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Abstract

Background: Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines
(turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and
snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes.
In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of
intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese
four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and
examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size
of chromosomes on which the genes were localized.

Results: Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other
amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken.
Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes
and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such
macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in
microchromosomes were relatively GC-rich (GC3 ≥ 50%).

Conclusion: Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred
before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common
ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We
also identified several genes whose GC-content might have been influenced by the size of the chromosomes on
which they were harbored over the course of sauropsid evolution.
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Background
Molecular phylogenetic analyses have suggested that
extant sauropsids (reptiles and birds) are divided into
two major groups, the lineage of Testudines (turtles) and
Archosauria (crocodilians and birds) and the lineage of
Lepidosauria (tuatara, lizards, worm lizards and snakes)
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although phylogenetic position of Testudines is still
debatable [1-7]. The divergence time between the two
lineages has been estimated at around 275 million
years [3,7-9]. Most sauropsidan species have karyotypes
consisting of macrochromosomes and microchromo-
somes, as for birds [10-17], except for crocodilian spe-
cies, whose karyotypes contain no microchromosomes
[18,19].
Whole genome sequencing of chicken revealed that

the overall GC-content of chromosomes increases as
chromosomal size decreases, that is, microchromosomes
exhibit a higher GC-content than macrochromosomes
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[20,21]. In a compositional map of GC-content con-
structed by 100-kb window analysis for the chicken
whole genome sequence, most microchromosomes were
occupied by GC-rich DNA segments, whereas GC-poor
segments were more common in macrochromosomes
[22]. The differences of other features such as gene
density, distribution in interphase nuclei and rate of
nucleotide divergence were also identified between the
two chromosomal groups of birds [23-27].
Reptiles are crucial taxon for tracking genome evolution

in amniotes [21,28,29]. Intra-genomic GC heterogeneity
has been found in reptiles by calculating GC-content in
exonic third positions (GC3) [21,30-33]. Although the
use of GC3 as a proxy for genomic GC-content has been
controversial [34], it is known that GC3 generally reflects
the local GC-content of the introns and flanking regions
of a gene [21,35-37]. Chojnowski et al. [32] analyzed the
GC3 of more than 6,000 ESTs in the American alligator
(Alligator mississippiensis) and suggested that the alliga-
tor genome has a certain level of GC heterogeneity. They
also examined the isochore structure of the red-eared
slider turtle (Trachemys scripta) and suggested that the
isochore structure of the turtle is intermediate between
that of a frog and the GC-rich isochore structures of
archosaurs and mammals [33]. However, the chromo-
somal distribution of the GC heterogeneity has not been
fully investigated in reptiles.
We previously constructed a cytogenetic map with

90 cDNA clones for the Chinese soft-shelled turtle
(Pelodiscus sinensis), which revealed that the chromo-
somes have been highly conserved between the turtle
and chicken, with the six largest chromosomes being
almost equivalent to each other [38]. GC3 of the mapped
genes showed a heterogeneous distribution, and ortho-
logs exhibited similar GC3 levels between the turtle,
chicken and human, suggesting that the intra-genome
GC heterogeneity had already occurred in the last com-
mon ancestor of extant amniotes [21]. Furthermore, our
results suggested that the turtle microchromosomes tend
to contain more GC-rich genes than GC-poor genes, as
in chicken [21].
The green anole lizard (Anolis carolinensis) is the first

reptilian species for which whole genomic sequence has
been released [39]. Anolis has a homogeneous genome
composition compared with other amniotes [37,39] and,
unlike chicken, the GC-content is similar between
macro- and microchromosomes [39]. However, it remains
unknown whether these genomic characteristics are
common to other lepidosaurs or not. Snake karyotypes
have been highly conserved within the group, and the
usual diploid number is 2n = 36, consisting of eight pairs
of macrochromosomes and 10 pairs of microchromo-
somes [10,40,41]. The chromosome number is largely
different from the chicken karyotype (2n=78) because of
the remarkable difference in the number of microchro-
mosomes. The snake therefore provides an ideal system
for exploring changes in GC-content between macro-
and microchromosomes over the course of sauropsid
evolution.
Previously we constructed a cytogenetic map with 109

cDNA clones for the Japanese four-striped rat snake,
Elaphe quadrivirgata (Serpentes, Colubridae) [38,42]. In
this study, we have extended cDNA-based chromosome
mapping of the snake genes and consequently con-
structed a cytogenetic map with a total of 183 genes. We
compared GC3 of the mapped snake genes with GC3 of
their orthologs of chicken, green anole lizard, Chinese
soft-shelled turtle, human and Xenopus tropicalis. This
highlighted the chromosome size-dependent GC hetero-
geneity in the snake genome and the shift of GC-content
possibly caused by chromosome rearrangements during
sauropsid evolution.

Methods
Selection of EST clones
A cytogenetic map with 109 cDNA clones was con-
structed in our previous study [33,36]. In the present
study, we searched the snake EST clones isolated from
the cDNA library constructed from brain [38], selected
clones with significant similarity (E-value < 2e-35) to
human and/or chicken genes in BLASTX [43], and used
them for chromosome mapping (Additional file 1 and
Additional file 2).

Orthology assessment
We rigorously confirmed orthologies of the snake
sequences to their homologs of other vertebrates by con-
structing molecular phylogenetic trees with the neighbor-
joining method [44] using XCED in which the alignment
algorithm MAFFT is implemented [45] and with the
maximum-likelihood method using PhyML [46]. Sequence
IDs of orthologs in six species (Anolis carolinensis, Gallus
gallus, Pelodiscus sinensis, Homo sapiens, Mus musculus
and Xenopus tropicalis) are included in Additional file 2.
When multiple more than one potential ortholog was
detected for a snake gene, we used the sequence with
the greatest similarity to snake for cross-species compari-
son of GC-content.

Chromosome preparation and fluorescence in situ
hybridization
Cell culture, preparation of R-banded chromosomes
and fluorescence in situ hybridization (FISH) were per-
formed as described previously [38,47]. Fibroblast cells
derived from lung tissues of the Japanese four-striped
rat snake were cultured and used for chromosome
preparations. DNA probes were labeled by nick trans-
lation with biotin-16-dUTP (Roche Diagnostics). The
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hybridized cDNA probes were reacted with goat anti-
biotin antibodies (Vector Laboratories), and then stained
with Alexa488-labeled donkey anti-goat IgG (Molecular
Probes).

Calculation of GC-content
GC3 and GC-content at fourfold degenerate sites (GC4)
were calculated using an original Perl script with the
Bioperl module [48]. The calculation was automatically
processed on the basis of the open reading frame identi-
fied by a pairwise alignment between a translated nucleo-
tide sequence and amino acid sequences of orthologs
using BLASTX [43]. When multiple alternative splicing
variants were found for one gene, we used only the one
that had the longest stretch of sequence homology with its
orthologs of other species. We arbitrarily classified genes
into GC-rich (GC3 ≥ 50%) and GC-poor (GC3 < 50%)
genes based on the GC3.

Identification of orthologous sequences in the Burmese
python
We conducted nucleotide BLAST for whole genome
shotgun sequence of Burmese python, Python molurus
bivittatus [49] using rat snake ESTs as queries. We
selected python sequences (consisting of exons, introns
and flanking regions) that exhibited high similarities for
rat snake ESTs (Additional file 3). We deduced the non-
coding regions and the protein coding regions within
each python genomic region using Wise2 program [50].
We then calculated GC-content of non-coding regions
and GC3 of coding regions.

Gene location in sequenced genomes
Chromosome locations of chicken, human and mouse
orthologs were retrieved from Ensembl (version 56) [51]
and NCBI Entrez Gene [52]. In this study, we categorized
chicken chromosomes 1–8, Z and W as macrochromo-
somes, and the remaining chromosomes as microchro-
mosomes. Recently the second version of the genome
assembly and annotation of green anole lizard (Anolis
carolinensis) was released in Ensembl (version 61) [51].
However, locations of about half of all A. carolinensis
genes are at present annotated only at the scaffold level.
We therefore did not compare the chromosome loca-
tions of orthologs between the snake and green anole
lizard.

Comparison of gene characteristics between chicken
macrochromosomes and microchromosomes
We classified the chicken genes into two groups, macro-
chromosomal genes and microchromosomal genes, and
examined the over- and under-representation of gene
functions between the two groups by FatiGO [53].
FatiGO detects over-represented functional categories of
Gene Ontology (GO), KEGG pathway, InterPro motif
and Swissprot in either group between two gene lists
using Fisher’s exact test. The Ensembl IDs of all chicken
genes whose chromosome locations are known were
downloaded and used for comparison by FatiGO.
Results
Cytogenetic map of the Japanese four-striped rat snake
Eighty-three cDNA clones were newly mapped to the
snake chromosomes, and finally a cytogenetic map
with a total of 183 genes was constructed in this study
(Figure 1, Additional file 1 and Additional file 2). The
nucleotide sequences of the newly mapped EST clones
were deposited in GenBank under the accession num-
bers FS942043-FS942125.
Of the 183 genes, 144 genes were mapped to

macrochromosomes (chromosomes 1–7, Z and W
chromosomes), and the others were mapped to micro-
chromosomes (Figure 1). Twenty-nine segments in the
snake chromosomes 1–7 and the Z chromosome were
conserved between the snake and chicken. Most of them
had a one to one correspondence to a particular region
of chicken chromosomes. However, chromosomal hom-
ology for each of chicken chromosomes 1, 2, 4, 6 and 7
was found on more than two snake macrochromosomes,
indicating that some inter-chromosomal rearrangements
occurred between the snake and chicken macrochromo-
somes (Figure 1).
Chicken orthologs of 36 snake microchromosomal

genes were located on chicken microchromosomes
(chromosomes 10, 11, 14, 15, 17, 21, 22, 24 and 25).
PGK1, ATRX and STAG2 genes on the snake microchro-
mosomes are localized to the short arm of chicken
chromosome 4, which was derived from a microchromo-
some fused with acrocentric chromosome 4 of the avian
ancestor [16,17,54]. Since all the snake microchromo-
somes corresponded to avian microchromosomes, they
have likely been retained from the ancestral karyotype
of extant sauropsids without dynamic chromosome
rearrangements.
Linkage homologies with chicken microchromosomes

9, 10, 12, 13, 18–20 and 26–28 were found on the snake
macrochromosomes (Figure 1). For example, chicken
chromosomes 19 and 28 were homologous to the distal
segments of the short and long arms of snake chromo-
some 1, respectively. These results confirmed our previ-
ous assumption [42] that the large differences of
chromosome numbers between the snakes (2n = 36) and
chicken (2n = 78) resulted from frequent chromosome
rearrangements containing fusions between macro- and
microchromosomes and also between microchromo-
somes in the lepidosaurian lineage. An alternative ex-
planation is that fissions of macrochromosomes, which
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Figure 1 Cytogenetic maps of macrochromosomes and a list of genes mapped to microchromosomes in E. quadrivirgata. The
chromosome locations of the genes are shown to the right of the rat snake chromosomes. The ideogram shows G-banded patterns. GC-rich
(GC3 ≥ 50%) and GC-poor (GC3 < 50%) genes are shown in red and black, respectively. Homologous chicken chromosomes and their
chromosome numbers (chicken Chr No.) are indicated to the left of the snake chromosomes. The inset table lists the genes mapped to snake
microchromosomes and chromosome locations of their chicken orthologs are also given in the table. Chicken macrochromosomes (1–8 and Z)
and microchromosomes (9–15, 17–22, 24–28) are distinguished by using different color, black and blue. ‘Un’ stands for unknown. The gene
names are updated from our previous papers [38,42], using the latest Ensembl build (v 68). The chromosome locations of the two genes, GNAI2
(BW999984) and P4HB (BW999985), were changed from our previous study [37] by reexamination of FISH. Chromosome locations of chicken
orthologs are also updated according to databases.
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increase microchromosomes, may also have occurred in
the lineage leading to birds.

Intra-genomic heterogeneity of GC3 in snake
We calculated the GC3 for deduced protein-coding
regions of the 183 snake genes (Additional file 2). The
average and standard deviation of GC3 of the snake
genes were 44.6% and 10.9% (Figure 2A) and a similar
result was obtained when GC4 was analyzed (data not
shown). The averages of chicken, the soft-shelled turtle
and human orthologs were 51.4 ± 13.0% (mean ± standard
deviation), 46.5 ± 12.6% and 53.9 ± 16.8%, respectively
(Additional file 4). The average and standard deviation of
GC3 of snake genes were thus somewhat smaller than
those of the other amniotes. The distribution of GC3 of
the snake genes was also relatively narrow (Figure 2A). In
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Figure 2 GC3 distribution of the snake genes. Histograms show
frequency distributions of GC3 for all genes (A), and for
macrochromosomal: open columns and microchromosomal genes:
black columns (B).

Table 1 Relationships between GC-content and
chromosome location of the snake genes

GC-rich
gene (GC3≥50)

GC-poor
gene (GC3≤50)

Total

Macrochromosomal gene 26 118 144

Microchromosomal gene 29 10 39

Total 55 128 183

Matsubara et al. BMC Genomics 2012, 13:604 Page 5 of 14
http://www.biomedcentral.com/1471-2164/13/604
order to examine bimodality of the distribution, we
compared the fit of a “Gaussian model” and “sum of
two Gaussians model” by Extra sum-of-squares F test
and Akaike’s Information Criterion implemented in
GraphPad Prism (GraphPad Software). As a result, “sum
of two Gaussians model” showed a better fit in both test
(p < 0.005 in Extra sum-of-squares F test and 73.28%
probability in Akaike’s Information Criterion). This sug-
gests that GC3 of the snake genes exhibits a bimodal
distribution.
GC3 was compared between macro- (n = 144) and

microchromosomal genes (n = 39) to test for the presence
of chromosome size-dependent GC3 heterogeneity in the
snake genome (Figure 2B). The average GC3 was 41.5 ±
8.6% (mean ± standard deviation) and 56.4 ± 10.5% for
macrochromosomal and microchromosomal genes, re-
spectively. The average GC3 of microchromosomal genes
was thus significantly higher than for macrochromoso-
mal genes (Mann-Whitney’s U-test, P < 0.01). 74.4%
(29 out of 39 genes) of the microchromosomal genes
were GC-rich, whereas 81.9% (118 out of 144 genes) of
the macrochromosomal genes were GC-poor (Table 1).
GC-rich isochores are known to have a clear association

with R-bands (and particularly T bands) in mammals and
birds [55-58]. In R-banded metaphases of rat snake, most
microchromosomes showed R-positive bands (Additional
file 5). However, R-positive bands also observed on most
macrochromosomal regions. Thus, there was no clear
correlation between R-band and GC3 of the mapped
genes in rat snake.

Correlation between GC3 and GC-content of non-coding
regions in snakes
Snake karyotypes are highly conserved among the species
[10,40,41], and the Japanese four-striped rat snake
(Elaphe quadrivirgata) and the Burmese python (Python
molurus bivittatus) have the same chromosome compos-
ition [42]. We compared the GC3 with the GC-content
of non-coding regions in the python to examine whether
snake GC3 reflects the local genomic GC-content
(Figure 3A and Additional file 3). High positive correl-
ation was found between GC3 and GC-content of non-
coding regions (n = 176) (Spearman’s rank correlation,
r = 0.73, P < 0.01). In order to consider the differences
of base composition among species [36,59,60], we also
compared GC3 of orthologs between the python and the
rat snake (n = 182) (Figure 3B and Additional file 3).
Strong correlation was found (r = 0.90; P < 0.01). These
results suggest that the two species have similar genomic
compositions and snake GC3 reflects the local genomic
GC-content.
The GC-content of the python non-coding regions

showed a narrow distribution with a low average (37.9 ±
4.3%, mean ± standard deviation) in contrast to GC3

(Figure 3A and C). We divided the python non-coding
regions into macrochromosomal (n = 139) and micro-
chromosomal regions (n = 37) on the postulate that the
chromosome locations of all orthologs were conserved be-
tween the rat snake and the python, and compared the
GC-content between the two chromosomal groups
(Figure 3D). The average GC-content of microchromoso-
mal regions (42.5 ± 4.0%, mean ± standard deviation) were
significantly higher than those of macrochromosomal
regions (36.8 ± 3.5%) (Mann-Whitney’s U-test, P < 0.01).

Cross-species comparison of GC3 between orthologs of
amniotes
We examined the frequency distribution of GC3 of
orthologs in green anole lizard, chicken, Chinese soft-
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shelled turtle, human, mouse and an amphibian species
X. tropicalis (Additional file 4). In previous study, we
analyzed the frequency distribution of GC3 with massive
genes in these species except for anole lizard. The distri-
bution patterns of GC3 of this study were similar to those
in Figure 2 of our previous study [21] although the gene
set of this study contains a somewhat higher proportion
of GC-poor genes. Thus we thought that GC3 of the gene
set of this study could be used as a representative of GC3

of the whole genes in each species.
Then, to examine whether orthologs exhibit similar

levels of GC3 between species, we compared the GC3 of
the snake genes with orthologs in other species (Figure 4
and Additional file 2). Moderate positive correlations
were found for snake-chicken (n = 176), snake-turtle
(n = 175) and snake-human (n = 183) comparisons
with correlation coefficients r = 0.51 (Spearman’s rank
correlation, P < 0.01). Similarly, moderate positive cor-
relations were found for chicken-human (n = 176)
(r = 0.61; P < 0.01) and turtle-human (n = 175)
(r = 0.62; P < 0.01), respectively. Much higher cor-
relation was found for snake-anole lizard (n = 175)
(r = 0.81; P < 0.01) and chicken-turtle (n = 172)
(r = 0.70; P < 0.01), respectively. In contrast, only
weak correlation was found for snake-X. tropicalis
(n = 153) (r = 0.36; P < 0.01).
For the snake-chicken pair, we also compared the GC3

of orthologs with four categories: 1) genes located on
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Figure 4 Cross-species comparison of GC3 between orthologs. Two-dimensional plots of GC3 for orthologous gene pairs are shown for rat
snake-chicken (A, B), rat snake-Chinese soft-shelled turtle (C), rat snake-human (D), chicken-human (E), Chinese soft-shelled turtle-human (F), rat
snake-green anole lizard (G), chicken-Chinese soft-shelled turtle (H) and rat snake-Xenopus tropicalis (I). At (B), orthologs are divided into the
following four categories as described in text: 1) genes located on macrochromosomes in both species (black dots), 2) genes on
microchromosomes in both species (red dots), 3) genes on macrochromosomes in the snake and on microchromosomes in the chicken
(green dots), and 4) genes on microchromosomes in the snake and on macrochromosomes in the chicken (blue dots, i.e., PGK1, ATRX and STAG2;
see Figure 1).
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not significant.

Matsubara et al. BMC Genomics 2012, 13:604 Page 8 of 14
http://www.biomedcentral.com/1471-2164/13/604
macrochromosomes in both species (n = 85), 2) genes
located on microchromosomes in both species (n = 35),
3) genes located on snake macrochromosomes and on
chicken microchromosomes (n = 49), and 4) genes located
on snake microchromosomes and on chicken macrochro-
mosomes (n = 3) (Figure 4B). Four orthologs whose
chromosome locations are unknown were excluded from
this comparison. The average GC3 of the snake and
chicken orthologs were 39.1 ± 8.0% (mean ± standard
deviation) and 47.1 ± 10.9% in the 1st group, 57.4 ± 9.8%
and 54.9 ± 13.7% in the 2nd group, and 43.9 ± 8.7% and
55.7 ± 12.8% in the 3rd group, respectively (Figure 5).
We were not able to compare the GC3 statistically in
the 4th group because only three genes were classified
into this group.

Comparison of gene functions between macro- and
microchromosomes
To examine the relationships between gene functions
and chromosome size-dependent GC bias in chicken, we
assessed over-representation of functional categories of
Gene Ontology (GO), KEGG pathway, InterPro motif and
Swissprot in either of two gene groups: the 10,053 genes
on chicken macrochromosomes (namely, chromosomes
1–8, Z and W) and 6,297 genes on chicken microchromo-
somes (namely, chromosomes 9–28). Chromosomes
29–31 and 33–38 were excluded from analysis because
of their absence from the assembled genome. No genes
have been assigned to chromosome 32, although the
genome sequence was anchored to this chromosome.
Fourteen GO terms or InterPro domains were over-
represented in either macrochromosomal genes or
microchromosomal genes (Figure 6 and Additional
file 6: Table S1). Over-representation of "chromatin"
(GO:0000785), "nucleosome" (GO:0000786) and "chromo-
somal part" (GO:0044427) on macrochromosomes largely
depended on the abundance of members of the histone
gene family on chromosome 1 (Additional file 6: Table S9,
S11 and S12). Over-representation of "immunoglobulin
C1-set" (IPR003597) and "MHC protein complex"
(GO:0042611) in microchromosomes came from clus-
tering of many immune genes on chromosome 16
(Additional file 6: Table S8 and S14). Similarly, over-
representation of "keratin" (IPR003461) was due to the
abundance of keratin-like gene family members on
chromosomes 25 and 27 (Additional file 6: Table S13).
Over-representation of the other eight categories in
either macrochromosomes or microchromosomes was
not attributable to an excess of genes on particular chro-
mosomes (Additional file 6: Table S1-S7, S10 and S15).

Discussion
Chromosome size-dependent GC heterogeneity
is a pan-Sauropsida characteristic
We constructed a cytogenetic map of the Japanese
four-striped rat snake, which contained 183 genes. Our
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cytogenetic map covered most macrochromosomal
regions and at least one gene was mapped to each micro-
chromosome on the basis of the homologies with chicken
chromosomes. Our map also showed linkage homologies
with most chicken chromosomes, namely 1–15, 17–22,
24–28 and Z. These results make it possible to infer the
global GC heterogeneity of the snake genome and the
shift of GC-content caused by chromosome rearrange-
ments during sauropsid evolution.
We calculated GC3 to investigate the intra-genomic

GC heterogeneity in the rat snake. The GC3 of the snake
genes exhibited a bimodal distribution (Figure 2A). Such
a bimodal distribution of GC3 was also observed in the
genomes of the Chinese soft-shelled turtle (P. sinensis),
chicken and non-rodent mammals [21]. This result sug-
gests that the GC3 heterogeneity is a common feature
of amniote genomes. However, the standard deviation
of GC3 in snake genes was somewhat lower than that
of other amniotes [21], and GC-content of python non-
coding regions also showed a narrow distribution, as
observed in the green anole lizard [37]. Thus the hetero-
geneities of base composition have probably decreased in
lepidosaurian lineages over evolutionary time.
Although the standard deviation of GC3 of snake genes

was relatively small, our results suggest that snake micro-
chromosomes contain a higher proportion of GC-rich
genes than macrochromosomes, as observed in both the
Chinese soft-shelled turtle and chicken [21]. Recently,
chromosome size-dependent GC heterogeneity was also
identified in the red-eared slider turtle (Trachemys scripta
elegans) and the Nile crocodile (Crocodylus niloticus)
using chromosome flow sorting technique [61].
Chromosome size-dependent GC heterogeneity therefore
seems to be a widespread characteristic in sauropsids
whose karyotypes consist of macrochromosomes and
microchromosomes, and possibly originated in the com-
mon ancestor of sauropsids. Interestingly, the green anole
lizard, whose karyotype consists of 6 pairs of macrochro-
mosomes and 12 pairs of microchromosomes [39,62], does
not show such marked biases in GC-content between
macro- and microchromosomes. This suggests that
the chromosome size-dependent GC heterogeneity
has disappeared in the lineage leading to the anole
lizard. Lepidosauria is a species-rich group consisting
of about 8,000 species, and the karyotypes are also di-
versified within the group. Further investigation in
various lepidosaurian species may help clarify the re-
lationship between GC-content and the karyotype.
Disparity between lepidosaurs and the turtle-archosaurs
The correlation coefficient of GC3 between the rat snake
and chicken orthologs are lower than that between the
Chinese soft-shelled turtle and chicken (Figure 4). One
explanation for the lower correlation is that the phylo-
genetic distance between the snake and chicken is larger
than between the turtle and chicken. However, the diver-
gence time between turtles and birds is estimated to be
more than 231 million years, which is not largely different
from the time of the lepidosauria-archosauria split,
275 million years ago [3,7-9]. Therefore we consider the
effect of the large differences of karyotypes, especially the
number of microchromosomes, between the snake and
the other two species.
The chromosome numbers are largely different between

the rat snake (2n = 36) and chicken (2n = 78). In contrast,
the karyotype of the Chinese soft-shelled turtle, which
consists of nine pairs of macrochromosomes and 24 pairs
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of microchromosomes (2n = 66), is very similar to the
chicken karyotype [38]. Our previous study demonstrated
by comparative gene mapping that the chromosomes have
been highly conserved between chicken and the turtle
[21,38]. Chicken microchromosomes were considered to
extensively retain the ancestral linkage groups of genes
[63], and Nakatani et al. [64] also suggested that many
chicken microchromosomes (i.e., chromosomes 11, 15, 19,
20, 21, 22, 23, 24, 27 and 28) have one-to-one correspond-
ence to ancestral proto-chromosomes of the gnathostome
ancestor [64]. These results lead us to infer that chromo-
some rearrangements have occurred more frequently in
the snake lineage than in the chicken lineage, that is,
chromosome number has been reduced by frequent
chromosome fusions between macro- and microchromo-
somes and also between microchromosomes in the snake
lineage.
Eleven chromosome segments homologous to chicken

microchromosomes were localized to the snake macro-
chromosomes in this study (Figure 1). The GC3 of the
snake orthologs on these macrochromosomal segments
were lower than those of their chicken orthologs on
microchromosomes (green dots of Figure 4B and 5). For
instance, 16 of 21 snake orthologs mapped on chromo-
some 2q, which is homologous to chicken chromosomes
18, 13 and 12, were GC-poor (GC3 < 50%), whereas 9
of 17 chicken orthologs on chicken chromosomes 18, 13
and 12 were GC-rich (GC3 ≥ 50%) (Additional file 2).
These results suggest that changes in chromosome sizes
caused the differences of GC3 levels between the chicken
microchromosomal genes and their snake orthologs on
macrochromosomal segments derived from the ancestral
microchromosomes (Figure 7).

Impact of chromosome fissions/fusions on GC-content
What mechanisms were involved in the changes of the
GC-content of the genes after the fusion of microchro-
mosomes into macrochromosomal complement? It has
been suggested that the GC-content is primarily influ-
enced by local recombination rates via GC-biased gene
conversion [65,66]. Under this model, A or T is dis-
placed by G or C through mismatch repair when an
AT/GC heteroduplex is formed at recombining regions.
Accordingly, AT/GC heterozygotes produce more GC
than AT gametes, thus conferring predominance of GC
alleles in frequently recombining regions.
Recombination rate is negatively correlated with the size

of chromosome arms in human and chicken [20,67]. In
chicken in particular, recombination rate per unit physical
length is much higher in microchromosomes than in
macrochromosomes [20]. Recombination rates per physical
length are thus expected to be lower in the snake macro-
chromosomal segments derived from the ancestral micro-
chromosomes than those in their homologous chicken
microchromosomes. The chromosome size-dependent dif-
ference in the recombination rate thus seems to have
caused the decrease of GC-content in the snake macro-
chromosomal genes derived from the microchromosomes
of the common ancestor of sauropsids.
Empirical evidence of chromosome length-driven evolu-

tion of GC-content has been shown in marsupial and
monotreme species [36]. In contrast, chromosome size-
dependent GC heterogeneity was not clearly demon-
strated in eutherian species, likely because frequent
chromosome rearrangements have obscured the history of
GC-content changes [36]. In many eutherian lineages,
however, intra-chromosomal GC heterogeneity has been
reported [21,36,68,69]. In chicken, intra-chromosomal GC
heterogeneity is not as prominent as in eutherians [22],
and there is no intra-chromosomal GC heterogeneity
known in the anole genome [37,39]. Our approach could
not demonstrate whether there was intra-chromosomal
GC heterogeneity in snake genome because of the insuffi-
cient sequence data provided by cDNA sequencing. It is
necessary to conduct whole genome sequencing and as-
semble the sequences into a chromosome scale in order
to clarify the relationship between intra- and inter-
chromosomal GC heterogeneity in the snake genomes.
When overall GC-content and recombination rates were

compared among various vertebrate species, there was no
clear correlation between GC-content and recombination
rates [70]. For example, the recombination rate of chicken
is about two times higher than that of zebra finch, al-
though GC-content is almost equal between the two spe-
cies [70,71]. Whereas rat snake microchromosomal
genes show similar level of GC3 to chicken microchro-
mosomal genes, GC3 of rat snake macrochromosomal
genes is significantly lower than chicken macrochromo-
somal genes (Figure 5). Thus other factors might exert
influences on overall genomic GC-content. In bacteria,
genomic GC-content have been subject to natural selec-
tion but not to biased gene conversion [72]. Modes other
than biased gene conversion were also proposed for evolu-
tion of genome composition in vertebrates [68]. Further
consideration is therefore necessary for the evolution of
overall genome composition in snakes.

Any biological partitioning between macrochromosomes
and microchromosomes?
Many literatures reported existing correlations between
gene function and base compositions of the genes, the
genomes and the promoter regions [73-75]. The differ-
ence of global GC-content between the macro- and
microchromosomes may potentially cause the biased dis-
tribution of gene functions between the chromosomes:
some proteins containing more amino acids for GC-rich
codons due to functional constraints may be more
advantageous in being encoded in microchromosomes
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than in macrochromosomes. To test this possibility,
we investigated functional difference between chicken
macro- and microchromosomal genes on the basis of
the frequencies of appearance of functional categories
(Figure 6). Over-representations found in six categories
could be caused by clustering of particular gene fam-
ilies in short genomic stretches. These gene families
may be less informative to test the hypothesis that genes
are selected based on the size of chromosomes on which
they are encoded. The over-representations of the other
eight categories were independent from an excess of
genes on particular chromosomes, implying that there
could be some functional differences between macro-
and microchromosomal genes.
In order to examine the relationship between the

apparent localization of functional gene categories and
the chromosome size-dependent GC-content, we investi-
gated the GC-content of the gene sets assorted in the eight
over-represented categories: GO:0004871, GO:0051234,
GO:0006810, GO:0005215, IPR007110, GO:0044430,
GO:0015075 and GO:0003774 (Additional file 6: Table
S16). As shown in Figure 6 and Additional file 6: Table
S1, seven of the eight categories were over-represented in
microchromosomes. If most genes assorted in these GO
or InterPro categories have high GC-content, it is likely
that functional compartmentalization of genes is influ-
enced by the difference of global GC-content between
macro- and microchromosomes, i.e., some functionally
categorized gene groups with high GC-content have been
selectively preserved on microchromosomes. The average
GC-content of the genes of the seven categories ranged
from 43.9 to 48.1% and most of them were lower than
the average of all chicken genes (47.4%) (Additional file
6: Table S16). In the other six categories (GO:0042611,
GO:0044427, GO:0000785, GO:0000786, IPR003461 and
IPR003597), there was no clear correlation between
abundance in macro- or microchromosomes and GC-content.
For an example, GO:0044427, GO:0000785 and GO:0000786
were over-represented in macrochromosomes, but their
GC-contents were relatively high (Additional file 6: Table
S1 and S16). These results imply that functional differences
of genes did not correlate with the global difference of
GC-content between macro- and microchromosomes. Fur-
ther characterization of functional difference between
macro- and microchromosomal genes, as well as its correl-
ation with the general GC trend in chromosomal environ-
ments should await more extensive analyses using multiple
species in future.

Conclusion
In this study, we constructed a cytogenetic map with
183 genes in the Japanese four-striped rat snake, and
calculated GC3 across all chromosomes. Our results
revealed cytogenetic evidence that snake microchromo-
somal genes tend to have higher GC3 than macrochro-
mosomal genes, as found in the chicken and the Chinese
soft-shelled turtle, a feature apparently lost in the gen-
ome of anole lizard. By comparing GC3 of orthologs
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between snake and chicken, we show that the GC-content
of genes is correlated with the size of chromosomes on
which the genes are harbored. This chromosome size-
dependent GC heterogeneity is particularly apparent in
snake genes that have been translocated from microchro-
mosomes to macrochromosomes since snakes and birds
shared a common ancestor, some 275 million years. The
addition of whole genome sequencing and karyotypes
from wide variety of sauropsidan species will provide
the fine-scale picture of timing and mode of GC shift
accompanying karyotypic evolution in this important
group of vertebrates.
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quadrivirgata. FISH mapping of six cDNA clones in Elaphe quadrivirgata.
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Additional file 3: IDs and GC-content of the python contigs that
include the orthologs of the rat snake ESTs. IDs and GC-content of
the python contigs that include the orthologs of the rat snake ESTs.

Additional file 4: GC3 distribution of the orthologs in other
vertebrates. GC3 distribution of the orthologs in other vertebrates.

Additional file 5: R-banded karyotype of Elaphe quadrivirgata.
R-banded karyotype of Elaphe quadrivirgata.

Additional file 6: Table S1. Functional categories over-represented in
either gene group, chicken macrochromosomal genes or
microchromosomal genes. Table S2. Chicken macrochromosomal and
microchromosomal genes assoted into GO:0051234 and their
chromosome locations and GC-contents. Table S3. Chicken
macrochromosomal and microchromosomal genes assoted into
GO:0006810 and their chromosome locations and GC-contents. Table S4.
Chicken macrochromosomal and microchromosomal genes assoted into
GO:0005215 and their chromosome locations and GC-contents. Table S5.
Chicken macrochromosomal and microchromosomal genes assoted into
GO:0003774 and their chromosome locations and GC-contents. Table S6.
Chicken macrochromosomal and microchromosomal genes assoted into
GO:0004871 and their chromosome locations and GC-contents. Table S7.
Chicken macrochromosomal and microchromosomal genes assorted into
GO:0015075 and their chromosome locations and GC-contents. Table S8.
Chicken macrochromosomal and microchromosomal genes assorted into
GO:0042611 and their chromosome locations and GC-contents. Table S9.
Chicken macrochromosomal and microchromosomal genes assorted into
GO:0044427 and their chromosome locations and GC-contents. Table
S10. Chicken macrochromosomal and microchromosomal genes
assorted into GO:0044430 and their chromosome locations and
GC-contents. Table S11. Chicken macrochromosomal and
microchromosomal genes assorted into GO:0000785 and their
chromosome locations and GC-contents. Table S12. Chicken
macrochromosomal and microchromosomal genes assorted into
GO:0000786 and their chromosome locations and GC-contents.
Table S13. Chicken macrochromosomal and microchromosomal
genes assorted into IPR003461 and their chromosome locations and
GC-contents. Table S14. Chicken macrochromosomal and
microchromosomal genes assorted into IPR003597 and their
chromosome locations and GC-contents. Table S15. Chicken
macrochromosomal and microchromosomal genes assorted into
IPR007110 and their chromosome locations and GC-contents. Table S16.
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category. The detailed tables for statistically over-represented categories
of Gene Ontology or InterPro between the chicken macrochromosomal
and microchromosomal genes.
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