et al. [28] sys-
tematically showed that a microarray composed of
cDNAs from the African cichlid Astatotilapia burtoni
yielded biologically meaningful gene expression patterns
from heterologous hybridizations spanning evolutionary
divergence times from< 10 to > 200 million years (Ma).
As expected, the number of spots giving a reliable signal
decreased with increasing phylogenetic distance; never-
theless, 3,000–4,000 spots out of 4,500 gave a signal at
the largest phylogenetic divergence, which corresponds
to 66%–88% of unique spots on the array. Although the
ability to detect small fold changes decreases with in-
creasing evolutionary distance, a study on the heat shock
response of a damselfish (Pomacentrus moluccensis) util-
izing an oligonucleotide microarray designed for zebra-
fish (Danio rario-divergence time from 11–300 Ma)
reported statistically significant gene expression changes
at less than two-fold in magnitude [19].
Prior to hybridizing non-reference cDNAs to a micro-

array, it is important to use genomic DNA (gDNA) to esti-
mate the projected efficiency of a microarray for
heterologous hybridization experiments. The hybridization
of gDNA to a cDNA microarray is an example of a com-
parative genomic hybridization (CGH). In this case gDNA
from a non-reference species can be competitively hybri-
dized to the array with gDNA from the reference species,
or gDNA from non-reference species can be hybridized
alone. The signal intensity of each spot on the microarray is
dependent on the sequence similarity and gene copy num-
ber between both species (i.e. high sequence divergence =
low signal intensity). For example, Renn et al. [28] showed
that when labeling gDNA from the reference species Asta-
totilapia burtoni, 93% of spots showed intensity levels two
standard deviations over background. In a separate study,
gDNA from Drosophila melanogaster showed an average of
4.2% greater hybridization than Drosophila simulans gDNA
to a microarray designed for D. melanogaster [33],
suggesting that about 95% of the spots yield biological reli-
able information.
In addition to determining the amount of reliable

spots, CGH can also provide valuable information on
gene evolution. Numerous studies on Drosophila [34],
yeast [35,36], Salmonella [37], and Yersinia [38] have
used microarrays to study gene evolution. A particularly
relevant study of the ectomycorrhizal fungus Paxillus
involus and related strains used a cDNA microarray to
screen for rapidly evolving genes [39]. Therefore CGH
can also be used to identify potentially fast-evolving
genes and species-specific adaptations when comparing
related species [40].
We have employed CGH against A. palmata microar-

rays containing 13,546 cDNAs using gDNA from Acro-
pora cervicornis, Siderastrea radians, and Montastraea
faveolata. This allowed us to: (1) establish the number of
“good spots” that can be expected when performing heter-
ologous hybridizations with a range of species at different
evolutionary distances; (2) analyze a genome-wide rate of
gene evolution; and (3) identify candidates for rapidly di-
verging genes. Our results show that more than 84% of
the spots are likely to provide biologically relevant infor-
mation across large evolutionary distances (>240 Ma), i.e.
the results obtained from these spots can be expected to
be scientifically valid. Analyses of the highly divergent
gene fractions further provided insights into molecular dif-
ferences of the two coral clades present today, namely the
robust and complex corals, which separated approx.
~240 Ma. Our results suggest that mitochondrial-encoded
genes might have played an important role during the evo-
lution of the robust coral clade.

Results and discussion
Sequence identity and hybridization signal
A strong correlation between sequence identity and
hybridization signal/ratio is a prerequisite for the use of
heterologous hybridizations in interspecies microarray
experiments. We used the A. palmata-M. faveolata
comparison to analyze whether hybridization ratios were
significantly correlated with the underlying sequence di-
vergence for two reasons: (1) this comparison reflects
the largest evolutionary distance in our experiments; and
(2) because transcriptome sequence data for M. faveo-
lata were readily available. Briefly, orthologs between A.
palmata and M. faveolata were identified by reciprocal
tBLASTx of the A. palmata spotted cDNAs to a M.
faveolata transcriptome data set [41]. We compared the
13,546 cDNA clones spotted on the A. palmata micro-
array to 17,703 cDNA sequences from M. faveolata. A
total of 193 unique spots representing orthologs with
alignment lengths above 200 bp were identified and used
for subsequent analysis. Linear regression of percent se-
quence identity (%ID) to log2 hybridization ratios of
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these spots showed a significant correlation (R2 = 0.39,
p < 0.0001, Figure 1) despite the large evolutionary dis-
tance (>240 Ma). Although the correlation observed is
not strong, it is similar to what has been observed in
previous studies conducted using complete genome
sequences in bacteria [42] and Drosophila species [34].
These results show that sequence identity and signal in-
tensity are significantly correlated despite a considerable
amount of variation and underline the suitability of the
A. palmata microarray platform for heterologous hybri-
dizations with coral species across large evolutionary
distances as has been previously shown for other species
[19,28,43]. The variation observed is likely to stem in
part from using genomic DNA for the hybridization on
cDNA microarray chips. Despite the high identity
throughout the coding regions, the spots on the array do
not contain any intronic sequences, which might influ-
ence the hybridization signal and add to the variation.

Detection of sequence divergence
In order to determine the amount of suitable spots for
heterologous hybridizations with different species, we
conducted an Estimated Probability of Presence (EPP)
analysis using the software GACK [44]. The EPP analysis
assigns a probability for each spotted cDNA sequence of
being present (i.e. conserved), slightly divergent, or
highly divergent in the non-reference species and there-
fore allows to statistically identify conserved and diver-
gent genes based on their hybridization signal intensity
ratios [44].
As expected, analysis of the number of divergent genes

across species showed an increase of divergent genes
and a decrease of conserved genes with increasing
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Figure 1 Linear regression analysis of log2 hybridization ratios
vs. % sequence identity of A. palmata vs. M. faveolata
orthologs.
evolutionary distance (Figure 2). Specifically, we found
that the percentage of conserved genes ranged from
94.83% in the evolutionary closest comparison between
A. palmata and A. cervicornis and 84.51% in the com-
parison between A. palmata and M. faveolata. Accord-
ingly we observed an increase of divergent genes from
0.96% to 4.16%. Interestingly, the amount of genes that
could not be classified as being either conserved or
highly divergent also increased with phylogenetic dis-
tance (Figure 2).
We used MrBayes [45] to examine the phylogenetic

relationships of the coral species using the two mito-
chondrial genes cytochrome c oxidase subunit I (cox1)
and cytochrome b (cytb). Sequence data were compared
to presence/absence hybridization data as provided by
GACK. Both datasets provided trees with identical top-
ology but slight differences in branch lengths indicating
that hybridization data recapture sequence-based data
and can therefore be used to assess sequence divergence
(Figure 3a and b). More specifically, CGH experiments
provide a shortcut to assessing sequence divergence in a
comparative framework in many different genes and spe-
cies for a fraction of the cost of sequencing [46]. Inter-
estingly, a comparison of evolutionary trees based on the
fraction of annotated and non-annotated genes showed
a high increase in branch length separating both acro-
porids from S. radians, which implicates fast divergence
of non-annotated genes within the complex corals. A
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Figure 2 Percentage of (a) conserved and (b) highly divergent
genes across species as determined by GACK.
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Figure 3 Unrooted trees of mitochondrial and nuclear genes. Unrooted Bayesian trees based on (a) nucleotide sequence data and (b-d)
hybridization data (genes were assigned either present, slightly divergent, or highly divergent). (a) Unrooted tree based on the partial nucleotide
sequence of the mitochondrial genes cox1 and cytb. (b-d) Divergence as inferred from GACK of (b) all genes, (c) only non-annotated genes, and
(d) only annotated genes. All trees were generated using Mr. Bayes as described in the methods section.

Table 1 Annoted vs. non-annotated genes

Genes A. cervicornis S. radians M. faveolata

annotated divergent 44 105 193

annotated conserved 6697 5237 4915

non-annotated divergent 76 189 255

non-annotated conserved 5202 4320 4190

p-value (chi-square) <0.0001 <0.0001 <0.0001

Number of annotated and non-annotated genes in the highly divergent and
conserved gene fractions.
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similar increase in branch length is also observed for the
complex/robust clade distance; yet, the difference is not
as pronounced as with the acroporids and S. radians
(Figure 3c and d).
We determined the number of unique spots suitable

for heterologous hybridization for the different species
by defining “good” spots according to their classification
in the GACK analysis as being ‘conserved’. Our results
showed that more than 94% of the spots are likely to
provide biological relevant information for species
within the Acroporidae family while we found that >89%
of the spots can be used for species of the complex clade
and >84% of the spots when using species of the robust
clade (Table 1). These percentages represent 12,733,
12,056, and 11,379 spots with respect to the total num-
ber of unique spots on the A. palmata cDNA platform.
The ‘conserved’ gene criterion proved to be a much
more conservative approach to determine spot fidelity
and resulted in the lowest amount of conserved genes
when compared to other methods, such as the use of
two standard deviations above background as standard
cut-off [28] or methods relying on M values [19,47].
Hence, our approach is likely to underestimate the total
amount of suitable spots, especially for more closely
related species like A. cervicornis. However, we favor a
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more conservative approach since the correlation of se-
quence identity and hybridization signal ratios is known
to become weaker with increasing sequence divergence
[42,47] resulting in impaired biological relevance of data
from spots with low hybridization signals. Taken to-
gether our data indicate that the A. palmata array can
be used for heterologous hybridizations with scleractin-
ian coral species from both clades.

Analysis of divergent and conserved genes
Analysis of the fractions of divergent genes revealed a
large number of non-annotated genes across all compar-
isons. Statistical analysis (Chi square) confirmed a sig-
nificantly higher number of genes without annotation in
the divergent gene fraction across all four species com-
parisons (p < 0.0001, Table 1). Conversely, annotated
genes were significantly overrepresented in the con-
served genes fraction (p < 0.0001, Table 1). Comparison
of trees generated from either annotated or non-
annotated genes showed the same topology, however,
the branch lengths were considerably larger for the non-
annotated gene fractions (Figure 3), which further shows
that non-annotated genes are diverging at a higher rate.
Previous studies in Drosophila, corals, and Symbiodi-
nium [48-50] suggested that non-annotated genes appear
to evolve at a higher rate than annotated genes. In gen-
eral, genes without homologues in other taxa are consid-
ered to be lineage- or species-specific and are therefore
termed taxonomically restricted genes (TRGs) [51].
TRGs are thought to play an important role in lineage-
and species-specific adaptations and have been hypothe-
sized to be a source of phenotypic diversity [52-54]. In
scleractinian corals, many genes involved in biominerali-
zation such as some galaxin orthologs appear to be
unique to corals and are therefore considered to be
coral-specific TRGs [55]. Other TRGs of corals include
SCRiPs, a novel family of putatively secreted, small,
cysteine-rich proteins that appear to function during de-
velopment [56].
We analyzed the overlap of highly divergent genes

across all comparisons to identify genes that appear to
evolve faster across families and/or clades (Additional
file 1). Our analysis showed a successive increase of
highly divergent genes with increasing evolutionary dis-
tance. We identified a total of 120 unique spots to be
highly divergent in A. cervicornis and 294 unique spots
in S. radians when compared to A. palmata. Both com-
plex corals shared only 5 unique spots whereas 19
unique spots were shared between all species (Figure 4,
Additional file 2). However, it is likely that the 19 unique
spots shared between A. cevicornis, S. radians and M.
faveolata also contain genes that are actually rapidly di-
verging in A. palmata and hence appear as highly
diverged across all species comparisons. The largest
overlap of highly divergent genes was found between S.
radians and M. faveolata, which shared 190 unique
spots. However, of these 190 unique spots we found 116
to be without annotation and further 37 annotated as
predicted, putative, or otherwise uncharacterized pro-
tein. A similar result was found for all other compari-
sons. Of the 60 unique spots found to be highly
divergent in the A. cervicornis – A. palmata comparison
only 18 had a functional annotation while only 127 out
of the 203 spots unique to M. faveolata-A. palmata
comparison were annotated (Additional file 1, Additional
file 3, Additional file 4). The large amount of non-
annotated genes in the divergent gene fraction did not
allow the identification of specific pathways and/or gene
groups that might potentially be rapidly diverging with
the exception of mitochondrial genes, which are dis-
cussed below.

Evolution of the robust clade
The comparison between the robust clade (also referred
to as the short clade because of their shorter 16 s and
12 s mitochondrial sequences [57,58]) coral M. faveolata
and the complex coral A. palmata revealed 452 puta-
tively divergent genes of which 203 were exclusively di-
vergent in the robust-complex clade comparison, i.e.
they did not appear to be divergent in the comparisons
within the complex clade corals. Interestingly, these
included most of the mitochondrial-encoded genes such
as NADH-ubiquinone oxidoreductase subunits 1, 4, 5
and 6 as well as cytochrome c oxidase subunit 1, 2, 3 and
cytb. This suggests that the mitochondrial genome of
robust corals underwent a phase of rapid divergence
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while the majority of nuclear encoded genes diverged
considerably slower.
Previous studies found that anthozoan mitochondrial

genomes display a lower mutation rate than nuclear-
encoded genes [59-62]. Hellberg et al. [60] for instance
reported that the mitochondrial encoded-gene cox1 of
the two complex corals Balanophyllia elegans and
Tubastrea coccinea showed significantly lower synonym-
ous substitution rates than nuclear-encoded genes. In
line with that, Kitahara and colleagues [63] showed that
the average nucleotide difference of the mitochondrial
cox1 within the clades was less than 8%. However, the
same study showed that the average difference of the
cox1 gene between the complex and the robust clade
was 19.1%. Interestingly, phylogenetic comparison be-
tween the complex clade and the more basal sister group
corallimorpharia showed that the average nucleotide dif-
ference of cox1 was only 13.6%, which is considerably
lower than the 21.3% average difference found between
robust corals and corallimorpharia. This further suggests
that the mitochondrial genome of robust corals must
have undergone a phase of rapid divergence during or
since the evolutionary split from the complex coral
clade.
Indeed, more detailed analysis on the mitochondrial

genomes of Acropora tenuis and species from the Mon-
tastraea annularis complex (M. franksi, M. faveolata
and M. annularis) showed strong indications for non-
neutral and unequal rates of evolution, i.e. the mito-
chondrial genome of robust corals has been under
strong positive selection during or after the evolutionary
split of the complex and robust clades [64]. Conse-
quently, Fukami et al. [64] proposed that robust corals
might have passed through a general phase of faster evo-
lution. Our results corroborate these findings addition-
ally suggesting that this phase of faster evolution might
have been predominantly restricted to the mitochondrial
genome while the average divergence rate of nuclear-
encoded genes remained largely unchanged. This is an
interesting finding which points towards an important
role of the coral mitochondrion or mitochondrial-
encoded genes during the evolution of the robust clade.
For instance, mitochondrial bioenergetics has been dis-
cussed as a potential major force in speciation through
co-evolution of mitochondrion and nuclear-encoded
mitochondrial genes. This can result in specific co-
adaptations that can lead to incompatibilities and conse-
quently to reduced fitness and reproductive barriers for
certain haplotype combinations [65,66]. Rawson and
Burton observed reduced performance for various fitness
traits in interpopulation hybrids of the copepod Tigrio-
pus californicus, which appeared to be associated with
co-adaptation between cytochrome c (nuclear encoded)
and cytochrome c oxidase (mitochondrial encoded) [66].
Subsequent analyses suggested a single amino acid sub-
stitution in the cox1 subunit as cause for a lower activity
and consequently for the observed interpopulation hy-
brid breakdown [67].
The evolutionary forces that can lead to co-evolution

of nuclear- and mitochondrial-encoded genes are diverse
and include climatic adaptation as well as specific adap-
tations to an ecological niche or changes in the environ-
ment [65]. To date it is unclear whether the complex
and robust coral clades diverged before or after the
Permian-Triassic extinction event [68-71]; yet, both sce-
narios are in line with strong environmental changes
and the sudden availability of new ecological niches.
Such strong changes might have favored a rapid adapta-
tion of mitochondrial bioenergetics and thus a phase of
rapid divergence of the mitochondrial genome of robust
corals.
Corroborating data that the mitochondrial genome

underwent a phase of rapid divergence and strong posi-
tive selection has interesting implications for current
coral molecular phylogenies since many are mainly
based on mitochondrial genes [57,58,63,68,70,72]. One
of these implications is that the uneven evolutionary
rates of coral mitochondrial sequences do not reflect
evolutionary divergence time and are therefore subopti-
mal to resolve phylogenetic relationships within the
order Scleractinia. With the complex clade coral genome
of Acropora digitifera at hand [73] and the robust coral
genome of Stylophora pistillata being currently
sequenced (Voolstra lab at KAUST), we will soon be
able to perform phylogenetic analyses using a variety of
nuclear-encoded genes that will further shed light on the
evolution of the scleractinian coral clades.

Conclusions
In this study we have demonstrated that the microarray
platform available for A. palmata can be successfully
used to study evolution of scleractinian coral species of
both the complex and robust clade. Our results suggest
that the platforms currently available might be sufficient
to study a wide range of scleractinian coral species,
thereby superseding the time and resource consuming
development of further platforms for scleractinian coral
species. The use of CGH and heterologous hybridiza-
tions as tools to (1) study genome-wide gene divergence,
(2) identify candidates for rapidly diverging genes, and
(3) compare transcriptomic responses to stress among
different coral species will greatly enhance our under-
standing of coral evolution and genomics. While RNA-
seq might provide higher resolution, microarrays
supersede sequencing-based approaches in terms of cost,
comparability, and targeted approaches, e.g., compare
selected subsets of genes or low expressed genes. Here,
we found indications for a potentially important role of
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the coral mitochondrion/mitochondrial-encoded genes
in the evolution of the robust coral clade by analyzing
differences in divergence of mitochondrial and nuclear
encoded genes. This also has important implications for
the use of mitochondrial sequences for scleractinian
coral phylogenies.

Methods
Coral sampling
Samples of M. faveolata and S. radians were collected in
Puerto Morelos, Mexico during November 2008 on the
permit registration MX-HR-010-MEX folio 016. Three
colonies of M. faveolata were sampled using a hammer
and chisel, and three unattached colonies of S. radians
were taken from a sea grass bed. Three samples of A.
cervicornis were collected in Bocas del Toro, Panama
during March 2008 on the permit SEX/A-26–07–branch
tips of three separate colonies were broken off using a
hammer and chisel.

DNA extraction, amplification, and microarray
hybridization
Between 50–100 mg of frozen coral tissue were scraped
off the samples using a metal corer and DNA was
extracted using the PowerPlant DNA extraction kit
(MoBio Laboratories, Carlsbad, CA, USA) with the fol-
lowing modifications: following tissue homogenization,
samples were spun twice to pellet skeletal debris; and
during incubation with Buffer PB1, 1 mg/mL RNase A
was added.
Extracted DNA was quantified using a NanoDrop ND-

1000 spectrophotometer. Fragmentation of the DNA for
whole genome amplification was assessed using the Agi-
lent Bioanalyzer DNA7500 Kit and subsequent fragmen-
tation steps were omitted since the DNA already fulfilled
the required fragment size. A total of 25 ng of DNA
from each sample was amplified using the GenomePlex
Complete Whole Genome Amplification Kit (Sigma
Aldrich, Saint Louis, MO, USA) according to the manu-
facturer’s instructions but using 16 cycles of
amplification.
Equal amounts of amplified gDNA from three colonies

per species were pooled and subjected to Cy3 and Cy5
labeling using the BioPrime Plus Array CGH Indirect
Genomic labeling System (Invitrogen, Carlsbad, CA,
USA) in order to account for intraspecific sequence vari-
ation. Labeling efficiency was analyzed using a Nano-
Drop ND-1000 spectrophotometer.
The microarrays used in this study were generated as

described in [9] and experiments were performed as fol-
lows. Appropriate Cy3 and Cy5 labeled DNAs were
mixed together in a hybridization buffer containing
0.25% SDS, 25 mM HEPES and 3 × SSC, resulting in a
final volume of 70 μl. The hybridization mixtures were
boiled for 2 min at 99°C and allowed to cool at room
temperature for 5 min. The cooled hybridization mix-
tures were pipetted under an mSeries Lifterslip (Erie Sci-
entific), and hybridization took place in Corning
hybridization chambers overnight at 55°C. Microarrays
were washed once in 2 × SSC, 0.03% SDS heated to 55°C
for 5 min. followed by one wash in 1 x SSC and another
wash in 0.2 x SSC for 5 min each. The slides were kept
in 0.2 × SSC until analysis. Slides were dried via centrifu-
gation and scanned using an Axon 4000B scanner. The
experimental setup followed a reference design, i.e., all
samples were hybridized against the same pool of labeled
A. palmata DNA. For each species, a total of four hybri-
dizations were performed, including two dye swap hybri-
dizations in order to account for potential dye bias i.e.
two hybridizations with Cy3 labeled M. faveolata DNA
against a Cy5 labeled A. palmata reference and two
hybridizations with Cy5 labeled M. faveolata DNA
against a Cy3 labeled Cy3 A. palmata reference were
performed. The same hybridization scheme was used for
A. cervicornis and S. radians.

Data extraction and analysis
Microarray slides were scanned as described in [10].
Spot intensities were extract and background subtracted
using TIGR Spotfinder 2.2.3 [74]. The data were quality
filtered, and normalized using TIGR MIDAS 2.21
printtip-specific LOWESS [74]. Data have been depos-
ited NCBI’s GEO [75] and are accessible through GEO
Series accession number GSE37279. All clone sequences
and annotations are available via the EST database:
http://sequoia.ucmerced.edu/SymBioSys/index.php.
For all analyses, we only considered spots that were

present in at least 3 out of 4 replicates. The log2 ratios
were averaged per species and the means were used as
input for the GACK software [44]. The analysis was per-
formed using the “Trinary Output” option, which classi-
fies genes as either being present (1), slightly divergent
(0) or highly divergent (−1). Cut-offs of 10% and 90%
probability for present and highly divergent genes were
used for subsequent analysis [44].
For the correlation analysis of sequence identity and

hybridization signal ratio, the sequences of the probes
spotted on the A. palmata array were blasted against a
M. faveolata transcriptome data set and orthologs were
determined by using reciprocal tBLASTx [76]. A total of
330 orthologs were identified, of which 193 had align-
ment lengths >200 bp, and were thus used for subse-
quent analysis. Plots and statistical analysis were
performed using R [77]. Statistical analysis of the distri-
bution of highly divergent and conserved genes across
annotated and non-annotated genes was performed with
GraphPad Prism 5 using a Chi square test (df= 1,
p < 0.05).

http://sequoia.ucmerced.edu/SymBioSys/index.php
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Phylogeny inference
For phylogenetic analysis of the mitochondrial genes cox1
and cytb we concatenated partial sequences of the follow-
ing accession numbers. For cox1: GenBank:AB441246.1,
GenBank:AY451340.1, GenBank:AB441212.1, and Gen-
Bank:AF099654.1; for cytb: GenBank:AF099655.1, Gen-
Bank:AF099654.1, GenBank:DQ643838.1, and GenBank:
AF099654.1. Bayesian phylogenetic analysis was per-
formed using MrBayes v3.1.2 [45] using the following set-
tings: nst = 6 for nucleotide data and nst = 1 for divergence
data as inferred from GACK, nchains = 4, one cold and
three heated chains; the number of steps = generations
was set to 2,000,000 with sampfreq= 100 and burnin =
2,500. Convergence was assessed using Tracer v.1.5 [78]
and by examining the PSRF values and standard deviation
of split frequencies.
Additional files
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Additional file 3: Tab delimited txt files showing highly divergent
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