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Abstract

Background: We investigated strategies and factors affecting accuracy of imputing genotypes from lower-density
SNP panels (Illumina 3K, 7K, Affymetrix 15K and 25K, and evenly spaced subsets) up to one medium (Illumina 50K)
and one high-density (Illumina 800K) SNP panel. We also evaluated the utility of imputed genotypes on the
accuracy of genomic selection using Australian Holstein-Friesian cattle data from 2727 and 845 animals genotyped
with 50K and 800K SNP chip, respectively. Animals were divided into reference and test sets (genotyped with
higher and lower density SNP panels, respectively) for evaluating the accuracies of imputation. For the accuracy of
genomic selection, a comparison of direct genetic values (DGV) was made by dividing the data into training and
validation sets under a range of imputation scenarios.

Results: Of the three methods compared for imputation, IMPUTE2 outperformed Beagle and fastPhase for almost
all scenarios. Higher SNP densities in the test animals, larger reference sets and higher relatedness between test and
reference animals increased the accuracy of imputation. 50K specific genotypes were imputed with moderate allelic
error rates from 15K (2.85%) and 25K (2.75%) genotypes. Using IMPUTE2, SNP genotypes up to 800K were imputed
with low allelic error rate (0.79% genome-wide) from 50K genotypes, and with moderate error rate from 3K (4.78%)
and 7K (2.00%) genotypes. The error rate of imputing up to 800K from 3K or 7K was further reduced when an
additional middle tier of 50K genotypes was incorporated in a 3-tiered framework. Accuracies of DGV for five
production traits using imputed 50K genotypes were close to those obtained with the actual 50K genotypes and
higher compared to using 3K or 7K genotypes. The loss in accuracy of DGV was small when most of the training
animals also had imputed (50K) genotypes. Additional gains in DGV accuracies were small when SNP densities
increased from 50K to imputed 800K.

Conclusion: Population-based genotype imputation can be used to predict and combine genotypes from different
low, medium and high-density SNP chips with a high level of accuracy. Imputing genotypes from low-density SNP
panels to at least 50K SNP density increases the accuracy of genomic selection.
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Background
Innovations in genomic technologies provide new tools
for enhancing productivity and wellbeing of domestic
animals. Genomic selection, where genetic merit is pre-
dicted from genome-wide single nucleotide polymorph-
ism (SNP) genotypes [1,2], is used in the dairy industries
in a number of countries [3,4]. The rapid uptake of this
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technology has been driven by both the availability of
commercial high-density SNP chips, and increased gen-
etic gain over traditional progeny testing largely as a
consequence of reduced generation interval and
increased accuracy of selection at a younger age [5-7].
A number of SNP chips from Illumina (http://www.

illumina.com) and Affymetrix (http://www.affymetrix.
com) are available for cattle. These include 3K [8], 7K
[9], 15K [10], 25K [11], 50K [12] and more recently
800K from Illumina, and 650K and 3 million SNP panels
from Affymetrix. In addition next generation sequencing
technologies for low-cost sequencing of whole genomes
are now available [13]. Use of genotypic data from high-
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density SNPs potentially can increase accuracy of gen-
omic selection but also the total cost of genotyping/se-
quencing. As new higher density chips are developed,
re-genotyping previously genotyped samples or new
samples with new chips or whole genome sequencing is
expensive. For some applications, such as selection of
heifers to be retained in the dairy herd or selection in
beef production systems, low-density SNP panels e.g.
3-7K may be the only cost effective option (e.g. [14]). If
low-cost genotyping could be useful, very large numbers
of animals can be genotyped on a routine basis.
Accuracy of genomic predictions based on different

subsets of low-density SNP panels up to 50K have been
compared in a number of studies [15-18]. A common
finding is that accuracy of genomic prediction for young
animals increased as the number of markers increased
from a few hundred up to all SNPs from 50K SNP chip.
There are several possible strategies how to select loci
for low-density panels [17]. However, instead of using
lower density SNP in genomic prediction, a promising
approach is to genotype a small proportion of the popu-
lation with a high-density SNP panel and then employ
genotype imputation methods for predicting high-
density genotypes for the rest of the population
genotyped with a lower density SNP panel (e.g. [8,9]).
Genotypic imputation is defined as the prediction of
genotypes at the SNP locations in a sample of indivi-
duals for which assays are not directly available. These
in silico genotypes obtained by imputation, albeit with
some uncertainty, can then be used in genome-wide as-
sociation and genomic selection analyses (e.g. [19,20]).
Such strategies are likely to result in more accurate
Table 1 Description of different SNP chips and SNP subset pa

Label used for SNP
panel in this study

SNP chip Number o
on chip

15K 15K (ParAllele/Affymatrix) 15,036

25K 25K (Affymatrix) 25,068

50K Illumina BovineSNP50 BeadChip 54,001

3K Illumina BovineSNP50 BeadChip 3,000

5K Illumina BovineSNP50 BeadChip 5,000

10K Illumina BovineSNP50 BeadChip 10,000

20K Illumina BovineSNP50 BeadChip 20,000

35K Illumina BovineSNP50 BeadChip 35,000

BovineLD 7K Illumina BovineLD BeadChip 6,909

Bovine3K Illumina Bovine3K BeadChip 2,900

800K Illumina 800K BovineHD beadChip 786,799

800K-imputed Illumina 800K BovineHD beadChip 786,799

800K-dosage Illumina 800K BovineHD beadChip 786,799

49K Illumina BovineSNP50 BeadChip 54,001
predictions of genomic breeding values [21], improved
ability to resolve or fine-map QTL or QTN, and integra-
tion and meta-analysis across large datasets with hetero-
geneous SNP information [22].
A number of imputation software programs (fast-

PHASE [23], MACH [24], IMPUTE [25], Beagle [19],
PLINK [26], DualPhase [27]) have been used to infer miss-
ing or untyped genotypes based on known information
derived from flanking markers. A number of studies on
imputing genotypes have been published in dairy cattle
[21,28-33] using 50K data and more recently high-density
SNP panels [34-36] reporting accuracies of imputation
from lower SNP panels to 50K and up to high-density
SNP panels examining different methods of imputation,
often using limited number of scenarios and strategies of
using test and reference panels. The direct comparisons
across such studies are thus often difficult. Various factors
affecting the accuracy of imputation require further sys-
tematic investigation. The accuracy of imputation can be
improved by increasing the size of the reference popula-
tion [37]. For some resource population the animals gen-
otyped with different SNP panels are available. Such
genotype resources can be better utilised by imputing in a
tiered framework, utilising multiple reference panels,
which might result in improved accuracy of imputation in
the study samples [38].
The objectives of this study were to evaluate the ac-

curacies of imputation using three different population
based methods of imputation, different size of refer-
ence and test panels, different imputation strategies,
different SNP array platforms, effect of relationship be-
tween reference and test animals and finally examine
nels

f SNPs Filtered SNPs used in
this study

Remarks

205 SNPs from BTA20

328 SNPs from BTA20

42,136

3,000 Evenly spaced Subset of 50K

5,000 Evenly spaced Subset of 50K

10,000 Evenly spaced Subset of 50K

20,000 Evenly spaced Subset of 50K

35,000 Evenly spaced Subset of 50K

6,662

2,500

610,879

610,879 Imputed best guess genotypes

610,879 Imputed dosage for B-allele

49,394 Common SNP between 800K
and 50K chip
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the effect of using imputed genotypes on the accuracy
of genomic selection.

Methods
Data
In total four datasets genotyped with four different SNP
chips (Table 1) were used. The largest dataset consisted
of 2,727 (2,205 bulls and 522 cows) Australian Holstein-
Friesian cattle [17] genotyped with Illumina Bovi-
neSNP50 BeadChip [12]. A second more recent dataset
consisted of 845 Australian Holstein-Friesian heifers
genotyped with Illumina 800K BovineHD beadChip
(Illumina Inc., San Diego, CA). After applying quality
control (minor allele frequencies (MAF) >0.01, call
rate>0.9, Hardy Weinberg Equilibrium (HWE) P>0.0001)
a total of 42,136 and 610,879 autosomal SNPs from the
50K and the 800K chips, respectively, were used in the
present study (Table 1). In addition any genotype show-
ing Mendelian inconsistencies was set to missing.
Of the 2,205 bulls with 50K genotypic information,

1,419 were previously genotyped for 15K [10], and 431
for 25K ([11], http://www.affymetrix.com). These data-
sets were used to test the accuracies of imputing SNP
genotypes between different chips. The animals in all
these datasets are related in a complex pedigree struc-
ture. The distributions of relatedness in the form of box-
plots of pedigree kinship among animals in different
datasets are given in Additional file 1.

Imputation Scenarios
Animals were divided into reference and test sets for
evaluating the accuracies of imputation. The animals
included in the reference set have genotypes derived
from the high-density SNP panel and the animals in the
test set have genotypes from the lower density SNP
panel. The lower density SNP panels of the test sets
were created by using a subset of the genotyped SNPs.
The rest of the genotypes of the test sets were masked
and used to compute the accuracy of imputation. A
Table 2 Composition of reference and test sets for evaluating

Reference-test-ID Data Reference set

n % Description

1 50K 1363 50 bulls

2 50K 681 25 bulls

3 50K 272 10 bulls

4 50K 136 5 bulls

5 50K 27 1 key bulls

6 50K 2205 81 all bulls

7 50K 522 19 all cows

8 50K 1753 80 training set bull

The total number of animals (2,727) consisted of 2,205 bulls and 522 cows.
number of imputation scenarios were generated by com-
bining different reference and test sets and SNP dens-
ities. The animals (2,727) genotyped with 50K were
divided into 8 different combinations of reference and
test sets as presented in Table 2. Reference animals in
reference-test-ID 1–4 are a random sample of older bulls
born before 2001. The 27 bulls for reference-test-ID 5
are key ancestors of the Australia Holstein-Friesian
population. In reference-test-ID 8, younger bulls born
between 2001 and 2004 are in the test set and all older
bulls born before 2001 in the reference set.
To examine the effect of pedigree relatedness be-

tween test and reference animals on the accuracy of
imputation, the test animals with sire and without sires
in the reference set were compared. In addition the
highest value of pedigree kinship for each test animal
with reference animals was computed. The test animals
were classified into four interval categories with re-
spect to their highest pedigree kinship viz. 0.0-0.01,
0.01-0.1, 0.1-0.2 and 0.2-0.4. The accuracy of imputation
of the test animals in these four categories was compared
using IMPUTE2.
For the 800K dataset, the 845 heifers were randomly

divided in two subsets of approximately equal size
i.e. 425 in the reference and 420 in the test set. This
framework of imputation is referred here as a ‘2-tiered’
framework. This was extended to a ‘3-tiered’ framework
by including an additional panel of 2,205 bulls with 50K
SNP genotypes as a middle tier (Figure 1). An additional
scenario using fewer animals in the top-tier was gener-
ated by randomly selecting 45 out of 425 reference
heifers. The imputation for the tiered framework was
performed with IMPUTE2 using the two reference
panels in the same run.

Generating low-density SNP panels
To mimic various low-density SNP panels, different sub-
set of 50K SNPs were selected for the test sets. The SNP
densities equivalent to 3000, 5000, 10000, 20000 and
imputation accuracy up to 50K

Test set Total (animals)

n % Description

1364 50 bulls+cows 2727

2046 75 bulls+cows 2727

2455 90 bulls+cows 2727

2591 95 bulls+cows 2727

2700 99 bulls+cows 2727

522 19 all cows 2727

2205 81 all bulls 2727

s 452 20 test set young bulls 2205

http://www.affymetrix.com


Figure 1 Comparison of 2-tiered and 3-tiered imputation framework. The 2-tiered framework is composed of top tier (reference panel) and
lower tier (test panel). Three separate test panels (bottom tier) using three SNP densities, viz. Bovine3K, BovineLD 7K and 50K, were analysed.
In 3-tiered framework an additional panel of 2205 samples with 50K genotypes is included as middle tier.
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35000 evenly spaced autosomal SNPs were generated by
iterative thinning the SNPs based on spacing and MAF
of SNPs (Table 1). In each iteration, a SNP pair with the
smallest interval was identified and the SNP with lower
MAF was removed from the pair. A total of 1,324 SNPs
on chromosome 20 from the 50K panel were used for
the initial analyses to compare the imputation programs
for different scenarios. The best method of imputation
identified was then used for analysing all the auto-
somal SNPs from the Illumina Bovine3K and Illumina
BovineLD 7K BeadChip (Illumina Inc., San Diego, CA)
for assessing the comparative utility of imputed geno-
types from these commercial panels up to 50K for
genomic prediction.
Most of the SNPs on the 50K chip are present on the

800K chip. For the scenarios using the 800K panel the
lower density SNP panels for the test set consisted
of common SNPs between 800K and 50K as well as
between 800K and Illumina Bovine3K and Illumina
BovineLD 7K, respectively (Table 1).

Imputation methods
Population based imputation methods rely on linkage
disequilibrium relationship between SNPs, and essen-
tially consist of two steps viz. inference of haplotypes
and imputing untyped genotypes in the test set using in-
formation from the best fit haplotypes derived from the
reference panel. We compared three commonly used
population-based programs for imputing missing geno-
types which don’t rely on pedigree information viz.
IMPUTE2, fastPhase and Beagle.
We used IMPUTE2 version 2.1.2 in this study which

implements a Hidden Markov Model (HMM). The details
of the algorithm are given in [25].The algorithm involves
estimating haplotypes using all the SNP in reference set
and then imputing the alleles at untyped SNPs in the test
set based on the best fit haplotypes estimated from the
reference. IMPUTE2 requires to specify the effective
population size as an input parameter. This was set to 100
which is within the range of the effective population size
reported for Holstein-Friesian dairy cattle [39,40].
We used fastPHASE version 1.2.3 [23]. fastPhase uses

a haplotype clustering algorithm which is based on the
observation that haplotypes in a population tend to clus-
ter into groups of closely related or similar haplotypes
over a short region. fastPhase requires the number of
clusters K as input and was set to 20 in this study.
Beagle version 3.3 is also based on a local haplotype-

clustering model (as detailed in [19], [37]), similar to fas-
tPHASE, but allows for a variable number of clusters
across a region. Beagle uses a localized haplotype
cluster-model to cluster haplotypes at each marker and
then defines a HMM to find the most likely haplotype
pairs based on the individual’s known genotypes. The
most likely genotype at untyped loci is generated from
defined haplotype pairs. We used the option where
reference and test panel are defined separately. Imput-
ation was performed for each chromosome separately
for all the three methods. Except the above mentioned
parameters, programs were run with default parameters.
Accuracy of imputation
All the three imputation methods provide the probability
of the three possible genotypes at each missing genotype.
We used the most likely genotype as the predicted geno-
type. For incorrectly imputed genotypes it is possible to
impute one or both alleles incorrectly. To distinguish be-
tween these two cases, we computed the accuracy of im-
puting alleles as the percentage of correctly predicted
alleles, and the allelic error rate of imputation as the
percentage of incorrectly predicted alleles i.e. mean al-
lelic error rate (%) = number of incorrectly predicted
alleles / total number of alleles imputed in the test set ×
100. In general allelic error rates are just slightly more
than half of genotypic error rates. Accuracy of imput-
ation was also computed as the percentage of correctly
predicted genotypes for the masked genotypes.
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800K imputed dataset for genomic prediction
The data on 2,205 bulls genotyped with 50K were
imputed, with IMPUTE2, up to 800K using 845 heifers
genotyped with 800K as reference and using most likely
genotype as the predicted genotype (‘800K-imputed’,
Table 1). In addition the dosage/copies of the B allele for
each genotype was computed as pAB+2×pBB, where pAB
and pBB are imputed probabilities of AB and BB geno-
types, respectively. This measure takes into account the
uncertainty of imputation and is an appropriate meas-
ure when using an additive model in genomic predic-
tion and genome-wide association studies. These two
datasets of 2,205 bulls with imputed genotypes (‘800K-
imputed’) and imputed dosage (‘800K-dosage’) for
610,879 autosomal SNPs were used to compute ge-
nomic prediction.

Accuracy of genomic prediction
Accuracy of direct genetic values (DGV) using imputed
and actual genotypes was investigated by dividing the
data on 2,205 bulls in a training set of 1,753 bulls born
between 1955 and 2000 and a validation/test set of 452
young bulls born between 2001 and 2004. SNP effects
were obtained from the solution of the following mixed
model equations [41,16]

10R�11
X0R�11

10R�1X
X0R�1Xþ λI

� �
μ̂
ĝ

� �
¼ 10R�1y

X0R�1y

� �

where y is a vector of twice the daughter trait deviations
(DTD) of bulls, 1 is a column vector of ones of size
NAnim , μ̂ is the general mean, ĝ is a vector of the esti-
mated SNP effect, X is an NAnim × NSNP matrix of SNP
genotypes coded as 0 (homozygote), 1 (heterozygote), or
2 (other homozygote), or SNP allele dosage. I is an
identity matrix of size NSNP × NSNP, λ is a shrinkage
parameter derived by cross-validation. R is a diagonal
matrix with elements Rii = (1/reli)-1, where reli is the
reliability of the DTD of ith bull. DGV were calculated
as ⌢m ¼ μ̂ þ Xĝ .
Five traits were analysed viz. milk yield, fat yield, pro-

tein yield, survival and daughter fertility which reflect a
range of heritabilities (i.e. 0.25, 0.25, 0.25, 0.04 and 0.04,
respectively). Phenotype information was provided by
the Australian Dairy Herd Improvement Scheme
(ADHIS, http://www.adhis.com.au). The phenotypes
used were daughter trait deviations (DTD) for the bulls.
The accuracy of the DGV prediction using subsets of
SNP genotypes, and imputed SNP genotypes were com-
pared to the DGV prediction obtained with the all 50K
SNP genotypes. The accuracy of DGV prediction was
computed as Pearson’s correlation coefficient between
DGV and DTD of the young bulls in the test data.
Results
Imputation up to 50K
Comparison of imputation methods
The allelic error rates of imputing genotypes on BTA20
by the three imputation methods across different scenar-
ios using evenly spaced SNP subsets in the test sets and
different proportion of animals in the reference sets are
presented in Figure 2. Detailed results on all the 42
scenarios are given in Additional file 2. In general
IMPUTE2 has the lowest mean allelic error compared to
Beagle and fastPhase, however, the difference between
methods varies over different scenarios (Figure 2). The
difference in error rate of IMPUTE2 and Beagle
decreases with increasing size of the reference set and
increasing SNP density in the test set (Figure 2).
fastphase outperformed the other two methods in only
one scenario where a higher SNP density (35K) was used
in the test set and very few animals (27) were used as
reference i.e. scenario 29 (Additional file 2). The accur-
acies of imputation of all the three haplotype based
methods are much higher compared to imputation based
on a simple sampling strategy using the allele frequen-
cies of SNP in the reference set. The mean allelic error
rates obtained from such sampling strategies are in the
range of 22.5 to 26.8% for the different scenarios
(Additional file 2).

Effect of SNP density
The accuracy of imputation increases with the number
of SNPs in the test set (Figure 2, Additional file 2) for all
the scenarios and the methods examined here. The
mean allelic error rate decreases from 2.80% for the
evenly spaced 3K SNP panel to 0.76% for the 35K panel
in the scenario where 50% animals are in the reference
set (Figure 2a). The mean allelic error rate of imputation
is lower for the evenly spaced 3K SNP panel (2.80%)
compared to the Bovine3K panel (3.34%). There is a
large reduction in the mean allelic error rate of imput-
ation when using the 5K evenly spaced SNP panel
(1.97%) in the test set (Additional file 2). Further reduc-
tions in error rate of imputation by increasing SNP
density in the test set to 10K (1.36%), 20K (1.00%) and
35K (0.76%) are relatively smaller (Figure 2a).

Effect of size of reference panel
The mean allelic error rate increases as the number
of animals in the reference set decreases (Figure 2,
Additional file 2). The lowest allelic error rate is
obtained when 1,363 (50%) animals are in the reference
and the rest in the test set. The mean allelic error rate
ranges from 0.76% for the 35K SNP panel to 2.80% for
evenly spaced 3K SNP panel using IMPUTE2. The mean
imputation error rate for the cows using the bulls as refer-
ence ranges from 1.21 to 4.65% and for the bulls using the

http://www.adhis.com.au
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Figure 2 Mean allelic error rate (%) of three imputation methods using different proportion of animals in reference and test sets for
varying SNP density (3K-35K evenly spaced) in the test set. The results shown are for chromosome 20.
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cows as reference ranges from 0.73 to 3.47% for different
SNP densities using IMPUTE2 (Additional file 2).

Effect of relatedness between test and reference animals
The mean allelic error rates for the test animals with sire
and without sire in the reference for all the 42 scenarios
using IMPUTE2 are given in Additional file 2. In general
test animals with sire in the reference have slightly lower
allelic error rate of imputation (2.61% for with sire vs.
3.34% without sire averaged across all the scenarios). We
further compared the error rate with kinship estimates
of the test animals with the reference animals. The
results for the 42 scenarios presented in Additional file 3
show that, in general, the mean allelic error rate
decreases with the increase in the highest kinship of the
test animals with the reference animals. This is more
pronounced when the SNP panels in the test set are
small and also when the reference size is small.

Imputation between SNP chips
The mean allelic error rates of imputing SNP genotypes
between different SNP chips obtained with IMPUTE2 are
presented in Table 3. The results from BTA20 are given as
an example. The mean allelic error rates of imputing 15K
specific (205 SNPs) genotypes are 0.80%, 0.95% and 1.40%
when 25%, 50% and 75% of the animals, respectively, are
in the test set and the remainder of the animals with geno-
types on 1529 SNPs (15K+50K) in the reference set. The
mean allelic error rates of imputing 50K specific (1324
SNPs) genotypes are 2.85%, 3.15% and 4.25% when 25%,
50% and 75% of animals, respectively, are in the test set.
Similarly the mean allelic error rates of imputing of 25K

specific (328 SNPs) genotypes are 1.50%, 1.85% and 2.75%
when 25%, 50% and 75% of the animals, respectively, are
in the test set. The respective mean allelic error rates of
imputing 50K specific (1324 SNPs) genotypes are 2.75%,
2.75% and 4.55%. The error rates in these scenarios are
slightly higher compared to the above mentioned corre-
sponding scenarios including 15K, possibly due to a lower
number of animals in the reference and the test sets. Over-
all the results indicate that a reasonable accuracy of imput-
ation for untyped SNP genotypes can be achieved when
combining datasets genotyped with these SNP chips.

Comparison of methods for imputation up to 800K
Only two methods (Beagle and IMPUTE2) were com-
pared for imputing genotypes up to 800K using 50K. We
did not include fastPhase in these comparisons because
of the long computation time and the lower accuracy of
fastPhase observed in the previous analyses within the
50K dataset. The chromosome-wise comparisons of the
accuracies of the two methods are presented in Figure 3.



Table 3 Mean allelic error rate of imputing SNP genotypes between different SNP chips obtained with IMPUTE2

Scenario Animals
masked (%)

N animals
total

N animal
reference

N animals
test

N
SNP

N % Mean allelic
error rate (%)snp snp

masked masked

15K by 50K 25 1419 1065 354 1529 205 13 0.80

50 1419 710 709 1529 205 13 0.95

75 1419 355 1064 1529 205 13 1.40

50K by 15K 25 1419 1065 354 1529 1324 87 2.85

50 1419 710 709 1529 1324 87 3.15

75 1419 355 1064 1529 1324 87 4.25

25K by 50K 25 431 324 107 1652 328 20 1.50

50 431 216 215 1652 328 20 1.85

75 431 108 323 1652 328 20 2.75

50K by 25K 25 431 324 107 1652 1324 80 2.75

50 431 216 215 1652 1324 80 2.75

75 431 108 323 1652 1324 80 4.55

The results are shown for three SNP chips viz. 15K, 25K and 50K and chromosome 20.
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The mean allelic error for imputing genotypes across
different chromosomes ranges from 0.67% for BTA14 to
0.97% for BTA21 using IMPUTE2 and 0.84% for BTA14
to 1.28% for BTA27 when using Beagle. The mean error
rates are slightly higher for smaller chromosomes
(21–29) compared to larger chromosomes for both the
methods (Figure 3). Genome-wide mean allelic error rate
is less than 1% for both the methods (0.79% for
IMPUTE2 and 0.99% for Beagle). Since IMPUTE2 out-
performed Beagle for all the autosomes, this method was
used for the analyses presented in the following sections.

Comparison of 2-tiered and 3-tiered approaches for
imputation up to 800K
Accuracies of imputation using a 2-tiered and 3-tiered
approach (Figure 1) to impute up to 800K SNP geno-
types with IMPUTE2 are shown in Figure 4. The results
presented are for BTA 20 as an example. Across all the
scenarios examined, the mean allelic error rate of imput-
ation is lower in the 3-tiered approach compared to the
2-tiered (Figure 4). The mean allelic error rate of imput-
ing up to 800K decreases from 4.78% in the 2-tiered ap-
proach to 4.62% in the 3-tiered when Bovine3K SNP
panel are used in the test animals (Figure 4a). A similar
decrease in the mean allelic error rate is observed for
BovineLD 7K panel (2.00% to 1.84% for 2-tierd and
3-tiered approaches, respectively). However, the relative
improvement in allelic error rate from 2-tiered to
3-tiered are marginal for imputing up to 800K genotypes
from 49K genotypes (0.689% to 0.688% for 2-tierd and
3 tiered approaches, respectively).
We further tested the accuracy of imputation using a

smaller number of animals in the top tier. The mean
allelic error rates for all scenarios are much higher when
a small number of animals (41 animals, 5% of 825 cows)
is included in the top tier (Figure 4b). The mean allelic
error rates for the 2-tiered approach ranges from 5.55%
using 49K to 14.43% for using the Bovine3K panel in the
test set. However, there are larger decrease in the error
rates of imputation using the Bovine3K (14.43% to
9.58%), BovineLD 7K (10.01% to 6.03%) and 49K (5.55%
to 3.41%), by including a middle tier of 2205 bulls with
50K genotypes when the top reference tier is small.
To further test the potential of using 800K for imput-

ing even higher density genotypes (e.g. up to 3 million or
whole genome sequence) we tested accuracy of imputing
every 10th SNP and 100th SNP by masking these SNP
genotypes in 50% of the 825 cows genotyped with 800K
using BTA20 as an example. The imputation accuracies
for masked genotypes were 99.78% and 99.80% for every
10th and 100th SNP, respectively. However, such a large
number of animals genotyped with very high-density
SNP arrays or whole genome sequence may not be avail-
able in immediate future. We also tested a scenario when
a smaller reference set (41 animals) was used and the ac-
curacies of imputed genotypes were 98.00% and 98.44%
for imputing every 10th and 100th SNP, respectively sug-
gestive that ultra high-density and whole genome se-
quence may also be imputed with a very high level of
accuracy from a commercial high-density SNP array.

Accuracy of DGV prediction based on actual and imputed
genotypes using 50K dataset
Accuracy of DGV prediction of five dairy traits using ac-
tual 50K, Bovine3K and BovineLD 7K genotypes are com-
pared with DGV predictions using imputed genotypes up



IMPUTE2
Beagle

Chromosome

M
ea

n 
al

le
lic

 e
rr

or
 r

at
e 

(%
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 290.
0

0.
5

1.
0

1.
5
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to 50K in Table 4. Accuracy of DGV predictions based on
imputed genotypes are very close (within 2.4%) to those
obtained using the actual 50K genotypes when all the
training set bulls are used in the reference set for impu-
tation (scenario A Table 4). Accuracies of DGV using
imputed genotypes are slightly lower when smaller refe-
rence set is used for imputation (scenario B Table 4).
In scenario B all the test bulls and most of the training
bulls have imputed genotypes. The lower accuracies
under scenario B are more evident for Bovine3K which
has much higher mean allelic error rate (5.52%). In all
the scenarios the accuracies of DGV from imputed ge-
notypes are higher than from the actual smaller subset
of SNPs on which the imputation is based. These
results indicate that imputed genotypes for both trai-
ning and test set can be used without any loss of accu-
racies of DGV prediction especially when BovineLD 7K
is used.
Figure 4 Mean allelic error rate (%) of imputing high density SNPs (8
and 3-tiered approach. Scenario (a) included 425 reference and 420 test
3-tiered approach, an additional set of 2205 bulls with 50K data is included
chromosome 20.
Accuracy of DGV prediction based on 800K imputed data
Table 4 further presents the results on accuracies of
DGV prediction using imputed genotypes up to 800K.
The accuracies of DGV prediction using the most likely
genotype (800K-imputed) and allele dosage (800K-
dosage) are quite similar viz. 0.558 and 0.554 for milk
yield, 0.530 and 0.525 for protein yield, 0.526 and 0.520
for fat yield, 0.232 and 0.229 for survival and 0.256 to
0.253 for daughter fertility, respectively. Overall there is
only a small improvement in DGV prediction using the
imputed 800K genotypes over the actual 50K genotypes.

Discussion
With the rapid development of higher density SNP chips
for cattle, it is now common to have population samples
genotyped with different SNP chips. We have presented
different strategies for utilising such heterogenous SNP
datasets efficiently. We compared accuracies of imputation
00K) using different number of SNPs in the test set by 2-tiered
animals, scenario (b) included 41 reference and 420 test animals. In the
as middle tier in both scenarios (a) and (b). The results shown are for



Table 4 Accuracy of prediction of direct genomic value (DGV) for 5 dairy traits based on Bovine3K, BovineLD 7K, 50K,
imputed up to 50K, imputed up to 800K and imputed 800K-dosage

Genotypes used Mean allelic error
rate (%) of imputation

Milk
volume

Fat yield Protein
yield

Survival Daughter
fertility

50K - 0.540 0.527 0.499 0.224 0.251

Subset Bovine3K - 0.444 0.464 0.429 0.187 0.200

Subset Bovine LD 7K - 0.481 0.516 0.443 0.186 0.232

50K-imputed (Test imputedAA using Bovine3K) 3.86 0.533 0.523 0.496 0.200 0.244

50K-imputed (Test imputedA with BovineLD) 2.30 0.546 0.531 0.507 0.214 0.246

50K-imputed (Train & Test imputedB using Bovine3K) 5.52 0.505 0.515 0.481 0.207 0.245

50K-imputed (Train & Test imputedB using BovineLD) 3.06 0.530 0.524 0.492 0.209 0.248

800K-imputedC - 0.558 0.530 0.526 0.232 0.256

800K-dosageC - 0.554 0.525 0.520 0.229 0.253
AGenotypes of 452 young bulls with subset of original SNPs were imputed (using IMPUTE2) up to 50K using 1753 bulls as reference set. Hence for DGV prediction
entire test set (452 young bulls) had imputed genotypes and all the training bulls (1753) had actual 50K genotypes.
BGenotypes of 2055 bulls with subset of original SNPs were imputed (using IMPUTE2) up to 50K using 136 bulls as reference set. Hence for DGV prediction the
entire test set (452 young bulls) and 1617 bulls out of the training set of 1753 bulls had imputed genotypes.
CData on 2205 bulls genotyped for 50K were imputed using IMPUTE2 up to 800K using 845 cows genotyped on 800K as reference.
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within and across SNP chips and the accuracy of
genomic prediction using imputed genotypes.
IMPUTE2 gave higher accuracies of imputation com-

pared to Beagle and fastPhase. fastPhase may provide
comparable accuracy when the reference panel is small
and the SNP densities used in the test set is high. How-
ever fastPhase required more computing time compared
to Beagle and IMPUTE2. For example for scenario 1
(Additional File 2), using a Linux machine with AMD
Opteron Processor 6136, IMPUTE2, Beagle and fas-
tPhase took 2.36, 6.19 and 20.7 hours of computing time
and used 100MB, 807MB, 112MB RAM, respectively.
Computation time on a multiprocessor machine can be
reduced by dividing the chromosome into smaller seg-
ments. However, using IMPUTE2, we observed that ac-
curacy was slightly higher when the whole chromosome
was imputed in a single run (not shown). This may pos-
sibly be due to the extended linkage disequilibrium
present in the bovine genome [42] which allows for bet-
ter definition of long-range haplotypes when the whole
chromosome is used.
Our estimates of mean allelic error of imputing up to

50K from evenly spaced 3K panel (2.8%) were lower
compared to Bovine3K (3.3%) which may be because of
the higher number of SNPs with higher MAF in evenly
spaced 3K SNP panel. These estimates are comparable
to the range of 2.1 to 5.5% reported by Dassonneville
et al. [32] for Bovine3K and 3 to 4% obtained by Zhang
et al. [30] for evenly spaced 3000 SNPs using DAG-
PHASE. We found an increase in the accuracy of imput-
ation with an increase in the number of animals in the
reference set. However, we tested only up to 1,363 ani-
mals in the reference. Larger reference sets might fur-
ther improve accuracy of imputation.
We showed that 800K genotypes could be imputed
with low allelic error using 50K genotypes (0.79% for all
autosomes). Most of the SNPs had low error rate. How-
ever, we noted a very small proportion of the SNPs with
higher imputation error than expected. For example we
found 12 SNPs on BTA20 which had an allelic error rate
of larger than 5%. We suspect that these SNPs may have
incorrect positions on UMD3.1 assembly or contain
errors in genotyping call itself. The mean error rates
reported throughout this study include all such SNPs. If
wrong map assignment and genotypic error of SNPs
have a significant effect on the accuracy of imputation
process is not known, but should be considered in fu-
ture studies.
We showed that using additional reference panel gen-

otyped with medium-density SNP chip in a 3-tiered
framework increased the accuracy of imputation espe-
cially when the main reference panel was small. The
additional gain in the accuracy of imputation in the
3-tiered approach may be due to better definition of
haplotypes with the availability of large number of sam-
ples in the combined reference [38]. Our results suggest
that increasing the size of the reference panel by includ-
ing animals genotyped with different SNP chips in a
tiered framework can improve the accuracy of imput-
ation. We used population based methods for imputation
and showed that these used relationship information in-
directly. The degree of kinship between animals in test
and reference set has a significant effect on the accuracy
of imputation and as such can be strategically optimised
in selecting animals to be genotyped if pedigree informa-
tion is available. A number of other programs have been
used for imputation ([43-45], [33]) which use pedigree
information directly along with haplotype data and these
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can be more efficient when required family information
is available. Johnston et al. [44] suggested a blending ap-
proach that combined the strength of various programs
available. Development of multi-tiered imputation stra-
tegies that utilises pedigree information seems promising
when the animals genotyped with heterogenous SNP
panels and up to whole genome sequences are available.
Using imputed genotypes up to 50K increased the

accuracy of genomic selection compared to just using
the smaller SNP subsets used for imputation. Similar
observations were made by Johnston et al. [44] and
Weigel et al. [46]. Therefore, using genotype impu-
tation would increase return on investment when a
larger proportion of the population is genotyped with
lower density SNP panels.
By testing the utility of imputed 800K genotypes i.e.

best guess genotypes and dosages of the B-allele, we
showed that the accuracy of genomic prediction from
imputed 800K genotypes was only marginally better
compared to using 50K genotypes. Although we cannot
compare these accuracies with the actual 800K geno-
types in this study, however, mean allelic error rate of
imputation up to 800K using 50K in the test samples
was very small (0.79%). These error rates were obtained
by using 425 cows in the reference set. The results of
imputing up to 50K (Figure 2) show that using larger
reference can improve accuracy of imputation even fur-
ther. Moreover additional analyses within the 50K data-
set indicate that small error rates of the imputed
genotypes will have no notable effect on the accuracy of
genomic selection. Hence we believe that presented ac-
curacies of genomic prediction with imputed 800K geno-
types are comparable to the actual 800K genotypes.
However, we have only used one method for genomic
prediction and it is possible that other methods may
utilise higher density genotype more efficiently (e.g. [31],
[47]). High-density SNP genotypes are likely to be useful
for genome-wide association studies and across study
meta-analysis of SNP-trait relationships. Further studies
are required to see the utility of imputed genotypes to
discover and map the casual mutation affecting pheno-
types in dairy cattle.

Conclusions
IMPUTE2 had the highest accuracy of the three imput-
ation methods examined. Accuracy of imputation
increases with the number of SNPs in the test set, in-
crease in the number of samples in the reference set and
presence of closely related animals in the reference.
800K SNP genotypes can be imputed with very high ac-
curacies from 50K SNP genotypes and with slightly
lower accuracies from lower density SNP panels (e.g. 3K,
7K). The accuracy of imputation is improved using a
3-tiered approach, which used an additional middle tier
of 50K, compared to 2-tiered approach, especially when
the top panel of animals genotyped with 800K SNPs is
small. There is no appreciable loss in accuracy of gen-
omic prediction using imputed 50K SNP genotypes
derived from the commercial 3K or 7K panels compared
to using the actual 50K SNP genotypes and both per-
form substantially higher than using 3K or 7K genotypes.
Our results show that imputation from lower density
SNP panels is a cost effective strategy for genomic selec-
tion. There is only a small gain in the accuracy of gen-
omic prediction when using imputed 800K genotypes
compared to actual 50K genotypes.
Additional files

Additional file 1: Figure S1. Distribution of pedigree kinship among
animals within different datasets shown as boxplots.

Additional file 2: Accuracy of imputation of genotypes (%) and
mean allelic error rate (%) up to 50K using three imputation
methods. This file presents the results from different scenarios of
imputation up to 50K. These scenarios were generated by using different
proportion of animals in reference and test sets for varying SNP density
(3K, 5K, 10K, 20K and 35K evenly spaced and Illumina Bovine3K) in the
test set. The scenarios 1–6 used 1363 (50%) bulls, scenarios 7–12 used
681 (25%) bulls, scenarios 13–18 used 272 (10%) bulls, scenarios 19–24
used 136 (5%) bulls and scenarios 25–30 used 27 (1%) bulls in the
reference set and the rest of animals in the test set. The scenarios 31–36
used all the bulls in the reference and all the cows in the test set. The
scenarios 37–42 used all the cows in the reference and all the bulls in
the test set. The results shown are for chromosome 20.

Additional file 3: Effect of pedigree kinship between test and
reference animals on the mean allelic error rate (%) of imputation.
This file presents the results of association of kinship with error rate of
imputation in the form of bar charts from 42 scenarios of imputation up
to 50K as given in Additional file 2. On Y-axis, is highest kinship estimate
of a test animal with any of the reference animals and is presented as
four interval categories viz. 0.0-0.01, 0.01-0.1, 0.1-0.2 and 0.2-0.4. On X-axis
is the mean allelic error rate (%) on imputation.
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