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Abstract

Background: Apple is an economically important fruit crop worldwide. Developing a genetic linkage map is a
critical step towards mapping and cloning of genes responsible for important horticultural traits in apple. To
facilitate linkage map construction, we surveyed and characterized the distribution and frequency of perfect
microsatellites in assembled contig sequences of the apple genome.

Results: A total of 28,538 SSRs have been identified in the apple genome, with an overall density of 40.8 SSRs per
Mb. Di-nucleotide repeats are the most frequent microsatellites in the apple genome, accounting for 71.9% of all
microsatellites. AT/TA repeats are the most frequent in genomic regions, accounting for 38.3% of all the G-SSRs,
while AG/GA dimers prevail in transcribed sequences, and account for 59.4% of all EST-SSRs. A total set of 310 SSRs
is selected to amplify eight apple genotypes. Of these, 245 (79.0%) are found to be polymorphic among cultivars
and wild species tested. AG/GA motifs in genomic regions have detected more alleles and higher PIC values than
AT/TA or AC/CA motifs. Moreover, AG/GA repeats are more variable than any other dimers in apple, and should be
preferentially selected for studies, such as genetic diversity and linkage map construction. A total of 54 newly
developed apple SSRs have been genetically mapped. Interestingly, clustering of markers with distorted segregation
is observed on linkage groups 1, 2, 10, 15, and 16. A QTL responsible for malic acid content of apple fruits is
detected on linkage group 8, and accounts for ~13.5% of the observed phenotypic variation.

Conclusions: This study demonstrates that di-nucleotide repeats are prevalent in the apple genome and that AT/
TA and AG/GA repeats are the most frequent in genomic and transcribed sequences of apple, respectively. All SSR
motifs identified in this study as well as those newly mapped SSRs will serve as valuable resources for pursuing
apple genetic studies, aiding the apple breeding community in marker-assisted breeding, and for performing
comparative genomic studies in Rosaceae.
Background
The domesticated apple (Malus x domestica Borkh.) is
one of the most economically important tree fruit crops
worldwide. The apple is self-incompatible, highly hetero-
zygous, and displays a juvenile period of 6 to 10 years or
more. These characteristics render apple breeding
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reproduction in any medium, provided the or
programs difficult and time-consuming. To save time
and land-space, as well as reduce cost of apple breeding
programs, it is imperative to identify young seedlings
with desirable traits early and accurately using molecular
marker-assisted selection. Hence, identifying molecular
markers linked to major genes/quantitative trait loci
(QTL) contributing to desirable economic traits is an
important goal in apple genetic studies. Several studies
have identified QTLs contributing to important horticul-
tural traits, such as resistance to fire blight and to woolly
apple aphid [1-4], tree architecture [5,6], and fruit qual-
ity components [7].
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The cultivated apple is a diploidized autopolyploid
species with 17 haploid chromosomes [8]. In recent
years, apple genomic resources have greatly expanded,
including a large expression sequence tag (EST) database
[9,10], a BAC-based genome-wide physical map [11],
and a draft sequence of the apple genome [8]. Despite
availability of the apple genome sequence, genetic link-
age maps remain critical for identification of genomic
regions associated with horticultural traits. In apple,
several genetic linkage maps have been reported. For
example, Maliepaard et al. [12] have developed the first
apple linkage map using mostly restriction fragment
length polymorphisms (RFLP) and amplified fragment
length polymorphism (AFLP) markers. Later, microsatel-
lites or simple sequence repeats (SSRs) have been widely
exploited and used to construct high-density linkage
maps for apple [13-17]. SSRs, either genomic SSRs
(gSSRs) or expressed sequence tag (EST) SSRs (EST-
SSRs), are co-dominant, reliable, and highly reproducible.
To date, more than 300 gSSRs have been developed and
mapped in apple [13-15,17]. More recently, SSRs asso-
ciated with expressed sequences have also been exten-
sively exploited, and a total of 323 EST-SSRs have been
developed and mapped in apple [18]. Despite this pro-
gress, the number of SSRs publicly available for apple is
not sufficient for the development of high-resolution
linkage maps or for rapid saturation of specific map
regions, both of which are essential for QTL fine-
mapping and positional gene cloning.
Construction of a genetic map requires analysis of

hundreds of markers over a relatively large number of
plants. Thus, genotyping analysis is a labor-intensive and
time-consuming undertaking. During the past several
years, rapid progress has been made in developing mo-
lecular tools to enable large-scale segregation analysis in
genetic studies. PCR-based markers adapted to large-
scale genotyping systems can be designed for construct-
ing genetic linkage maps. SSRs are amenable for analysis
using automated DNA sequencers, and thus can be
adapted for high-throughput genotyping. For example,
fluorescent microsatellite genotyping has been success-
fully carried out recently to develop a high-density link-
age map for apple within a few months [18].
In addition to their usefulness in constructing linkage

mapping, SSRs are useful for population genetic studies as
well as for comparative genomics efforts [19]. Genome-
wide analysis of SSRs is not only an efficient strategy to de-
velop abundant molecular markers, but may also provide
insights into possible roles of SSRs in chromosome struc-
ture, function, and evolution [20]. Therefore, it is important
to continue to develop SSR markers for further progress of
genetics and genomics efforts for apple. To date, there are a
few reports on genome-wide characterization of microsatel-
lite sequences in the apple genome [13,14]. Recently, the
apple genome has been sequenced (database is available at
http://www.rosaceae.org/projects/apple_genome), thus pro-
viding an opportunity to identify and develop robust
genome-wide SSRs. In this study, distribution and variation
of size of microsatellites within the DNA sequence of the
apple genome have been characterized. The aim of this
study is to develop SSRs for constructing genetic linkage
maps to identify QTLs for fruit acidity. Our results will aid
in conducting apple genetic studies, pursuing efficient apple
breeding, and performing comparative genomic studies in
rosaceae.

Results
Simple sequence repeats in the apple genome
The distribution of microsatellites of minimum lengths
of 20 bp in assembled contig sequences of the apple gen-
ome was analyzed [8]. A total of 28,538 microsatellites,
consisting of a variety of repeat types, were identified
(Table 1). Di-nucleotide repeats were the most abundant,
accounting for 71.9% of all SSRs. Tri-, tetra-, penta-, and
hexa-nucleotide repeats accounted for 12.3%, 6.3%, 0.9%,
and 0.2%, respectively, of all SSRs. Of the di-nucleotide
repeats, AT/TA was the most abundant, accounting for
32.8% of all di-nucleotide repeats, while AG/GA and
AC/CA repeats accounted for 30.7% and 8.5%, respect-
ively. It is worth noting that SSR motifs represented var-
iants of both strands of the DNA sequence. GC/CG
repeats were rather rare, and only a single CG repeat
was found. Among tri-nucleotide repeats, AAC/ACA/
CAA was the most abundant, accounting for 39.8%
of all tri-nucleotide repeats, followed by AAT/ATA/
TAA (22.0%) and AAG/AGA/GAA (22.0%). Of tetra-
nucleotide repeats, AAAT/TAAA/ATAA/AATA was
the most abundant, accounting for 35.8% of all tetra-
nucleotide repeats, and followed by TACA/ACAT/
CATA/ATAC (28.1%). Among penta- and hexa-
nucleotide repeats, AT-rich repeats were the most abun-
dant, accounting for 24.5% and 11.6% of all penta- and
hexa-nucleotide repeats, respectively. Moreover, 63.5%,
88.4%, 91.5%, 98.5%, and 93.4% of di-, tri-, tetra-, penta-,
and hexa-nucleotide repeats, respectively, were less than
30 bp in length. A small number of di-nucleotide repeats
(15.0%) were longer than 50 bp in length, whereas few
tri-, tetra-, pentra-, or hexa-nucleotide repeats (< 5%)
were longer than 40 bp in length. Briefly, AT/TA and
AG/GA di-nucleotide repeats were the most abundant
SSRs in the apple genome, and most SSR motifs were
shorter than 30 bp in length.
To investigate the distribution of SSRs in coding DNA

sequences (CDSs), untranslated regions (UTRs), and gen-
omic regions of the apple genome, DNA sequences flanking
SSR motifs were compared with both the apple CDS data-
base (http://www.rosaceae.org/projects/apple_genome) and
expression sequence tag (EST) database of NCBI. Of
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Table 1 Composition and length distribution of major SSR types in the apple genome

Repeat unit Repeat type Repeat length (bp) Total Frequency
(%)<30 30-40 40-50 >50

Dimer AC/CA 1883 357 106 73 2419 8.48

AG/GA 5115 2090 953 595 8753 30.67

AT/TA 6035 1968 854 495 9352 32.77

CG 1 0 0 0 1 0.00

Total 13033 4415 1913 1163 20524 71.92

Trimer AAT/ATA/TAA 591 97 41 44 773 2.71

AAC/ACA/CAA 1342 44 7 3 1396 4.89

AAG/AGA/GAA 643 66 20 44 773 2.71

Others 520 31 4 6 561 1.97

Total 3096 238 72 97 3503 12.27

Tetramer AAAT/TAAA/ATAA/AATA 631 10 0 1 642 2.25

AATT/ATTA/TTAA/TAAT 93 0 0 0 93 0.33

AAAG/AAGA/AGAA/GAAA 109 10 2 2 123 0.43

TACA/ACAT/CATA/ATAC 404 76 15 8 503 1.76

GTTT/TGTT/TTGT/TTTG 90 1 1 0 92 0.32

AGGG/GAGG/GGAG/GGGA 91 4 0 0 95 0.33

Others 222 17 5 1 245 0.86

Total 1640 118 23 12 1793 6.28

Pentamer AAAAT/AAATA/AATAA/ATAAA/TAAAA 494 2 0 0 496 1.74

GTTTT/TGTTT/TTGTT/TTTGT/TTTTG 154 1 0 0 155 0.54

AATTT/ATTTA/TTTAA/TTAAT/TAATT 94 1 0 0 95 0.33

AAAAG/AAAGA/AAGAA/AGAAA/GAAAA 115 0 0 0 115 0.40

AAGCC/AGCCA/GCCAA/CCAAG/CAAGC 170 0 0 0 170 0.60

CCCTG/CCTGC/CTGCC/TGCCC/GCCCT 121 7 0 1 129 0.45

Others 747 15 1 1 764 2.68

Total 1895 26 1 2 1924 6.74

Hexamer AAAAAT/AAAATA/AAATAA/AATAAA/ATAAAA/TAAAAA 106 2 2 0 110 0.39

AAAAAG/AAAAGA/AAAGAA/AAGAAA/AGAAAA/GAAAAA 38 1 0 0 39 0.14

AAAAAC/AAAACA/AAACAA/AACAAA/ACAAAA/CAAAAA 34 0 0 0 34 0.12

CCCTCT/CCTCTC/CTCTCC/TCTCCC/CTCCCT/TCCCTC 33 2 2 0 37 0.13

ATACAT/TACATA/ACATAT/CATATA/ATATAC/TATACA 40 6 0 1 47 0.16

AGAGTG/GAGTGA/AGTGAG/GTGAGA/TGAGAG/GAGAGT 21 1 0 0 22 0.08

CCTCTC/CTCTCC/TCTCCC/CTCCCT/TCCCTC/CCCTCT 35 3 1 0 39 0.14

Others 434 23 7 1 465 1.63

Total 741 38 12 2 793 2.78

SSRs with at least 20 bp in length and more than 3 repeats were recorded. SSR motifs represent variants of both strands of the DNA sequence (e.g., AC/CA
includes the reverse complements GT and TG).
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28,538 SSRs in scaffold sequences of the apple genome, 513
(1.8%), 4,120 (14.4%), and 23,905 (83.8%) were present in
CDSs, UTRs, and genomic DNA, respectively (Table 2). Of
CDS-SSRs, tri-nucleotide repeats were the most abundant,
accounting for 51.7% of all CDS-SSRs, and followed by
hexa-nucleotide repeats (28.5%). In contrast, among UTR-
SSRs or gSSRs, di-nucleotide repeats were the most abun-
dant, accounting for 73.0% and 72.9% of all UTR-SSRs and
gSSRs, respectively. AG/GA dimers prevailed in transcribed
sequences and accounted for 66.8% of all UTR-SSRs. Of all
gSSRs, AT/TA and AG/GA dimers accounted for 38.3%
and 24.8%, respectively. Briefly, AT/TA and AG/GA were



Table 2 Distribution of SSR types in coding DNA
sequences (CDSs), untranslated regions (UTRs), and
genomic DNA of the apple genome

Repeat Region Repeat length (bp) Total Frequency
(%)<30 30-40 40-50 >50

Dimer CDS 76 0 0 0 76 0.27

UTR 2098 598 158 153 3007 10.54

Genomic 10860 3817 1755 1010 17442 61.12

Trimer CDS 260 5 0 0 265 0.93

UTR 425 22 3 2 452 1.58

Genomic 2411 211 69 95 2786 9.76

Tetramer CDS 10 0 0 0 10 0.04

UTR 158 11 1 1 171 0.60

Genomic 1472 107 22 11 1612 5.65

Pentamer CDS 16 0 0 0 16 0.06

UTR 223 7 0 0 230 0.81

Genomic 1658 19 1 2 1680 5.89

Hexamer CDS 136 8 1 1 146 0.51

UTR 248 10 2 0 260 0.91

Genomic 355 20 9 1 385 1.35
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the most abundant in genomic DNA and transcribed
sequences of the apple genome, respectively (Figure 1).
Figure 1 Distribution of dimeric SSRs in genomic DNA (A) and
transcribed sequences (B) of the apple genome
SSR polymorphisms in apple cultivars and wild species
As demonstrated above, most SSR motifs in the apple
genome were either di- or tri- nucleotide repeats. Thus,
310 primer pairs flanking 278 di-nucleotides repeats and
32 tri-nucleotide repeats were designed to test poly-
morphism among eight apple genotypes, including four
cultivars and four wild species (Table 3). Of 310 primer
pairs, 298 (96.1%) were amplified, and 245 (79.0%)
showed polymorphic banding patterns in all genotypes
tested. The average numbers of alleles amplified by
gSSRs, UTR-SSRs, and CDS-SSRs were 3.5, 2.4, and 2.6,
respectively. The average number of alleles amplified by
each SSR was 3.2 for the four apple cultivars and 3.4 for
the four wild apple species; moreover, each dimer or tri-
mer detected 3.4 and 2.5 alleles, respectively, in these
two sets of genotypes. The average PIC values for gSSRs,
UTR-SSRs, and CDS-SSRs were 0.64, 0.48, and 0.54, re-
spectively, for all genotypes tested. The average PIC
value for all SSR loci was 0.57 for four apple cultivars,
and with a higher average PIC value of 0.66 for the four
wild apple species. On average, gSSRs flanking AC/CA,
AG/GA, and AT/TA motifs had 2.8, 3.5, and 3.2 alleles
in all eight genotypes, respectively. The average PIC
values of AC/CA, AG/GA, and AT/TA motifs in gen-
omic regions were 0.52, 0.67, and 0.63, respectively, over
all eight genotypes.
Among all 310 primer pairs, 81 primer pairs were
identified to be polymorphic between ‘Golden Delicious’
and ‘Jonathan’, parents of the F1 mapping population.
Thus, these primer pairs were used to construct a gen-
etic linkage map for apple, and these were designated
with a ‘WBGCAS’ prefix to distinguish them from previ-
ously published SSRs. Primer sequences of these newly
identified SSRs are listed in Additional file 1.

Construction of a genetic linkage map of apple
A total of 676 previously published SSR markers were
initially used to screen the parents ‘Golden Delicious’
and ‘Jonathan’. Of 676 SSR markers, 327 were selected
from a public domain of apple molecular markers
(http://www.hidras.unimi.it/) and 349 were recently
developed EST-SSRs and BAC-end sequence (BES)-SSRs
[18,21]. As a result, 218 SSRs (98 gSSRs, 15 BES-SSRs,
and 105 EST-SSRs) were identified to be polymorphic
between ‘Golden Delicious’ and ‘Jonathan’. These poly-
morphic SSRs, together with the newly-developed SSRs

http://www.hidras.unimi.it/


Table 3 Average allele numbers and PIC values of SSRs in eight apple genotypes

SSR region Type No. of SSRs Average allele number Average PIC value

C* W* C+W* C* W* C+W*

CDS Dimer 3 2.50 2.75 2.63 0.44 0.48 0.46

Trimer 9 2.53 2.71 2.62 0.55 0.59 0.57

UTR Dimer 28 2.26 2.56 2.41 0.49 0.51 0.50

Trimer 11 2.27 2.27 2.27 0.41 0.45 0.43

Genomic Dimer

AC/CA/TG/GT 17 2.40 3.20 2.80 0.44 0.60 0.52

AG/GA/TC/CT 102 3.20 3.69 3.45 0.62 0.73 0.67

AT/TA 63 2.75 3.19 2.97 0.56 0.69 0.63

Total 182 3.51 3.67 3.59 0.60 0.71 0.65

Trimer 12 2.57 2.57 2.57 0.52 0.56 0.54

C: Four apple cultivars, including ‘Golden Delicious’, ‘Jonathan’, ‘Luao’, and ‘Starkrimson’. W: Four wild apple species, including M. prunifolia (Willd.) Borkh.
(‘Regunzihaitang’), M. sieversii (Lebed.) Roem. (‘Xinjiangyepingguo 12’), M. × robusta Rehd. (‘Pingding Crab’), and M. asiatica Nakai (‘Naizi’). C+W: Both four apple
cultivars and four wild apple species.
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with a ‘WBGCAS’ prefix designation, as described above,
were then used to screen all seedlings of the mapping
population of ‘Jonathan’ x ‘Golden Delicious’. This
revealed presence of five segregation types, as defined in
JoinMap 4.0, including lm×ll, nn×np, hk×hk, ab×cd, and
ef×eg (Additional file 2). Of 299 tested SSRs, 12 ampli-
fied two loci. As a result, a total of 311 loci were scored.
Subsequently, 50 loci were excluded from linkage ana-
lysis as they either failed to link with any of the linkage
groups or their distorted segregation conflicted with seg-
regation patterns of neighboring markers. Moreover, 44
seedlings were found to carry several double recombin-
ation events, and were excluded from further linkage
analysis. Finally, a consensus linkage map consisting of
251 loci (91 l m× ll, 95 nn × np, 15 hk × hk, 15 ab × cd,
and 50 ef × eg) along 21 linkage groups was successfully
generated (Figure 2). These 21 linkage groups were
assigned to their respective chromosomes, based on pre-
viously published linkage maps [12-18]. Each linkage
group had 8 to 24 markers with an average of 14.7. The
consensus linkage map spanned 1720.9 cM with an aver-
age density of 6.8 cM per marker.
Of 251 SSR loci along the consensus map, 141 and

148 were mapped onto linkage maps of ‘Jonathan’ and
‘Golden Delicious’, respectively. The total lengths of link-
age maps of ‘Jonathan’ and ‘Golden Delicious’ were
1228.4 and 1403.9 cM, respectively, and the average
densities were 8.7 and 9.4 cM per SSR, respectively.

Identification of QTLs responsible for malic acid content
in ripe apple fruit
Of 242 F1 seedlings used to construct the linkage map,
162 were reproductive and bore fruits. Collected fruits
from these seedlings were evaluated for malic acid con-
tents. The average content of malic acid for this segment
of the mapping population was 2.42 mg/g, ranging from
0.44 to 6.58. Interval mapping was conducted for malic
acid content, and a QTL for malic acid content was
detected on linkage group 8 of ‘Jonathan’, and this was
flanked by markers CH04g12 and Hi20b03. The QTL
explained ~ 13.5% of the phenotypic variation, with an
LOD score of 3.4. In the Kruskal–Wallis analysis, the Ma
QTL was supported with a highly significant (P < 0.0001)
value of the K statistic, 15.9 for malic acid content.

Discussion
Frequency and variation of SSRs identified in the apple
genome
Currently, there is no consensus on the definition of
SSRs, particularly regarding the minimum length of re-
peat sequences [22]. In this study, the distribution and
frequency of SSRs has been analyzed, with repeat unit
lengths of 2 to 6 bp and a minimum length of 20 bp in
assembled contigs of the DNA sequence of the apple
genome. A total of 28,538 SSRs were identified in the
apple genome (Additional file 3). Given the estimated
700 Mb size of the apple genome [8], the SSR density is
~ 40.8 per Mb in the DNA sequence of apple. This
observed SSR frequency in the apple genome is lower
than those reported for other plant species. For example,
overall densities of SSRs in genomes of Arabidopsis, rice,
and cucumber are 874, 807, and 551 SSRs/Mb, respect-
ively [23,24]. This is probably mainly due to the fact that
higher stringent conditions have been used in defining
SSRs in this study than those used previously for Arabi-
dopsis, rice, and cucumber. For Arabidopsis, rice, and
cucumber, di- and tri-nucleotide repeats of minimum
lengths of 12 di-nucleotide repeats have been recorded,
along with tetra- to hexa-nucleotide repeats of at least
three repeat units [24]. Moreover, it is worth mentioning



Figure 2 SSR-based genetic map of apple. M: male parent (cv. ‘Golden Delicious’), F: female parent (cv. ‘Jonathan’), and LG: linkage map. The
consensus map is shown in centre, and distances shown in the maps are measured in centimorgans (cM). The number of linkage groups
corresponds to the number of the haploid chromosomes of the draft apple genome sequence [8]. Segregation-distorted markers clustered within
the chromosomal region are indicated in gray.
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that the total amount of repetitive elements in apple is
estimated to be 352.6 Mb in size, representing ~ 47.5%
of the whole genome sequence [8]. Whereas, repetitive
elements in Arabidopsis, cucumber, and rice account for
18.5%, 14.8%, and 39.5% of their whole genome
sequences, respectively [8]. It has been reported that
microsatellites are preferentially associated with non-
repetitive DNA in plant genomes [25]. Thus, abundance
of repetitive sequences in the apple genome may also
contribute to the observed low frequency of SSRs.
More recently, Cavagnaro et al. [24] have analyzed

microsatellites in different plants, and found that tri-
nucleotide repeats are the most prevalent type of SSRs
in Arabidopsis, soybean, rice, and sorghum, while tetra-
nucleotide repeats are most prevalent in poplar and
grapevine. In this study, di-nucleotide repeats are the
most abundant SSRs in apple, accounting for ~ 71.9% of
all SSRs. This clearly suggests that repeat units of the
most abundant SSRs in different plants vary considerably
in size. However, it is not known whether or not this
variation is related to plant speciation. Moreover, most
SSRs identified in apple are less than 30 bp in length,
and very few SSRs are longer than 50 bp. The observed
distribution of lengths of SSRs in this study is consistent
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with previous findings that the frequency of repeat types
decreases exponentially with repeat lengths [26].
In apple, SSRs are strongly biased towards AT-rich re-

peat motifs. For example, AT/TA repeats are not only
the predominant dimers, but they are also the most fre-
quent motifs in the entire genome. Moreover, only a sin-
gle GC repeat with at least 20 bp in length is present in
the apple genome. Similarly, among all tri-, tetra-, penta-
, and hexa-nucleotide repeats found in the apple gen-
ome, AT-rich repeats are the most abundant SSRs. How-
ever, GC-rich motifs are quite few, and only 7, 2, and 9
of GGC/CCG/GCG/CGC, GCCG/GGGC, and CCCCG/
GCCCG/GCGGG repeats, respectively, are detected in
the apple genome. These results are in agreement with
previous findings that AT-rich SSRs are predominant in
such dicots as Arabidopsis [27], papaya [28], soybean
[29], and cucumber [24]; while GC-rich repeats are pre-
dominant in monocots, and most are present in coding
regions [30]. It has been reported that GC contents in
monocots are generally higher than those found in
dicots [24]. Thus, the basal composition of the genome
may play an important role in determining the types of
observed SSRs in higher plants.
The predominance of tri- and hexa-nucleotide repeats

in coding DNA sequences has been widely reported in
several plant species [23,24,31]. In this study, tri- and
hexa-nucleotide repeats prevail in coding DNA
sequences of apple, accounting for 51.7% and 28.5% of
all CDS-SSRs, respectively. The abundance of tri- and
hexa-nucleotide repeats in plants may be attributed to
negative selection against frame-shift mutations. More-
over, CCG/CGC/GCC repeats prevail in coding DNA
sequences of rice [23]; while AGG/GAG/GGA repeats
are the most abundant in coding DNA sequences of
apple. Thus, positive selection for specific single amino-
acid stretches may be involved in expansion of tri-
nucleotide repeats in plants [25].
In this study, gSSRs detected more alleles and higher

PIC values than either CDS-SSRs or UTR-SSRs. This is
consistent with previous findings that suggested that
EST-SSRs have lower levels of allele variations than
gSSRs [22]. Di-nucleotide repeats prevail in apple, and
the most frequent motifs in genomic and transcribed
regions are AT/TA and AG/GA, respectively. Of dimeric
gSSRs, AG/GA motifs have revealed more alleles and
higher PIC values than AT/TA or AC/CA motifs. AG/
GA repeats in transcribed sequences have detected
higher PIC values in eight apple genotypes than in other
dimeric EST-SSRs. In a previous study, 825 EST-SSRs
used to evaluate polymorphisms in two apple genotypes,
‘Co-op 16’ and ‘Co-op 17’, have shown that 28.8%, 22.1%,
and 15.8% of AG/GA, AT/TA, and AC/CA repeats are
polymorphic, respectively [18]. Therefore, it seems that
AG/GA repeats in either genomic or transcribed regions
may be more variable when compared with their coun-
terparts of AT/TA and AC/CA repeats in apple. The
AG/GA repeats may be more efficient than any other
types of SSRs for genetic diversity studies and for linkage
map construction in apple. In addition, SSRs have
detected more alleles and higher PIC values in the four
apple cultivars than in the four wild apple species. This
suggests that SSR motifs in apple are less variable in cul-
tivars than in wild species, which may be attributed to
domestication of the apple.

Transferability and segregation distortion of apple SSRs
among populations
Recently, a total of 312 EST-SSRs were mapped onto an
apple linkage map using the mapping population ‘Co-op
17’ × ‘Co-op16’ [18]. In this study, these EST-SSRs were
selected to construct a genetic linkage map, and 64
(20.5%) were found to be polymorphic between
‘Jonathan’ and ‘Golden Delicious’. Moreover, of 296 pre-
viously reported gSSRs, prefixed with ‘CH’ or ‘Hi’
[17,32,33], used to screen the two parents ‘Jonathan’ and
‘Golden Delicious’, 94 (31.8%) gSSRs were found to be
polymorphic between these two parents and 90 (30.4%)
gSSRs were successfully anchored onto the genetic link-
age map. Similarly, of 254 previously published gSSRs,
prefixed with ‘CH’ or ‘Hi’ [17,32,33], used to construct a
linkage map for ‘Co-op 17’ × ‘Co-op16’, 81 (31.9%) dis-
played polymorphisms between ‘Co-op 17’ and ‘Co-op
16’ [18]. This indicated that the level of transferability of
apple SSRs was not high among populations, and gSSRs
exhibited higher levels of polymorphism than EST-SSRs
(~ 32% versus ~ 21%).
The above findings may be attributed to the fact that

DNA sequences are known to be conserved in expressed
regions. Moreover, among 310 gSSRs identified from the
assembled genome sequence of apple selected to amplify
both apple cultivars and wild species, 48.3% are found to
be polymorphic among cultivars and wild species;
whereas, only 21.6% are polymorphic between ‘Jonathan’
and ‘Golden Delicious’. Therefore, using the mapping
population from a cross between a domesticated cultivar
and a wild species would aid in constructing an SSR-
based genetic linkage map for apple.
In addition to low levels of transferability observed in

this study, a high frequency of segregation distortion
(20.7%) was also observed among apple SSRs. Segrega-
tion distortions have been reported in other apple map-
ping populations, and up to 27.5% of markers have
shown segregation distortion in a cross between ‘Wijcik
McIntosh’ and ‘NY75441-58’ [12,16,32,34]. A high fre-
quency of segregation distortion (20.3%) has also been
noted for SSRs in grapevine [35]. Segregation distortion
is generally reported to be due to presence of lethal
genes influencing viability of gametes and/or zygotes
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[36]. Therefore, a cluster of markers within the chromo-
somal region surrounding lethal genes will always show
segregation distortion [37]. In apple, clustering of mar-
kers with distorted segregation has been previously
observed for linkage group 10 [12,32,34]. In this study,
5, 9, 6, and 3 SSRs with distorted segregations are clus-
tered within a region on consensus linkage groups 2
(56.4 – 69.4 cM), 10 (51.5 – 80.9 cM), 15 (21.0 – 69.3
cM), and 16 (0.0 – 15.2 cM), respectively (Figure 2). These
segregation distortion regions may contain genes influ-
encing viability of gametes and/or zygotes [32]. More-
over, two SSRs, Hi07d08 and NZmsCN879773, with
distorted segregation are also found to be clustered on
linkage group 1 (Figure 2). When comparing linkage
group 1 in this study with previously reported genetic
linkage maps, it is found that these two SSRs are linked
to Vf genes for scab resistance in apple [18,38]. It has
been reported that Vf genes in apple are linked to sub-
lethal genes [39]. Thus, such lethal genes are likely to
be responsible for the observed distorted segregation
of the two clustered SSRs Hi07d08 and
NZmsCN879773. In addition, SSRs with distorted
segregation across the same linkage group are also
observed in this study. For example, three SSRs, in-
cluding CTG1066180, ctg1076780, and Hi12c02 show
distorted segregation, and are located in different
regions of linkage group 1. Thus, it seems that other
factors such as chromosome loss and self-
incompatibility may be also involved in segregation
distortion in apple [40,41].

Utilization of SSR motifs identified from assembled
genome sequences of apple
Initially, almost all published SSRs were used to con-
struct the genetic linkage map for apple using F1 seed-
lings from the cross between ‘Jonathan’ and ‘Golden
Delicious’. However, only ~ 200 SSRs were found to be
polymorphic between these two parents. To aid in sub-
sequent linkage map construction, developing additional
SSR markers was deemed necessary. Therefore, SSR
motifs in assembled genome sequences of apple were
analyzed, and more than 300 SSRs across the whole gen-
ome were selected to screen the two parents of the map-
ping population used in this study. As a result, 81
additional gSSRs were developed, and an SSR-based link-
age map of apple was successfully developed. These
results demonstrated that exploring and using SSRs
from the draft of the apple genome sequence were effi-
cient for constructing a genetic linkage map. As more
than 28,000 SSR motifs were present in the apple gen-
ome, this allowed for developing an SSR-based high-
density linkage map using a high-throughput genotyping
technology such as the fluorescent capillary electrophor-
esis [18].
In this study, a total of 54 gSSRs, identified from the
apple genome sequence, were genetically mapped onto
15 linkage groups. Mapping results of these gSSRs were
compared with their positions along the draft of the
apple genome sequence [8]. Surprisingly, 13 out of 54
gSSRs revealed inconsistencies between their genetic-
map positions and sequence-based physical-map posi-
tions (Additional file 4). Similarly, when comparing
DNA sequences flanking SSRs against the apple genome
sequence, 23 previously developed SSRs showed discrep-
ancies between their genetic-map and sequence-based
physical-map positions (Additional file 4). Moreover, pri-
mer sequences of 36 discrepant SSRs were also com-
pared against the apple genome sequence, and results
indicated that all these SSRs were likely to be single loci.
Additionally, genetic-map positions of 196 previously
developed SSRs on the consensus linkage map were
compared with earlier results. Of 196 SSRs, 192 were
mapped onto the same linkage groups as previously
reported [17,18,21,32,33]. Two SSRs, CH01b09b and
CH04g12, were for the first time genetically mapped
onto linkage groups 4 and 8, respectively. Previously, the
two gSSRs CH03b01 and Hi08g03 were mapped onto
linkage groups 2 and 6, respectively [15,17]; however, in
this study, CH03b01 was mapped onto two linkage
groups 2 and 15, while Hi08g03 was mapped onto link-
age group 10. CH03b01 and Hi08g03 have been reported
to be multi-locus SSRs [15,17], and linkage group 2 was
homologous to linkage group 15 [8,18]. Thus, the gen-
etic mapping results of CH03b01 and Hi08g03 observed
in this study are likely to be accurate.
Overall, the genetic positions of published SSRs in this

genetic linkage map are consistent with previous reports,
thus suggesting that mapping results of SSRs from the
draft sequence of the apple genome are reliable. How-
ever, it seems that a small portion of assembled contig
sequences of the apple genome may not be correctly
anchored onto apple chromosomes. Of 36 discrepant
SSRs, nine are located on linkage group 10 (Additional
file 4), indicating that the draft sequence of chromosome
10 may be less reliable when compared with those of
other chromosomes.

QTLs for fruit acidity
Acidity plays an important role in determining fruit
quality, and several studies have been carried out to
identify QTLs responsible for fruit acidity in both apple
and peach [12,16,32,42]. In apple, a major QTL or Ma
gene, responsible for fruit acidity, has been mapped onto
linkage group 16, and this can explain ~ 30% of the
observed variance [32,43]. In addition to the Ma gene,
six other QTLs for apple fruit acidity have also been
detected on linkage groups 2, 8, 10, 13, 15, and 17
[32,43]. In this study, the newly developed linkage map
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of apple has been used to identify QTLs for fruit acid-
ity. As malic acid is the major acid in apples [44], malic
acid content instead of fruit pH or titratable acidity has
been used to characterize apple fruit acidity in this
study. A QTL responsible for malic acid content of
apple fruits is detected on linkage group 8 of cv.
‘Jonathan’. This QTL is linked to SSR marker
CH05a02y, and this is consistent with the finding
reported by Liebhard et al. [45]. Thus, it seems that the
QTL for apple fruit acidity detected in this study is reli-
able, although the QTL analysis has been performed
using phenotyping data from a single year (2009), as
most seedlings have not fruited either due to incidence
of damaging cold temperatures during flowering or
outbreak of canker disease. It is worth noting that the
effect of QTLs for apple fruit acidity may have been
underestimated due to low marker density of linkage
map groups and the small mapping population size.
Additionally, some linkage groups are split into two
with gaps of unknown lengths. The large gaps in some
linkage groups, together with low marker density as
well as the small population size may all have contribu-
ted to inability in detecting some QTLs with small
effects. In this study, a QTL with a peak LOD value of
2.2 is detected on linkage group 5, but this QTL is not
recorded as its LOD value is lower than the cutoff
threshold value of 2.8.

Conclusions
This study provides insights into the characteristics of
microsatellites in apple. Overall the apple genome, di-
nucleotide repeats are the most frequent SSRs, account-
ing for 71.9% of all SSRs. A key new finding is that
among these di-nucleotide repeats, AT/TA and AG/GA
are the most frequent in genomic and transcribed
regions of apple, respectively. AG/GA repeats are more
variable than AT/TA or AC/CA repeats in apple. A total
of 310 primer pairs of SSRs have been designed to assess
their polymorphisms, and 245 (79.0%) are found to be
polymorphic in eight apple genotypes. The newly devel-
oped SSRs in this study, together with previously pub-
lished SSRs, have been used to construct a genetic
linkage map for apple using an F1 population derived
from a cross between ‘Jonathan’ and ‘Golden Delicious’.
The genetic mapping results indicate that gSSRs have
higher levels of polymorphism among different mapping
populations of apple than EST-SSRs. Distortion-
segregated markers have been clustered along several
chromosome regions. A QTL responsible for malic acid
content of apple fruits has been detected on linkage
group 8 of apple cv. ‘Jonathan’.
Briefly, the apple genome is rich in di-nucleotide

repeats, and AG/GA repeats are more variable than other
dimers. The availability of a very large set of microsatellite
markers distributed throughout the genome may facilitate
a variety of genomic studies in apple, including develop-
ment of high-resolution linkage maps, positional gene-
cloning, and fine-mapping of QTLs/genes.

Methods
Plant material
A segregating F1 population derived from a cross be-
tween ‘Jonathan’ and ‘Golden Delicious’, maintained at
the Changli Institute of Pomology (Hebei Province,
PRC), was used for linkage map construction. The segre-
gating population consisted of 286 individual seedlings.
Young leaves of these apple seedlings and their parents
were collected for DNA isolation.

Identification of SSRs
The assembled sequence of the ‘Golden Delicious’
apple genome was downloaded from the Genome Data-
base for Rosaceae (http://www.rosaceae.org/projects/
apple_genome). Assembly sequences of the apple gen-
ome were scanned for perfect microsatellites (uninter-
rupted run of repeats) using the computer program
MIcroSAtellite identification tool (MISA). SSRs recorded
for the final dataset included dimers to hexamers of at
least 20 bp in length.

Analysis of SSR genotyping
Primers were designed based on flanking sequences of
SSRs using the Primer 3 program (http://primer3.sour
ceforge.net/). Amplification was performed under the
following conditions: 3 min at 95°C, followed by 35
cycles of 45 s at 94°C, 45 s at 55°C, 45 s at 72°C, and a
final extension step at 72°C for 10 min. Five μL of amp-
lification products was mixed with an equal volume of
formamide loading buffer (98% formamide, 10 mM
EDTA, pH 8.0, 0.025% bromophenol blue and xylene
cyanol). The mixture was denatured at 94°C for 3 min,
and then immediately chilled on ice. An aliquot of 2 μL
mixture was loaded on a 6% polyacrylamide gel, and
electrophoresed for 1.5 h at 1200V. Bands were visua-
lized after silver staining, and recorded on a Scan-
Maker 3830 (Microtek, Shanghai, China).

Investigation of polymorphism of SSRs in apple cultivars
and wild species
Evaluation of SSR polymorphism was conducted using four
apple cultivars, including ‘Golden Delicious’, ‘Jonathan’,
‘Luao’, and ‘Starkrimson’, along with four wild apple species,
including M. prunifolia (Willd.) Borkh. (‘Regunzihaitang’),
M. sieversii (Lebed.) Roem. (‘Xinjiangyepingguo 12’), M. ×
robusta Rehd. (‘Pingding Crab’), and M. asiatica Nakai
(‘Naizi’). SSRs exhibiting polymorphisms among the eight
apple genotypes were subjected to calculated polymorphism

http://www.rosaceae.org/projects/apple_genome
http://www.rosaceae.org/projects/apple_genome
http://primer3.sourceforge.net/
http://primer3.sourceforge.net/
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information content (PIC) values following the protocol
described by Zhang et al. [46].

Construction of a genetic linkage map and QTL analysis
A total of 286 F1 seedlings derived from a cross be-
tween ‘Jonathan’ and ‘Golden Delicious’ were used
for the construction of genetic linkage maps for
apple. The linkage analysis was carried out using
JoinMap version 4.0 [47], as previously described by
Han et al. [18]. Briefly, an LOD score threshold of
8.0 was initially used to assign markers to different
linkage groups. Once linkage groups were deter-
mined, the remaining markers were added to their
corresponding groups using a less stringent criterion
of LOD score of 4.0. Genetic maps for each parent
were constructed using the function of ‘Create Ma-
ternal and Paternal Node’ in the JoinMap program.
The regression mapping algorithm was used for map
construction. Map distances were calculated using
Kosambi’s mapping function, and denoted in centi-
Morgans (cM). Once the genetic maps for each par-
ent were constructed, a consensus map was built
using the CP population model. Order of markers in
genetic maps for each parent was used as preferred
orders (the ‘fixed order’ function) for the construction
of a consensus map.
QTL analysis was conducted using MapQTL v4 [48].

Genetic linkage maps for each parent were used to de-
tect QTLs using an interval mapping approach, and an
LOD score of 2.8 was set as a genome-wide threshold to
declare significant QTLs.

Analysis of malic acid content in apple fruits
Three apple fruits from each progeny were collected at
maturity, cut into small sections, and then stored at −70°C
until use. One gram of fresh fruit was ground into a fine
power in liquid nitrogen, and dissolved in 10 mL of 80%
methanol (pH 7, 0.1M imidazole). The mixture was incu-
bated for 15 min at 75°C, sonicated for 20 min in an ultra-
sonic water bath, and centrifuged at 10,000 g for 10 min at
room temperature. A total of 980 μL of the supernatant
and 20 μL of an inner standard (2.5% methl-α-D- gluco-
pyranoside, 2.5% phenyl-β-D-glucopyranoside, and 10%
acetone) were mixed, and then centrifuged at 10,000 g for
20 min at room temperature. An aliquot of 0.5 mL from
each sample was evaporated to dryness, and the residue
was dissolved in 0.8 mL of hydroxylamine hydrochloride
solution in pyridine (20 mg/ml). The mixture was incu-
bated at 75°C for 1 h, and then cooled down to room
temperature. Subsequently, 0.4 mL of hexamethyldisila-
zane and 0.2 mL of trimethylchlorosilane were added. Fol-
lowing incubation at 75°C for 2 h, the mixture was
centrifuged at 12,000 g for 20 min at room temperature. A
total of 0.5 mL of supernatant was subjected to gas
chromatography analysis (Agilnet 6890N, USA) to esti-
mate the concentration of organic acid content as
described by Morvai and Molnár-Per [49].

Additional files

Additional file 1: Primer sequences of newly developed SSRs in
apple.

Additional file 2: Five segregation types of SSRs in the F1 mapping
population of ‘Jonathan’ x ‘Golden Delicious’.

Additional file 3: Details of SSRs, their primer sequences, and
sequences of SSR motifs and their flanking regions in the apple
genome.

Additional file 4: Apple SSRs revealing discrepancies between
genetic-map and sequence-based physical-map positions. A: Linkage
maps of this study, B: Linkage map of previous studies [17,18,31,32], C:
The apple draft map. SSRs were anchored onto the draft map of apple
by comparing DNA sequences flanking SSRs against the apple genome
sequences of cv. ‘Golden Delicious’.
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