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Abstract

Background: In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of
phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost
exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential
machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs), through a
C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results
from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual
sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal
motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook
a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains.

Results: We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis,
using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal
motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this
incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining
species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and
that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the
Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence
requirements that are at the basis of the observed difference.

Conclusions: Based on the finding that the differences between the recognition motifs of almost all organisms are
small, we assume that heterologous overexpression of almost all OMPs should be feasible in E. coli and other
Gram-negative bacterial model organisms. This is relevant especially for biotechnology applications, where
recombinant OMPs are used e.g. for the development of vaccines. For the species in which the motif is significantly
different, we identify the residues mainly responsible for this difference that can now be changed in heterologous
expression experiments to yield functional proteins.
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Background
In Gram-negative bacteria, the cytoplasm is surrounded
by inner membrane (IM) and outer membrane (OM),
which are separated by an inter-membrane space, called
the periplasm. Most of the newly synthesized proteome
remains in the cytoplasm, but in addition, different
machineries are involved in the translocation of non-
cytoplasmic proteins to different subcellular localiza-
tions, including the inner or outer membrane, the
periplasmic space, or the extracellular space. Some of
these machineries recognize their substrate proteins by
an N-terminal signal peptide (SP) for the translocation
process, while other machineries are SP-independent.
The IM, which is a phospholipid lipid bilayer, is mostly
occupied by transmembrane α-helical proteins, by
inner membrane lipoproteins on its periplasmic side,
and by other membrane associated proteins on both
sides of the membrane. In contrast, the asymmetric
OM, which consists of phospholipids only in the inner
leaflet of the membrane and lipopolysaccharides in the
outer leaflet, is mostly occupied by transmembrane
(outer membrane) β-barrel proteins, and by outer
membrane lipoproteins on its periplasmic side [1].
The biogenesis of an outer membrane β-barrel protein

(OMP) begins with the translocation of the newly synthe-
sized, unfolded protein across the IM into the periplasm
via the Sec translocation machinery, which requires a
cleavable general SP. Once the unfolded OMP reaches the
periplasm, it uses the SurA or Skp-DegP pathway to reach
the OM. SurA, Skp and DegP are periplasmic chaperones,
which interact with unfolded OMPs by protecting them
from aggregation and thus help them to reach the OM
[2,3]. It has been shown that the SurA pathway and the
Skp/DegP pathway can work in parallel, but that the SurA
pathway plays an important role when the cell is under
normal growth conditions, while under stress conditions,
the Skp-DegP pathway plays the major role [4,5].
Once periplasmic chaperones deliver the OMPs to the

OM, the folding and insertion of the protein into the
membrane is mediated by the β-barrel assembly machin-
ery (BAM), without an external energy source [6] such
as ATP or ion gradients. This machinery involves an es-
sential multi-domain protein, BamA (Omp85), which
consists of a 16-stranded transmembrane β-barrel do-
main, and of a large periplasmic part that consists of five
POTRA (polypeptide transport-associated) domains.
BamA is highly conserved in Gram-negative bacteria
and also has homologues in mitochondria (Sam50) and
chloroplasts (Toc75-V) [2]. In addition, the BAM com-
plex, at least in E. coli, consists of four lipoproteins,
BamB, BamC, BamD and BamE, among which only
BamD is essential and conserved in most Gram-negative
bacteria [2]. Recent HMM-based sequence analysis by
Anwari et al. [7] showed that BamB and BamE are
mainly present in α-, β- and γ-proteobacteria, while
BamC is present only in β- and γ-proteobacteria. They
also found a new lipoprotein subunit in the BAM com-
plex, named BamF, which is present exclusively in α-
proteobacteria.The BAM complex recognizes OMPs as
its substrates via binding to an amphipathic C-terminal
β-strand of the unfolded β-barrel [8], but the exact
binding mode is still not clear. It was suggested that
C-terminal β-strand binds to BamD [9], once the
unfolded OMPs are delivered to the BAM complex by
periplasmic chaperones. But a recent BamC and BamD
subcomplex crystal structure shows that the unstruc-
tured N-terminus of BamC binds to the proposed
substrate binding site of BamD [4]. The C-terminal
β-strand of an OMP β-barrel domain typically con-
tains an aromatic residue at its C-terminus. It has been
reported that deletion or substitution of this C-terminal
residue negatively affects the biogenesis of OMPs [10,11].
Also, in vitro studies showed that the E. coli OM porin
PhoE, when lacking its C-terminal Phe residue, fails to
open the Omp85/BamA channel [8]. In both studies,
overexpression of the mutant OMP was lethal to the
cells. At lower concentration, the mutant protein was
tolerated and got inserted into the membrane. This leads
to the suggestion that a weak insertion signal other than
the C-terminal residue or β-strand is present [8].
Robert et al. [8] observed that the N. meningitidis OM

porin PorA or its C-terminal β-strand did not open the
E. coli Omp85/BamA channel, and the comparison of
the C-terminal β-strands from N. meningitidis and E.
coli OMPs showed a high preference of positive amino
acids at the penultimate (+2) position in neisserial
OMPs. When they mutated E. coli PhoE or its C-
terminal β-strand, changing Gln for Lys at the +2 pos-
ition, it did not open the channel any more; in contrast,
a Neisseria PorA peptide with Gln instead of Lys
increased the channel activity considerably. These stud-
ies and the fact that high concentrations of neisserial
OMPs were lethal in E. coli cells, lead to the conclusion
that the C-terminal insertion signal is species-specific
and that the residues at the +2 position were important
for this phenomenon. The number of peptides/proteins
used in the comparison in the study [8] was very low,
compared to the total number of OMPs present in the
E. coli or N. meningitidis genomes; moreover, the
phenomenon was only compared between two organ-
isms, one β- and one γ-proteobacterial species. Since
neisserial OMPs could be expressed in E. coli at low ex-
pression rates, either the neisserial C-terminal insertion
signal is weakly recognized by E. coli BAM complex, or
other β-strands in the full length protein might act as a
weak insertion signal.
Thus, there seems to be at least some overlap in the

peptide recognition. The intention of this study was to
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use computational methods to quantify this overlap, and
to find out whether the observed (partial) species specifi-
city of the insertion signal is exhibited by all Gram-
negative bacterial organisms.

Results and discussion
We identified 22,447 OMPs from 437 Gram-negative bac-
teria using PSORTb [12], CELLO [13] and HHomp [14] as
described in the methods section. These OMPs can be
classified into different outer membrane protein (OMP)
classes/families based on their function and the number of
β-strands present in them, as these two features are usu-
ally coupled [14-17]. We used HHomp [14] to classify the
proteins into different OMP families. A brief summary of
the OMP classification obtained from HHomp [14] for
our data set is shown in Table 1. We then used ProfTMB
[18] and PSIPRED [19] annotations to identify and extract
the C-terminal β-strands from the OMPs. To evaluate the
phenomenon of species specificity, we initially tried to
cluster the C-terminal β-strands using different methods,
such as sequence based clustering in CLANS [20] and
organism-specific PSSM profile-based hierarchical cluster-
ing. Since the sequences were highly similar and very
short, the results obtained from these methods were not
helpful to our analysis. We then used chemical descriptors
and represented each amino acid in the peptides by five-
dimensional vectors, thus representing each 10-residue
peptide as a 50-dimensional vector. Next, we used dimen-
sionality reduction techniques (principal component ana-
lysis) to reduce the dimensions to 12 (the lowest number
of dimensions that still contains most of the difference in-
formation, see Methods). We then used all peptide vectors
from an organism to derive a multivariate Gaussian distri-
bution, which we describe as the ‘peptide sequence space’
of the organism. The overlap between these multidimen-
sional peptide sequence spaces (multivariate Gaussian dis-
tributions) was calculated using a statistical theory
Table 1 Dataset classified based on OMP class

OMP
class

# of β-
strands

Total #
of

peptides

OMP class found in # of organisms i

α β γ

OMP.8 8 2300 71 77 227

OMP.10 10 95 5 2 66

OMP.12 12 1550 60 75 212

OMP.14 14 572 47 38 221

OMP.16 16 2477 41 86 210

OMP.18 18 327 2 14 134

OMP.22 22 7462 71 86 231

OMP.nn Not known 7591 71 86 231

OMP.hypo Not known 73 2 18 33

The OMP class of a protein was predicted by HHomp [14]. HHOmp defines the clas
cannot find a related structure, it classifies the proteins in OMP.nn. OMP.hypo prote
method, the Hellinger distance. As described in the meth-
ods section, the pairwise overlaps between organism se-
quence spaces were used to cluster them in CLANS [20].

Clustering of organisms based on C-terminal β-strands
The pairwise comparison of the overlap between sequence
spaces should help us to predict the similarity between the
C-terminal insertion signal peptides, and how high the
probability is that the protein of one organism can be
recognized by the insertion machinery of another organ-
ism. When there is a complete overlap of sequence space
between two organisms, we assume that all C-terminal in-
sertion signals from one organism will be recognized and
functionally expressed by another organism’s BAM com-
plex and vice-versa. When there is only little overlap be-
tween the sequence spaces of two organisms, we assume
that only a small number of C-terminal insertion signals
from one organism will be recognized by another organ-
ism’s BAM complex. When there is no overlap, we assume
that there is a general incompatibility.
As described in the methods section, we examined the

overlap of peptide sequence spaces between 437 Gram-
negative bacterial organisms and used the pairwise overlap
measurement to cluster the organisms. Since the C-
terminal β-strands are highly conserved between all OMPs
[21], it was very difficult to select a particular cut-off for
the distance measure. Thus, the clustering was carried out
using all the distance measures obtained from the calcula-
tions. In the resulting 2D cluster map (Figure 1A), each
node is one out of the 437 organisms, and they are colored
based on the taxonomic classes (see the figure legend).
During clustering with default clustering parameters in
CLANS [20], the organisms tended to collapse into a sin-
gle point, which illustrates that there is large overlap be-
tween the peptide sequence spaces. Thus, we introduced
very high repulsion values and minimum attraction values
in CLANS [20] during clustering. With these settings the
n different proteobacteria class Function/Protein family

δ ε

24 10 Membrane anchors [15]

2 2 Bacterial proteases [16]

18 10 Integral membrane enzymes [15]

20 22 Long chain fatty acid transporter [17]

23 8 General porins [15]

7 1 Substrate specific porins [15]

25 23 TonB-dependent receptors [15]

26 23 -

9 1 -

s based on the similarity to a closely related OMP structure. When HHomp
ins are hypothetical proteins [14].
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Figure 1 Cluster map based on 437 sequenced Gram-negative organisms. In the cluster map each node represents one organism. The
Hellinger distance was used to calculate the pairwise overlap between the multi-dimensional peptide sequence spaces of organisms. The
calculated similarity or overlap was used to cluster the organism in CLANS. Figure 1A is colored by taxonomic class and Figure 1B is colored by
the number of peptides in each organism.
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organisms formed a central big cluster, but separated
crudely according to their taxonomic classes. We repeated
the clustering multiple times to ensure that this separation
is reproducible. In the cluster map (Figure 1A), β- and γ-
Proteobacteria form two sub-clusters, separated by the α-
Proteobacteria. The very few δ-Proteobacteria in our data
set cluster in the periphery of the γ-proteobacterial cluster.
In the cluster map, E. coli strains cluster along with other
γ-Proteobacteria. Even though Neisseria species cluster
along with other β-Proteobacteria, they form a sub-cluster
and are found in the periphery of the β-proteobacterial
cluster. Note also that in this map, Helicobacter species
form a distinct cluster well separated from the rest of the
organisms. This core cluster includes H. pylori strains, H.
acinonychis and H. felis, but not H. hepaticus and H. mus-
telae species. The remaining E-proteobacteria species are
scattered in the periphery of the cluster map. The distinct
cluster formed by most Helicobacter species demonstrates
that the sequence spaces of Helicobacter species are sig-
nificantly different from rest of the organisms. The neis-
serial cluster had only very few strong connections even
with other β-proteobacterial organisms, which means the
overlap or similarity of peptide sequence space between
Neisseriales with rest of the β-Proteobacteria is compara-
tively low. When we used stringent thresholds for the dis-
tance measure, we noticed that the Neisseria and
Helicobacter clusters started to move even further away
from the center of the cluster map.

Control experiments for clustering: randomly shuffled
peptide sequences lose the signal for clustering
We noticed that the organisms seen at the periphery of
the cluster map had a lower overall number of peptides,
while organisms with more peptides are typically seen at
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the center of the circle. The cluster map in Figure 1B is
colored based on the number of extracted peptides per
organism. In Figure 1B, there are 99 organisms which
have ≤ 30 peptides (colored in pink), 77 organisms with
31 to 40 peptides (colored in blue), 136 organisms
with 41 to 60 peptides (colored in green), 66 organisms
with 61 to 80 peptides (colored in red), and 59 organisms
with more than 80 peptides (colored in brown). Even
though H. pylori strains have a comparably high number
of peptides (43 to 51 peptides), they still form a separate
cluster in the periphery of the cluster map; therefore
there must be an underlying organism-specific signal
from the contributing peptides at least in this case.
To confirm the presence of the organism-specific sig-

nal, we took peptides from all the organisms and
shuffled the positions of their amino acids randomly,
and derived a new similarity matrix as mentioned in the
method section which we clustered in CLANS [20].
Figure 2A shows the results from this test, where one
can notice the taxonomic specific separations were com-
pletely lost. The cluster map in Figure 2B, colored based
on the abundance of OMPs in an organism, shows that
organisms with more peptides are in the center, and
organisms with fewer peptides move to the outer rim of
the cluster map. This test confirms that the there is a
species-specific signal for which the position of the indi-
vidual amino acids is important; this is lost when the
residues in the peptides are shuffled randomly.

High preference of positively charged residues at the +2
position in Neisseria species
The comparison of the C-terminal peptide sequences in
the β-barrel of selected OMPs of E. coli and N. meningiti-
dis peptides by Robert el al [8] showed a strong preference
for positively charged amino acids (Arg and Lys) at the +2
position in neisserial OMPs, which led to the suggestion
of a distinct species specificity of the C-terminal β-strand
Figure 2 CLANS cluster map of randomly shuffled peptides from 437
colored by the number of peptides in an organism. Colors are similar to Fi
recognition. Since the comparison was made from 11 and
9 OMPs from E. coli and N.meningitidis, respectively, we
wanted to confirm this with a larger set of OMPs from the
same bacterial species. The frequency plots in Figure 3A
and B were created from 171 (E. coli) and 50 (N.meningiti-
dis) unique C-terminal β-strands. Comparison between
these plots demonstrates the high preference of Arg and
Lys at the +2 position in neisserial OMPs. When we
checked the frequency of amino acids at the +2 position
for 22,447 peptides from all 437 organisms, we noticed
that in the complete dataset, Arg and Lys are the top two
preferred residues at the +2 position, and that they are
present in 31.62% (3996 + 3102) of the peptides. A similar
frequency of Arg and Lys (31.32% (2262 + 1794 out of
12,949 unique peptides)) is observed when only taking
unique peptides into account (i.e. when duplicates are
removed from the database). Figure 4 shows the percent-
age of Arg and Lys at the +2 position in 437 organisms; in
this plot, Neisseria strains stand apart even from other
β-proteobacterial organisms, and also from all other
proteobacterial organisms. Neisseria strains (and a few
α-proteobacterial organisms) have more than 60% of pep-
tides with positively charged residues at the +2 position.
Note, though, that also in all other organisms, positive
charges are abundant there; for example, different Escheri-
chia strains also have 25-40% of peptides with Arg and
Lys at the +2 position. Thus, when these proteins are
expressed, the Escherichia BAM complex should be able
to recognize proteins with positively charged residues at
+2 positions. As a matter of fact, there is experimental evi-
dence for the functional expression of OMPs with posi-
tively charged residues at the +2 position in E. coli [22].

High preference of Histidine at the +3 position in porins
(16-stranded OMPs) from β-proteobacteria
In the frequency plots (Figure 5) generated for each
taxonomic class of Proteobacteria, we observed that the
organisms. Figure 2A is colored by taxonomic class and Figure 2B is
gure 1.
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Figure 3 Frequency plots derived from unique C-terminal insertion signal peptides for Escherichia (Figure 3A) and Neisseria (Figure 3B)
strains. Frequency plots were made from 188 unique peptides of 31 Escherichia strains and 50 unique peptides of 7 Neisseria strains. The +2
position is indicated by the arrow in the figure. Escherichia strains (Figure 3A) have no strong preference for any amino acid at the +2 position,
whereas Neisseria strains (Figure 3B) have a strong preference for positively charged amino acids (Arg and Lys) at the +2 position. Hydrophobic
residues are colored in blue and polar residues are colored in red.
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frequency of amino acids in the +2 positions were com-
parable, with the possible exception of the Neisseriae. In
contrast to that, we observed a prevalence (up to 57%
frequency) of His at the +3 position for β-proteobacteria,
while the other taxonomic classes shared a similar, low
Figure 4 Percentage of Arg and Lys at +2 positions. We calculated the
peptides from the 437 organisms; color is based on taxonomic class. The N
acids at the +2 position compared to other organisms.
(<15%) frequency of His in that position (Figure 6). 80%
of the peptides with His at the +3 position belong to the
β-proteobacteria and more than 92% of these peptides
stem from 16-stranded β-barrel proteins (Porins,
denoted as the OMP.16 class by HHOmp). None of the
percentage of Arg and Lys residues at the +2 position from all unique
eisseria strains show a high preference for positively charged amino



Figure 5 Frequency plots of C-terminal β-strands from Proteobacteria. Frequency plots generated from unique peptides of α-proteobacteria
are shown in Figure 5A, of β-Proteobacteria in Figure 5B, of γ-Proteobacteria in Figure 5C, of δ-Proteobacteria in Figure 5D and of
E-Proteobacteria in Figure 5E. The frequency plots are overall very similar; an exception is the high frequency of His at the +3 position in
β-Proteobacteria and of Tyr at the +5 position in E-Proteobacteria.
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Escherichia C-terminal β-strands in our database have
His at the +3 position, and experiments by Robert et al.
were done with a Neisseria PorA peptide with a His at
the +3 position. This might be the true reason why E.
coli BamA didn’t recognize neisserial peptides. When we
further examined the available structures of porins from
Neisseria, and we found the His at the +3 position to be
present in the trimerization interface of the porins. Since
the vast majority of the His residues at the +3 position
of the C-terminal motifs were from 16-stranded porins
that typically trimerize, this position might be relevant
for trimerization in neisserial porins.

High preference of Tyrosine at the +5 position in
Helicobacter species
The separate cluster formed by Helicobacter species was
an interesting observation for us, because it forms a
more distinct cluster than Neisseria. This means that the
peptide sequence space of Helicobacter species is more
different from the rest of the organisms than even the
one of Neisseriales. But the frequency plots (Figure 7A
and B), generated from unique peptides of all Helicobac-
ter species and H. pylori strains respectively, did not
show a strong preference for any amino acid at either
the +2 position and the strong preference of Tyr at +3
position is common among the c-terminal insertion sig-
nals. But, we noticed an uncommon strong preference of
Tyr at the +5 position. The presence of a hydrophobic
residue is common at +5 positions, but the presence of
aromatic hydrophobic amino acids (especially Tyr) at
the +5 position are highly preferred in H. pylori strains
compared to other organisms (Figure 8A and B). Since
the peptide sequence space depends upon the entire se-
quence, we cannot confirm that the separate cluster
formed by the H. pylori is exclusively due to the residues
at this one particular position. There is experimental evi-
dence that the expression of various H. pylori OMPs in
E. coli is problematic [23]. Fisher et al. noticed that as
long as the expressed H. pylori OMP remains in the
cytoplasm of E. coli, it is not lethal, but that once it is



Figure 6 Frequency of His at the +3 position. The percentage of His at +3 was calculated from all unique peptides from 437 organisms. A
high preference for His at +3 is observed for 16-stranded OMPs of β-Proteobacteria. Since there is a high number of 16-stranded OMPs in
Burkholderia strains (see Additional file 1 and Additional file 2), they were also annotated in the plot.
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secreted to the periplasm by the Sec machinery, it
becomes lethal to E. coli. They also mentioned - without
showing data - that removal of the C-terminal β-barrel
region resulted in toleration of the proteins in the peri-
plasmic space. This probably means that the E. coli
BAM complex didn’t recognize the C-terminal β-strands
+5 position

Figure 7 Frequency plot of unique C-terminal β-strands from
Helicobacter species. 163 unique C-terminal insertion signals from
14 Helicobacter strains were used to generate this plot. The +5
position which has the strong preference of Tyr is marked with the
arrow.
of the H. pylori OMPs, and the subsequent aggregation
of the OMPs in the periplasm and the blockage of the
BAM complex lead to the lethality. The authors con-
cluded that the difference in OM lipid composition of
Helicobacter, which contains cholesteryl glycosides [24],
might have imposed some structural constraints on the
OMP structure, and that this structural change is not
tolerated by other organisms resulting in the observed
lethality of such constructs.
OMP class-specific and taxonomy class-specific signals
We noticed that in some organisms, certain OMP classes
of proteins are over-represented (see figure in Additional
file 1). Examples are the prevalence of 16-stranded β-
barrels in the genomes of some β-proteobacteria and
22-stranded β-barrels in the genomes of some α-
proteobacteria (see Additional file 2). Moreover, of the
22,447 sequences in the data set, 33.82% (7591)
sequences were annotated as OMP.nn by HHomp [14],
which means there was no closely related homolog of
known structure found for these proteins and thus, the
number of β-strands in them is unknown. Thus, it is
not possible to filter the dataset based on OMP class
alone. But, as a control, we removed one OMP class at
a time from the dataset and checked for differences in
the clustering. When removing OMP.8 (Figure 9A) and
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Figure 8 The percentage of Tyr (Figure 8A) and aromatic hydrophobic amino acids (Figure 8B) at the +5 position. For Figure 8A, we
calculated the percentage of Tyr at the +5 position from all unique peptides from 437 organisms and for Figure 8B, we calculated the frequency
of Tyr, Phe and Trp at the +5 position from all unique peptides from 437 organisms. In both plots Helicobacter strains shows a high preference of
Tyr and aromatic amino acids at the +5 position.
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OMP.12 (Figure 9B), two OMP classes that are not
overrepresented in any of the taxonomy classes; this did
not visibly affect the clustering. But when we removed
the OMP.16 (Figure 9C) or the OMP.22 (Figure 9D)
class, which have a high prevalence in β-proteobacteria
and α-proteobacteria, respectively, this changed the
clustering behavior of the respective taxonomic classes
significantly; the organisms got scattered away from
their position in the cluster compared to the situation
in Figure 1A. This shows that the over-representation
of certain OMP classes can influence the peptide sequence
space, but since the proteins from over-represented
OMP classes still contribute to the real sequence space
of the organisms, we decided not to correct for this
effect and used all peptides from the organisms in our
experiments.
We also examined whether there is a more general sig-

nal from OMP classes, other than the signal from the
over-representation of an individual OMP class that
would influence the observed organism-specific signal.
For this, we separated the peptides from an organism
based on the OMP classification and selected the entities
which had more than five unique peptides for further
analysis. From this, we created two data sets of entities;
one data set containing organisms from all taxonomic
classes, but with C-terminal insertion signals only from
22-stranded OMPs, and a second data set containing
organisms only from γ-proteobacteria, but in which
individual organisms were split into multiple entities,
each representing an OMP class that contained more
than five unique C-terminal insertion signals. We clus-
tered these data sets separately and the resulting cluster
maps are shown in Figure 10A and B. In the cluster map
in Figure 10A, each node is an organism, but only the
C-terminal insertion signals from 22-stranded OMP
class were considered for the clustering. In this cluster
map, all the organisms clustered based on their taxo-
nomic classes. In the cluster map in Figure 10B, all
organisms are from γ-proteobacteria, but organisms with
multiple OMP classes with more than five unique C-
terminal insertion signals per class will result in multiple
representative nodes. These nodes which belong to dif-
ferent OMP classes clustered based on the OMP classes.
This confirms that there are independent contributions
to the overall signal, from both the OMP classes and
from taxonomy. Within one OMP class, there still is di-
vergence in accordance with different taxonomic classes;
but overrepresentation of a single OMP class in an or-
ganism influences the average motif of an organism.

Conclusion
In our study, we were able to reproduce the difference
between E. coli and Neisseria C-terminal β-strands as
found by Robert et al., which suggests a species-specific
insertion signal for OMPs. But in contrast to the earlier
report, we show that positively charged amino acids at



Figure 9 Control experiments to show the influence of overrepresented OMP classes. OMP classes OMP.8 (Figure 9A), OMP.12 (Figure 9B),
OMP.16 (Figure 9C) and OMP.22 (Figure 9D) were removed and only organisms with more than 20 unique peptides were used in the clustering.
Peptides belonging to OMP.nn and OMP.hypo (OMPs with unknown strand number and function) were not removed from the data set during
the control experiments. Color legends are similar to the Figure 1A.
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the +2 position can not be the reason for the experimen-
tally observed species specificity between these organ-
isms, as Escherichia also contains C-terminal β-strands
with positively charged amino acids at the +2 position.
Moreover, there is experimental evidence which shows
the functional expression of a heterologous OMP, YadA
of Yersinia enterocolitica, with a positively charged
amino acids at the +2 position, in E. coli [22]. The neis-
serial PorA protein and the neisserial C-terminal β-
strands used by Robert et al. contained His at the +3
position, which is common for many OMP.16 proteins
from β-proteobacteria and is not found in Escherichia
OMPs; this might be the true difference in the recogni-
tion of C-terminal β-strands by the Escherichia BAM
complex. Furthermore we found that Helicobacter
strains form a distinct cluster in the cluster map, which
is due to their very different composition of C-terminal
β-strands. There is experimental evidence showing that
expression of H. pylori OMPs in E. coli is lethal, and that
this lethality can be suppressed by removing the C-
terminal strand. When we looked at the frequency
motifs from Helicobacter strains we did not notice a
strong preference of any amino acid at the +2 or the +3
position, however we observed a strong preference of
Tyr at the +5 position, which is not common in Escheri-
chia or other Proteobacteria. We assume that this pos-
ition may play an important role in the rejection of these
C-terminal β-strands by the E. coli BAM complex. The
examples of Neisseria and Helicobacter show that differ-
ent positions in the C-terminal recognition motif can be
relevant for heterologous expression of OMPs. We pre-
dict that in certain group of species the highly preferred
residues in certain positions of the C-terminal insertion
signals are responsible for the inadequate recognition of
the C-terminal insertion signals by the E. coli BAM
complex. In the future, mutation studies will have to be
performed to prove the importance of these residues in
the recognition step in the OMPs biogenesis.
As a result of our study, we have shown that there is a

large overlap between the signals from C-terminal insertion
peptides of different organisms, which suggests that in most
cases, heterologous expression should be possible. OMPs
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Figure 10 CLANS cluster map of OMP-Organism class based entities. In figure 10A and figure 10B, each node is a representative of OMP-
Organism entities that have more than five unique peptides of a single OMP class from an individual organism. In Figure 10A, entities are only
from the OMP.22 class, which includes entities from all proteobacterial taxonomic classes. In Figure 10B, entities are only from γ-Proteobacteria
and include different OMP classes.
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can fold in vitro even without the help of any other proteins
[25]. The BAM complex is an enzyme that makes the fold-
ing of OMPs into the outer membrane more efficient by in-
creasing the reaction rate of a natural process. Enzymes
modify reaction rates by changing the reaction route to
lower the activation energy, and binding/recognition is part
of this changed route. Thus, it is also important to consider
expression rates: poor recognition might still lead to prop-
erly folded OMPs in the outer membrane of a heterologous
host at low expression rates. But under overexpression con-
ditions, the BAM machinery can probably not cope with
poorly recognized signals that would lead to lower overall
folding rates (considering that recognition is the first and
probably in some cases rate-limiting step of the folding
process). Different classes of OMPs have different folding
rates, where small OMPs fold faster and more efficiently
(again in vitro) than larger ones, which might explain why
large OMPs seem to depend more heavily on an intact
BAM machinery than small ones [26,27].
Since there are two different signals that contribute to

the observed average motifs, from OMP class and from
taxonomy, it is problematic to use averaged motifs or se-
quence logos to determine the compatibility of a given
protein-organism pair. The main problem here is the over-
representation of certain OMP classes in some organism
groups; this overrepresentation shifts the average signals.
It is more useful to determine for an individual C-terminal
motif form a protein to be expressed, whether it is also
present in any of the OMPs of the host organism.
The taxonomy-based specificity we observed here

based on sequence space depends upon the entire pep-
tide sequence, but at the functional level, these peptides
are recognized based on the interacting residue positions
in the C-terminal insertion signal peptide. The PDZ do-
main of the bacterial periplasmic stress sensor, DegS,
also recognizes the C-terminal YxF motif in the last β
strand of misfolded OMPs. This leads to the activation
of the proteolytic pathway and the expression of DegP,
which degrades misfolded OMPs [28,29]. Since the C-
terminal β-strand is recognized by both the PDZ domain
of the DegS protein and by the BAM complex, studying
the co-evolution of interacting residues in both cases
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would help in understanding the divergence of the C-
terminal β-strands between different Gram-negative bac-
terial organisms. Unfortunately, co-crystal structures of
the BAM complex with its substrates are not available
yet. With more experimental evidence about the sub-
strate recognition sites for the C-terminal insertion sig-
nal peptide in the BAM complex, the co-evolution of
the interacting amino acids can hopefully be studied in
the future, which may shed more light on into the evolu-
tion of the BAM machinery in different Proteobacteria,
and on its ability to recognize heterologous substrates
for biotechnology applications.

Methods
Predicting outer membrane β-barrel proteins
In a previous study [30] to annotate the subcellular loca-
lizations (SCLs) for the proteomes of 607 Gram-negative
bacteria, we developed the program/database ClubSub-P,
in which we used programs like CELLO [13], PSORTb
[12] and HHomp [14] to annotate OMPs. CELLO [13]
and PSORTb [12] use support vector classifiers to anno-
tate different SCLs of query sequences and are much
faster than HHomp [14] which uses HMM-HMM-based
search algorithms to predict and classify OMPs. Thus
we used CELLO and PSORTb to scan all the sequences
in the clusters of the ClubSub-P database. A random
protein was selected from a cluster where CELLO or
PSORTb had a positive hit for an outer membrane pro-
tein, and the sequence was analyzed with HHomp.
When HHomp predicted a protein with more than 90%
probability to be an OMP, we considered all the proteins
in the cluster to be OMPs. We in addition selected all
singleton sequences with positive prediction from
CELLO or PSORTb and analyzed them with HHomp.

Finding the C-terminal β-strands
HHomp annotates/classifies OMPs based on the number
of β-stands present in them. HHomp calculates/predicts
this from homologous structures of OMPs. We trans-
ferred this annotation from the best hit in HHomp runs to
the query sequences. HHomp also annotates secondary
structure and β-barrel strand predictions using PSIPRED
[19] and ProfTMB [18], which was used to extract the
C-terminal (last) β-strand/motif for each OMP. The last
β-strand predicted by ProfTMB [18] was extracted as
the C-terminal motif from representative sequences and
singletons, and further filters were applied to reduce the
false positive rate; 1) 70% of the amino acids in the
motif should have a β-strand prediction from PSIPRED
[19], 2) If the C-terminal of the protein is more than 4
residues away from the C-terminus of the motif, we
extended the predicted motif by up to 4 amino acids to
find an aromatic hydrophobic residue [F,Y,W], else we
extended the C-terminus of the motif to the end of the
protein itself. 3) Additionally, if the motif length was
less than 10 residues, we extended the motif towards its
N-terminus. 4) Furthermore with the regular expression.
[^C][YFWKLHVITMADGRE][^C][YFWKLHVITMAD

GRE][^C][YFWKLHVITMADGRE][^C].[^C][YFWHILM]
(an updated version of BOMP[31] C-terminal pattern), we
searched for the existence of the alternating hydrophobic
pattern in the motif which is typical for transmembrane
β-strands.
Using the information from this representative C-

terminal motif, we extracted C-terminal motifs from the
rest of the sequences in the clusters. We used MAFFT
[32] to align the sequences from the cluster, and used
the start and end coordinates of the C-terminal motif
discovered above in the representative sequences ran-
domly selected from the clusters. Motifs were extended
on the both sides, in cases where we encountered gaps
in the alignment. The gaps were removed and then
resulting motifs were subjected to alternating hydropho-
bic pattern matching.
The peptides we collected vary in length from 10 to 21

residues (only six of the peptides were longer than 21).
We then applied GLAM2 [33], a gapped motif discovery
algorithm, to find the strongest motif with a length of 10
from this dataset. We found 24,626 motif instances in
25,454 sequences, and only 232 motifs in this alignment
had gaps. The gapped motifs were removed before fur-
ther analysis. 20,135 of the motif instances were C-
terminal to the protein itself (which means there were
no additional domains at the C-terminal end of the β-
barrel proteins). 437 organisms had more than 20
unique C-terminal β-strands, ranging from 21 to 171
peptides in different organisms. In total, the 437 organ-
isms yielded 22,447 peptides, of which 12,949 are unique
peptides.

Sequence based clustering
Since all of the peptides are 10 amino acids in length by
default, we used the PAM30 substitution matrix for an
all-against-all BLAST, with an E-value cut-off of 1000
and used the pairwise P-values to cluster the sequences
in CLANS [20].

PSSM profile-based hierarchical clustering
The relative frequencies of the 20 amino acids were cal-
culated for all 10 positions in the peptides from an or-
ganism. To obtain odds scores, the relative frequencies
were simply divided by each residue’s background fre-
quency, which was calculated by shuffling the amino
acid sequence in all the peptides from all organisms, and
log base 2 was applied to obtain a PSSM matrix. The
20 x 10 PSSM matrices obtained for each organism were
stored in a single 437x200 PSSM matrix, and correlation
distances were calculated between each organism and
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agglomerative hierarchical clustering (average method)
was performed via the pvclust [34], which calculates two
types of p-values, AU (Approximately Unbiased) p-value
and BP (Bootstrap Probability) value to indicate the like-
lihood of the cluster formation.

Peptide sequence space-based clustering
Chemical descriptors
To generate a peptide sequence space, each amino acid
in the peptide sequences was represented by five chem-
ical descriptors that are the first five principal compo-
nents derived from 26 physiochemical descriptor
variables using dimensionality reduction techniques [35].
The initial 26 physiochemical descriptor variables in-
clude the molecular weight, experimentally determined
retention values from seven thin-layer chromatography
runs, van der Waals volume of the side chain, three nu-
clear magnetic resonance shift variables, log P, six vari-
ables for semiempirical molecular orbitals, three
variables for total, polar and nonpolar surface area, two
variables for side chain charge and two variables for
hydrogen bond donor and acceptor [35]. The five princi-
pal components derived from these 26 variables contain
the maximal variations in the data set and they can be
interpreted as the size, polarizability, and the lipophilic,
steric, and electronic properties of all the amino acids
[35]. The amino acid descriptors were originally derived
for use as design variables in peptide design, and in the
construction of combinatorial libraries to effectively
search chemical property space [35]. Here we used them
to describe the space occupied by the C-terminal β-
strands and to measure how strongly peptide sequences
of different organisms overlap. Using the chemical
descriptors, each amino acid in the peptide was con-
verted into a 5-dimensional vector; thereby, each 10aa
peptide was represented as a 50-dimensional vector.
Thus, the whole set of 22,447 peptides were converted
to a 22,447 x 50 matrix.

Principal component analysis
Since the dimensionality of the data set (50) is larger
than the sample size (minimum 21 peptides per organ-
ism), the dimensionality of the peptide vectors had to be
reduced below the sample size (i.e., below 21 in our
dataset) for further statistical analysis [36]. Principal
component analysis (PCA) is a mathematical technique
to reduce the dimensionality of data sets, while retaining
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most of the variation in the data set. This is achieved by
projecting the original data vectors along the directions
of maximal variation, called principal components (PCs).
The first PC captures the maximum variation; the vari-
ation associated with consecutive PCs decreases rapidly.
Thus, the original data set can be mapped into a lower
dimensional space by projecting the original data on
those PCs representing most of the variation [36,37]. We
used PCA to reduce the dimensionality of our peptide
sequences (22,447 x 50 matrix) by projecting the 50 di-
mensional chemical descriptor vectors onto the first 12
principal components, which represent 69.05% of the
total variation in the data. We thereby obtained a
22,447 x 12 matrix that did not suffer from any pro-
blems in sample size.
Multivariate Gaussian fitting and Hellinger distance
Next, we fit a multivariate Gaussian distribution for each
individual organism by calculating a 12-dimensional
mean vector and covariance matrix, (e.g., for E. coli 536
which has 66 unique peptides, the Gaussian will be fitted
based on a 66 x 12 matrix).
The Euclidean distance between means of peptide se-

quence spaces is not suitable for measuring the similar-
ity between the C-terminal β-strands of different
organisms. Instead, the similarity measure should also
represent how strongly their associated sequence spaces
overlap. To achieve this we used the Hellinger distance
between the fitted Gaussian distributions [38]. In statis-
tical theory, the Hellinger distance measures the similar-
ity between two probability distribution functions, by
calculating the overlap between the distributions. For a
better understanding, Figure 11 illustrates the difference
between the Euclidean distance and the Hellinger dis-
tance for one-dimensional Gaussian distributions. The
Hellinger distance, DH(Org1,Org2), between two distri-
butions Org1(x) and Org2(x) is symmetric and falls be-
tween 0 and 1. DH(Org1, Org2) is 0 when both
distributions are identical; it is 1 if the distributions do
not overlap [39]. Therefore we have for the squared Hel-
linger distance DH

2 (Org1, Org2) = 1 – overlap(Org1,
Org2). The following equation (1) was derived to calcu-
late the pairwise Hellinger distance between the multi-
variate Gaussian distributions, Org1 and Org2, where μ1
and μ2 are the mean vectors and Σ1 and Σ2 are the co-
variance matrices of Org1 and Org2, and d is the dimen-
sion of the sequence space, i.e. d=12
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Figure 11 Illustration of the difference between the Euclidean distance and the Hellinger distance for one-dimensional Gaussian
distributions. Two Gaussian distributions are shown as black lines for different choices of μ and σ. The grey area indicates the overlap between
both distributions. |μ1−μ2| is the Euclidean distance between the centers of the Gaussians, DH is the Hellinger distance (equation 1). Both values
are indicated in the title of panels A-D. A: For μ1 = μ2 = 0, σ1 = σ2 = 1, the Euclidean distance and the Hellinger distance are both zero. B: For
μ1 = μ2 = 0, σ1 =1, σ2 = 5 the Euclidean distance is zero, whereas the Hellinger distance is larger than zero because the distributions do not
overlap perfectly (the second Gaussian is wider than the first). C: For μ1 =0, μ2 = 5, σ1 = σ2 = 1, the Euclidean distance is five, whereas the
Hellinger distance almost attains its maximum because the distributions only overlap little. D: For μ1 =0, μ2 = 5, σ1 =1, σ2 =5, the Euclidean
distance is still five as in C because the means did not change. However, the Hellinger distance is larger than in C because the second Gaussian
is wider, which leads to a larger overlap between the distributions.
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CLANS
Next, the Hellinger distance was used to define a dis-
similarity matrix for all pairs of organisms. The dissimi-
larity matrix was converted to P-values, which were then
used as input in CLANS [20] to compute a cluster map
showing all organisms. CLANS is a graph-based cluster-
ing method that represents sequences as nodes. All
nodes are connected by weighted edges where the pair-
wise similarity between the sequences determines the
strength of the weight [20]. In our study, individual
organisms were considered as nodes and the weight of
the edges connecting the nodes was based on the pair-
wise Hellinger distance (pairwise overlap of sequence
space) between the organisms. Hence stronger
connections represent a larger overlap/similarity be-
tween the peptide sequence spaces, while organisms
with high divergence in their C-terminal motifs are only
weakly connected or completely disconnected in the
cluster map. Initially the nodes are randomly placed in a
2D space and experience attraction forces according to
how strongly they are connected with the other nodes.
In an iterative refinement scheme, nodes move towards
similar nodes with an attractive force proportional to the
similarity between them. A small, overall repulsive force
is applied to all pairs of nodes to keep them from col-
lapsing into a single node. Since CLANS [20] uses non-
deterministic dynamics, each run performed with the
same dataset will result in a similar but not necessarily
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identical clustering. Thus, multiple clustering runs were
performed to check the reproducibility of the final clus-
tering. Because initial tests showed that with the default
attraction and repulsion values nodes (organisms) were
collapsing, we used very small attraction values (up to
0.1) and high repulsion values (up to 500) to avoid col-
lapse of nodes and to obtain visually better clusters.

Frequency plot
The WebLogo [40] online tool was used to create the
frequency plots, using custom colors. Only unique pep-
tide sequences were used to generate all the frequency
plots. The amino acid percentage plots were created
using R version 2.13.1 [41].
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