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Abstract

Background: Applying supervised learning/classification techniques to epigenomic data may reveal properties that
differentiate histone modifications. Previous analyses sought to classify nucleosomes containing histone H2A/H4
arginine 3 symmetric dimethylation (H2A/H4R3me2s) or H2A.Z using human CD4" T-cell chromatin
immunoprecipitation sequencing (ChIP-Seq) data. However, these efforts only achieved modest accuracy with
limited biological interpretation. Here, we investigate the impact of using appropriate data pre-processing —
deduplication, normalization, and position- (peak-) finding to identify stable nucleosome positions — in
conjunction with advanced classification algorithms, notably discriminatory motif feature selection and random
forests. Performance assessments are based on accuracy and interpretative yield.

Results: We achieved dramatically improved accuracy using histone modification features (99.0%; previous
attempts, 68.3%) and DNA sequence features (94.1%; previous attempts, <60%). Furthermore, the algorithms elicited
interpretable features that withstand permutation testing, including: the histone modifications H4K20me3 and
H3K9me3, which are components of heterochromatin; and the motif TCCATT, which is part of the consensus
sequence of satellite Il and Il DNA. Downstream analysis demonstrates that satellite Il and Il DNA in the human
genome is occupied by stable nucleosomes containing H2A/H4R3me2s, H4K20me3, and/or H3K9me3, but not 18
other histone methylations. These results are consistent with the recent biochemical finding that H4R3me2s
provides a binding site for the DNA methyltransferase (Dnmt3a) that methylates satellite Il and Il DNA.

Conclusions: Classification algorithms applied to appropriately pre-processed ChlP-Seq data can accurately
discriminate between histone modifications. Algorithms that facilitate interpretation, such as discriminatory motif
feature selection, have the added potential to impart information about underlying biological mechanism.
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Background

Chromatin compaction is one of the critical factors
regulating gene expression. The basic unit of chromatin,
the nucleosome, consists of 147 base pairs (bp) of DNA
wrapped around an octamer of histone proteins (H2A,
H2B, H3, H4). Many histone post-translational modifica-
tions contribute to establishing compacted, transcrip-
tionally repressed heterochromatin (e.g., histone H3
lysine 9 trimethylation (H3K9me3)) or open, transcrip-
tionally poised euchromatin (e.g, H3K4me3) [1,2].
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However, it is currently unknown why so many modifica-
tions — on at least 60 histone residues [3] — are neces-
sary [3,4]. One possibility is that individual modifications
have specialized properties, such as “indexing” classes of
genomic elements [5]. Nevertheless, such discriminating
properties remain largely unknown, as redundancy and
enzyme promiscuity for non-histone targets have limited
the amenability of histone modifications to genetic
experimentation [6].

A potential solution to this problem is to apply
supervised learning/classification techniques to high-
throughput epigenomic data, such as chromatin immu-
noprecipitation sequencing (ChIP-Seq) data, for histone
modificatons. Encouragingly, these approaches have had
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success in the related task of predicting the nucleosome
occupancy of DNA sequences: they have elicited pre-
dictive features with biological (e.g., Rapl transcription
factor binding sites [7,8]) and biophysical (e.g., GC con-
tent, DNA propeller twist [7,9,10]) interpretations.
Nevertheless, attempts to apply classification techniques
to histone modifications have been less forthcoming.
This is, in part, because such analyses require less read-
ily available datasets, which correspond to many ChIP-
Seq experiments in the same cell type. As notable
exceptions, Barski et al. [11] have generated a ChIP-Seq
dataset for 20 histone methylations and the histone
variant H2A.Z in human CD4" T cells, and Wang et al.
[12], of the same research group, have generated a
similar dataset for 18 histone acetylations. A recent
study by Gervais and Gaudreau [13] applied classifica-
tion techniques to histone modifications using these
datasets.

In particular, Gervais and Gaudreau [13] attempted to
predict whether a nucleosome contains histone H2A.Z
or H2A/H4 arginine 3 symmetric dimethylation (H2A/
H4R3me2s; the authors refer to this as just “H2A”,
though it is a methylated form [14]). Importantly, these
two classes are likely mutually exclusive: H2A.Z lacks
the R3 methylation site and localizes near active tran-
scription start sites [1], while H2A/H4R3me2s localizes
with repressed heterochromatin [3]. The authors [13]
first performed classification with histone modification
features (co-localization with 37 other modifications
from ChIP-Seq) and, then, with DNA sequence features
(frequency of 6-mers in 147 bp nucleosome-bound DNA
sequences). However, these analyses only achieved mod-
est prediction accuracies of 68.3% and <60%, respectively
(here, a trivial classifier would have an accuracy of 50%)
[13]. Furthermore, there was limited biological interpret-
ation for histone modification features and no interpret-
ation for DNA sequence features [13].

A partial explanation for this modest performance
may be insufficient data pre-processing. Gervais and
Gaudreau [13] used raw, aligned (25 bp) ChIP-Seq
reads, and simply extended these to 147 bp to generate
what they consider to be nucleosome-bound DNA
sequences. However, this approach is problematic. Be-
cause ChIP-Seq is only a slight enrichment (not a purifi-
cation) for sequences bound to the protein of interest
[15], it is notoriously noisy. The majority (estimates up-
ward of 90% [16]) of ChIP-Seq reads are instead from the
background. Therefore, we, and others [15,17,18], advo-
cate using position- (peak-) finding algorithms, such as
Nucleosome Positioning from Sequencing (NPS) [17] (see
Methods), that identify stable nucleosome positions with
statistically significant enrichment over background, prior
to analysis. Here, stable nucleosomes can be defined as
those that are located at roughly the same chromosomal
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position across a population of cells and can therefore
generate a signal peak when ChIP-Seq reads are aligned.
Such nucleosomes are also referred to as being relatively
well positioned or phased, and there is evidence for their
regulatory importance [1,16]. While using stable nucleo-
some positions might limit the analysis to a subset of
nucleosomes (and thus influence interpretation), we still
believe this approach is preferable to using raw, aligned
reads — of which only a small minority were likely even
bound to the nucleosomes of interest. This approach of
using stable nucleosomes was also utilized in a recent
study [19].

Aside from the handling of signal and background, the
approach of Gervais and Gaudreau [13] might not ad-
equately control for systematic biases present in ChIP-Seq
data. First, because of PCR amplification bias it may be ad-
visable to collapse duplicate reads prior to analysis [15,18].
This is especially the case for datasets such as Barski et al.
[11] and Wang et al. [12] where sequencing depth is rela-
tively low, such that there is a lower likelihood of sequen-
cing independently-precipitated fragments with the same
start site (as future datasets begin to have much higher
sequencing depth, more refined alternatives to read dedu-
plication will be valuable). Indeed, even for stable nucleo-
somes, the positioning is often blurry, with nucleosomes
not having precisely the same start site across cells [20].
In addition, because coverage and the ability to detect
peaks vary with sequencing depth, ChIP-Seq experiments
need to be normalized for the number of reads [18].
Refined normalization approaches are emerging [21] for
ChIP-Seq datasets that contain a mock immunoprecipita-
tion (IP) sample; however, for otherwise rich ChIP-Seq
datasets that lack such a mock IP, including [11] and [12],
we believe data should still be normalized for the number
of reads, in the absence of a more delicate approach for
this type of data (see Discussion).

Here, we employ appropriate ChIP-Seq data pre-
processing and sequence-customized, or otherwise
advanced, algorithms to investigate their impact on the
accuracy and interpretability of classifying nucleosomes
containing H2A/H4R3me2s or H2A.Z. For data pre-pro-
cessing, we perform deduplication, normalization, and
position-finding. Further, for DNA sequence-based clas-
sification, we utilize the recently developed Discrimin-
atory Motif Feature Selection (DMEFS) [22], which, in
addition to achieving impressive accuracy, emphasizes
interpretability, unlike so-called “black-box” classifiers.
Specifically, DMES elicits a small set of a priori discrim-
inatory features (motifs) on a subsequently withheld data
partition. This eliminates many noise features, which
can comprise prediction and interpretation [23],
and loosens restrictive feature length prescriptions (e.g.,
6-mers in [13]), which could otherwise fail to generate
key, longer features. For classification based on histone
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modification features, we utilize an ensemble method,
random forests [24], which has been widely demon-
strated to improve on individual classification trees
[24,25], as were deployed by Gervais and Gaudreau [13].
Finally, we perform extensive downstream analysis. Im-
portantly, in addition to achieving dramatically improved
accuracies, our classification algorithms elicit predictive,
interpretable features that are consistent with recent
biochemical findings [26].

Results

We pre-processed the Barski et al. [11] ChIP-Seq dataset
for 20 histone methylations and H2A.Z to reduce bias.
The percentage of duplicate reads in each experiment
ranged from 2.1% to 25.1% (median = 5.6%), suggesting
the potential for substantial PCR bias in some of the
samples. We therefore collapsed duplicate reads into sin-
gle reads. Additionally, the number of unique reads in
the experiments varied by more than 3-fold, indicating
the potential for considerable sequencing depth variation
(and thus coverage bias) across the raw samples. We
therefore normalized experiments for sequencing depth
by down-sampling to the lowest number of unique reads
observed (see Methods).

Using this filtered data, we identified stable nucleo-
some positions as signal peaks with statistically signifi-
cant enrichment over the background by applying NPS
[17] (see Methods). This yielded 1845 and 46235 stable
nucleosomes containing H2A/H4R3me2s and H2A.Z,
respectively (Additional file 1: Table S1). Next, we down-
sampled H2A.Z nucleosomes to match the number of
H2A/H4R3me2s nucleosomes for two reasons. First, this
creates a balanced dataset for classification (i.e., where a
trivial classifier has an accuracy of 50%) and thus yields
accuracies directly comparable to those of [13] (who per-
formed analogous down-sampling). Indeed, using “class-
imbalanced” data can result in a classifier that is biased
toward the larger class [27]; in the case of high-
dimensional data, down-sampling the larger class is pre-
ferable to over-sampling the smaller class [27]. Second,
down-sampling emphasizes features associated with
H2A/H4R3me2s, which is relatively under-studied com-
pared to H2A.Z. An added benefit of this approach is its
reduction of the computational burden. All reported
performance results are the mean of (cross-validated or
out-of-bag) performance summaries over 10 different
random down-samplings of H2A.Z nucleosomes, to en-
sure our balanced approach did not bias the results.

Classification using histone modification features

The presence of one type of histone modification in a
nucleosome can increase or decrease the likelihood of a
second type [2]. Therefore, to identify such potential

Page 3 of 10

interactions, we attempted to discriminate between stable
nucleosomes containing H2A/H4R3me2s or H2A.Z by
using the co-localization with 19 other histone methyla-
tions and 18 histone acetylations (Additional file 1:
Table S2) as features for classification. For each stable nu-
cleosome, we generated an array of length 37 (for 37 fea-
ture modifications), where each entry is the number of
deduplicated sequence reads for a feature modification that
map within the nucleosome boundaries in a strand-specific
manner (see Methods). The motivation for using dedupli-
cated sequence read counts for scoring overlap with feature
modifications is that it results in a richer (ie., less sparse)
matrix than scoring binary overlap with stable nucleosomes
for the feature modifications. We still use stable nucleo-
somes, however, for the outcome modifications (H2A/
H4R3me2s, H2A.Z) and in downstream analyses.

We attained highly accurate random forests (see Meth-
ods) prediction performance using histone modification fea-
tures, with an accuracy of 99.0% + 0.1% and an area under
the Receiver Operating Characteristic curve (auROC) of
0.999 + 0.0002 (Figure 1a). This is a substantial improve-
ment over the corresponding accuracy of 68.3% that
Gervais and Gaudreau [13] report. To determine which fea-
tures were “driving” the classification, we evaluated random
forests feature importance by mean decrease in Gini index
(MDG; Figure 1b; see Methods). Several features ranked
prominently and withstood estimation of statistical signifi-
cance by permutation testing (see Methods): H4K20me3,
H3K9me3, H3R2me2a, H3K36me3, H3K18ac, H3K9me2,
and H3K27ac had a permutation p < le-05 (Bonferroni-
adjusted p < 3.7e-04; Figure 1b). The remaining histone
modification features were not significant.

To further explore how these features relate to
H2A/H4R3me2s, we built a single classification tree
(Figure 1c) [28], which, compared to the random forests
ensemble of trees, may more readily reveal interpretable
rules, albeit at the cost of decreased classification accur-
acy. Consistent with the random forests feature import-
ance ranking, the feature that best separated the data in
the single tree is H4K20me3 (Figure 1c). Indeed, 1737
out of 1854 stable nucleosomes containing H2A/
H4R3me2s were classified at the first split, based
on overlapping with greater than two deduplicated,
H4K20me3 sequence reads (with a misclassification rate
of only 1.67%). Three of the four remaining splits were
also based on features that were had significant random
forests feature importances (H3K18ac, H3K27ac, and
H3R2me2a; H2BK5mel did not have a significant ran-
dom forests feature importance, yet was the basis for the
second split). H3K9me3, which had the second highest
random forests feature importance, was not the basis for
a split in the single tree; however, this may occur if, for
example, the stable H2A/H4R3me2s nucleosomes that
overlap with H3K9me3 are a subset of those that overlap
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Figure 1 Classifying stable nucleosomes containing H2A/H4R3me2s or H2A.Z using histone modification features. (a) Receiver Operating
Characteristic (ROC) curve, demonstrating classifier performance. (b) Random forests feature importance by mean decrease in Gini index. Features
have a higher frequency in H2A/H4R3me2s nucleosomes (red) or H2A.Z nucleosomes (blue). The dashed, vertical line shows the estimated
(permutation-based) significance threshold after multiple testing correction. (c) A classification tree with splits (no borders) and leaves (borders),
below which is the number of nucleosomes classified correctly and, in parentheses, incorrectly at that stage. Leaves show the predicted class
labels of nucleosomes partitioned there. Splits show the condition that best separates the data. Branch labels indicate the directions in which the
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with H4K20me3 (and so they are already classified at the
first split).

Encouragingly, the top two modifications by random
forests feature importance, H4K20me3 and H3K9me3, are
more frequent in stable nucleosomes containing H2A/
H4R3me2s than those containing H2A.Z (Figure 1b).
Because H4K20me3 and H3K9me3 have been shown to
contribute to the formation of heterochromatin [1,2] —
which is where H2A/H4R3me2s localizes — this initial
finding supports the biological relevance of our classifier.

Classification using DNA sequence features

DNA sequence likely influences the genome-wide distri-
bution of histone modifications, as sequence-specific
transcription factors and microRNAs can bind and
recruit histone-modifying enzymes [29]. Thus, we used
DNA sequence motifs as features for classifying H2A/
H4R3me2s and H2A.Z nucleosomes for two reasons:
first, to identify such potential targeting sequences, and
second, to identify classes of genomic elements that the
histone modification potentially regulates. Using DMFS
[22], we identified <300 a priori discriminatory motifs
with lengths between 5 and 10 bp from a subsequently
withheld partition of the data (see Methods).

As above, we attained highly accurate random forests
prediction performance using DNA sequence features
(discriminatory motifs), with an accuracy of 94.1% + 0.3%
(auROC = 0.968 + 0.001; Figure 2a). This is a dramatic
improvement over the corresponding accuracy of <60%
that Gervais and Gaudreau [13] report. We next evalu-
ated random forests feature importance by MDG (see
Methods). The top 20 features (Figure 2b), all of which
occur more frequently in DNA corresponding to stable
H2A/H4R3me2s nucleosome positions, withstand esti-
mation of statistical significance by permutation testing,
with permutation p < 1le-05 (Bonferroni-adjusted p <
2.7e-03). Interestingly, 12 of these 20 sequence features
contain the motif TCCATT (Figure 2b). We therefore
analyzed the frequency distribution of the number of
occurrences of this motif in the DNA sequences corre-
sponding to stable nucleosome positions (Figure 2c,
Additional file 1: Table S3). Indeed, while the motif
TCCATT is present in only ~7% of stable H2A.Z nucleo-
somal DNA sequences (max = 3 occurrences per se-
quence), it is present in ~72% of stable H2A/H4R3me2s
nucleosomal DNA sequences (max = 23 occurrences per
sequence; median = 7; Figure 2c). That this 6-mer occurs
so abundantly in many of the stable H2A/H4R3me2s
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Figure 2 Classifying stable nucleosomes containing H2A/H4R3me2s or H2A.Z using DNA sequence features. (a) Receiver Operating
Characteristic (ROC) curve, demonstrating classifier performance. (b) Random forests feature importance by mean decrease in Gini index. Features
have a higher frequency in H2A/H4R3me2s nucleosomal DNA (red) or H2A.Z nucleosomal DNA (blue). (c) Frequency histogram of the number of
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60 TCCATT motif frequency

nucleosomal DNA sequences is suggestive of it being a re-
petitive element, or component thereof — an observation
we explore in downstream analysis.

For thoroughness, however, we first performed a
combined classification that utilized histone modifica-
tion features and DNA sequence features. This resulted
in a classification accuracy of 98.6% + 0.1% (auROC
= 0.999 + 0.0002). Feature importance analysis by
MDG yielded many of the same top features as in the
separate classifications, namely: H4K20me3, H3K9me3,
H3R2me2a, H3K36me3, and sequences containing the
motif TCCATT.

Downstream feature analysis

Having elicited important, predictive features (particu-
larly H4K20me3, H3K9me3, and the sequence motif
TCCATT), we pursued downstream analysis in an
attempt to determine how they relate functionally to
H2A/H4R3me2s. First, given the abundant occurrence
of the motif TCCATT, we referenced the DNA sequence
composition of repetitive elements in the human gen-
ome. Indeed, TCCATT is part of the consensus
sequence of satellite II and III DNA (Table 1) [30,31],
which are types of transcriptionally competent, tandem
repetitive elements located primarily in pericentromeric
regions [30].

To determine if satellite II and III DNA are the source
of the TCCATT motif detected, we analyzed the per-
centage of the total DNA sequence bound to stable
nucleosomes containing various histone modifications
that is annotated as satellite II and III DNA (or other
repetitive elements; Figure 3a). Indeed, around 63% of
the total DNA sequence bound to stable H2A/

H4R3me2s nucleosomes is satellite II and III DNA,
while none of the stable H2A.Z nucleosome -bound
DNA is (Figure 3a). Satellite II and III DNA also con-
tribute to the DNA sequence bound to stable nucleo-
somes containing H4K20me3 or H3K9me3, though they
comprise a lower percentage (around 7% and 8%, re-
spectively; Figure 3a). Thus, stable H2A/H4R3me2s
nucleosomal DNA is enriched for TCCATT motifs
derived from satellite II and III DNA. As an interesting
aside, we found that a substantial portion of the DNA
bound to stable nucleosomes containing H4K20me3 or
H3K9me3 is retrotransposons; this is not the case for
stable nucleosomes containing H2A/H4R3me2s.

Finally, we explored further the relationship between
satellite IT and III DNA and various histone modifications.
For each histone modification, we calculated occupancy
[32] over aligned satellite II (or IIT) DNA sequences, where
occupancy is defined as the fraction of sequences at a pos-
ition that are bound to a stable nucleosome containing
that histone modification (see Methods). We found that
H2A/H4R3me2s and H4K20me3 had the highest occu-
pancy over satellite II DNA sequences (0.266 and 0.289,
respectively) and satellite III DNA sequences (0.159 and
0.142, respectively). H3K9me3 followed closely with

Table 1 Satellite Il and Il DNA consensus sequences

Satellite type
satellite Il DNA
satellite Il DNA

Consensus sequence
[(atTCCATTCq); + (atg);_sln
[(ATTCO);-13 + (ATTcgggttg)iln

Subscripts indicate the number of occurrences of a subsequence in the
consensus sequence. The motif TCCATT is displayed in uppercase. For satellite
Il DNA, the motif also appears when two instances of the first subsequence
are juxtaposed. Adapted from [30,31].
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occupancies of 0.140 and 0.045 over satellite II and III
DNA, respectively. On the other hand, H2A.Z and 18
other histone methylations in the Barski et al. [11] datatset
had no or almost no occupancy over these satellites
(1 methylation, H3R2me2a, had low occupancy). These
findings are depicted in Figure 3b.

Thus, downstream analysis functionally relates the
elicited features to H2A/H4R3me2s and to each other:
H2A/H4R3me2s, H4K20me3, and H3K9me3 all occur
on stable nucleosomes in satellite II and III DNA
sequences, from which the motif TCCATT is derived.
These interactions are consistent with recent biochem-
ical experimental results, a point we return to in the
Discussion.

Discussion

Emerging, high-throughput epigenomic data, including
ChIP-Seq data, may provide insight into mechanisms of
chromatin structure and gene regulation. However, real-
izing the full potential of this data requires a computa-
tional framework that reduces bias, maximizes algorithm
accuracy, and elicits predictive and biologically interpret-
able features. To this end, we classified nucleosomes
containing H2A/H4R3me2s or H2A.Z, as in [13], but
instead employed appropriate data pre-processing and
advanced classification algorithms, resulting in greatly
improved accuracy and interpretative yield.

Indeed, interpretation of ChIP-Seq is challenging
because of the magnitude and complexity of the data
(issues of quality and pre-processing, aside). This is par-
ticularly true when comparing multiple histone modifica-
tions (or transcription factors). Encouragingly, approaches
aiming to improve ChIP-Seq interpretation, albeit not

directly applicable to our analyses, appear in the recent
literature. For example, Fernandez et al. [33] use a genetic
algorithm to identify the optimal number of histone
modification profiles to combine to identify transcrip-
tional enhancers, while Beck et al. [34] aim to improve
ChIP-Seq interpretation by incorporating information
about peak shape via linear predictive coding.

In light of these challenges, and given the problems
with enumerative feature approaches (e.g., all 6-mers;
discussed in detail below), we decided to employ a re-
cently devised pipeline for sequence-based classification,
DMES [22], that focuses on feature interpretation. DMFS
elicits a small set of a priori discriminatory features
(motifs) using a subsequently withheld data partition.
Using DMFS, we evaluated a feature length range be-
tween 5 and 10 bp by eliciting < 300 a priori discrimin-
atory motifs. In contrast, evaluating this length range
with enumerative approaches would require a burden-
some, if not prohibitive, 4% = 1397760 features. Thus,
feature length often needs to be highly restricted for enu-
merative approaches, which can then fail to elicit longer,
potentially important (interpretable) features. Even with
feature length prescriptions, enumerative approaches still
employ multitudes of noise features, which can degrade
performance [23] and complicate determination of fea-
ture importance and interpretation. Thus, using DMFS
to eliminate univariately unimportant features at the out-
set has advantages; however, it can miss features whose
effects are strict (second or higher order) interactions.

Some attempts have been made to improve interpret-
ation of enumerative feature classification. Most existing
enumerative techniques rely heavily on support vector
machine (SVM) classifiers that employ sophisticated,
problem-specific kernels, notably the spectrum kernel
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[36] and variants thereof [37,38], such as the so-called
“blended spectrum” kernel used previously [13] to
analyze the data considered here. Determining feature
importance for such approaches is arguably very challen-
ging (it is challenging, in general, for SVMs), given
inherent feature dependencies (overlaps at neighboring
positions) and kernel complexity. Some inventive meth-
ods have been developed to address these issues [39,40].
Nevertheless, these methods are necessarily constrained:
input sequences need to be the same length and only
select SVM kernels are supported. Thus, another advan-
tage of the DMFS approach is that it provides a modular,
all-purpose, pipeline applicable to any (binary) classifica-
tion problem with any sequence inputs.

In the current study, we employed DMES for
sequence-based classification using pre-processed data.
For the sake of comparability, we also tried applying
DMES to raw, aligned, extended ChIP-Seq reads as used
in [13], which resulted in a classification accuracy similar
to that of Gervais and Gaudreau [13]. Thus, while DMFS
provided the benefits of ready interpretation, modularity,
and computational efficiency, the improvements in per-
formance that we achieved are largely attributable to
data pre-processing. Indeed, several authors [15,18] have
advocated ChIP-Seq data pre-processing based on obser-
vations of bias and extensive background reads. Peak-
finding methods have also been specifically designed for
histone modification ChIP-Seq data: SICER [41] identi-
fies broad chromatin domains enriched for a histone
modification, while NPS [17] identifies individual, stable
nucleosomes that contain a histone modification. Our
study is valuable in that it demonstrates empirically the
gains in classification performance that result from
ChIP-Seq data pre-processing, thus substantiating the
advocacy thereof.

Another valuable aspect of our study is that the identified
features are consistent with recent biochemical experimen-
tal results. Our classification approaches identified the
motif TCCATT (derived from satellite II and III DNA
sequences) and the histone modifications H4K20me3 and
H3K9me3 as predictive of H2A/H4R3me2s nucleosomes.
Consistent with this, Zhao et al. [26] recently demonstrated
that H4R3me2s provides a direct binding site for the DNA
methyltransferase (Dnmt3A) that methylates satellite II and
III DNA [42-44]. The enzyme that mediates H3K9me3 also
interacts directly with Dnmt3A [45]. Furthermore, the
proper occurrence of H4K20me3 and H3K9me3 has been
shown to be partially dependent on Prmt5, the enzyme that
mediates H2A/H4R3me2s [46]. Interestingly, the aberrant
expression of satellite II and III DNA, which is observed in
senescent cells [47] and cancers [44,48], may promote gen-
omic instability via chromosomal rearrangements [49].
Thus, our finding that H2A/H4R3me2s, H4K20me3, and
H3K9me3 occur in stable nucleosomes in satellite II and III
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DNA sequences genome-wide may be consequential in
terms of understanding how these genomic elements are
normally repressed in healthy, differentiated tissue.

In future work, we will extend our analyses to classify-
ing the 19 other histone modifications in the Barski et al.
[11] dataset. This could be realized using an iterative
one-against-all approach, which would be more high-
throughput (albeit at the potential cost of diluting discrim-
inatory signals), or using a targeted, biologically motivated
approach. With respect to the latter, of particular interest
would be discriminating between histone modifications that
localize with facultative (e.g., H3K27me3) and constitutive
(e.g., H3K9me3) heterochromatin. Indeed, DNA elements
capable of recruiting the facultative heterochromatin ma-
chinery have not been identified in the human genome so
far, though they have been in the Drosophila genome (i.e.,
Polycomb Response Elements [35]). Additionally, we will
explore the impact of alternative ChIP-Seq normalization
approaches, including some more refined, emerging meth-
ods [21]. However, because such methods often rely on a
mock immunoprecipitation (IP) sample, which many other-
wise rich ChIP-Seq datasets lack (including Barski et al.
[11]), it would be worthwhile to pursue developing a
method for identifying the background in datasets with
multiple experimental IPs but no mock IP. Similarly, it
would be a great advance to develop an algorithm that
could identify and remove read buildups that correspond to
PCR amplification bias without collapsing “biological”
duplicate reads — especially as the latter will be common in
newer datasets with very high sequencing depth. Finally, we
could pursue, though more ambitious, developing an algo-
rithm for multi-class classification with a similarly discrim-
inatory framework [22].

Conclusions

Our study demonstrates that applying advanced classifi-
cation algorithms to appropriately pre-processed ChIP-
Seq data results in greatly improved prediction accuracy
and feature interpretative yield in genome-wide discrim-
ination between histone modifications. The discrimin-
atory motif feature selection approach that we employed
has the added potential to facilitate interpretation of the
biological mechanism underlying the classifier perform-
ance. Finally, and perhaps most importantly, the findings
presented here demonstrate that statistical/machine
learning analyses of epigenomic data can identify inter-
pretable, biologically meaningful properties of histone
modifications, which have been difficult to study by
traditional genetic experimentation.

Methods

ChIP-Seq data pre-processing

The Barski et al. [11] ChIP-Seq dataset for 20 histone
methylations and H2A.Z in human CD4" T cells was
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downloaded as BED files of mapped ChIP-Seq reads
from: <http://dir.nhlbi.nih.gov/papers/Imi/epigenomes/
hgtcell.aspx>. In each sample, duplicate reads were col-
lapsed into single reads to eliminate PCR amplification
bias [15,18]. Samples were normalized for unique read
number via down-sampling, in order to eliminate bias
from sequencing depth variation [18]. Stable nucleo-
somes with statistically significant enrichment over the
background were identified, using NPS [17], for each of
the 20 histone methylations and H2A.Z.

NPS extends reads in the 3' direction to 150 bp, corre-
sponding to the length of the MNase-digested mononu-
cleosomal DNA [11,17]. NPS then employs signal
sampling and wavelet denoising to improve signal reso-
lution and reduce background, and Laplacian of Gauss-
ian methods to detect peak edges [17]. We only
accepted peaks that pass quality control filtering and
statistical significance testing, as in [17], to reduce false
positives. Specifically, peaks must have had a width
80 bp < w < 250 bp, a strand ratio s < 3, and a significant
number of reads (Poisson p < 1le-05). For each such
nucleosome peak, we extended the midpoint to 147 bp
for use in classification.

Classification/Feature elicitation

H2A.Z nucleosomes were down-sampled to match the
number of H2A/H4R3me2s nucleosomes to create a
balanced classification scheme [27]. All performance
evaluations are based on the mean of ten random sam-
ples of H2A.Z nucleosomes to ensure sampling did not
impact the results. Classification was performed using
random forests [24], an algorithm that averages over an
ensemble of classification trees. Briefly, each tree is con-
structed from a bootstrap sample of the data. Unlike
conventional trees, where each node is split using the
overall most predictive feature, each node in random
forest trees is split using the most predictive feature
from a subset of features randomly sampled at that
node. This additional injection of randomness serves
to de-correlate trees in the ensemble, so that subsequent
averaging over the ensemble more effectively decreases
prediction variance and thereby improves prediction
performance [25]. An unbiased estimate of the predic-
tion error rate is obtained as follows: first, for each
tree in the ensemble, classify the data points not
included in the bootstrap sample for that tree (so-
called out-of-bag (OOB) data); then, average the pre-
dictions across all trees where a given data point was
OOB [24,25,50].

Random forests have two primary parameters: for the
number of trees, we used #,., = 500; and for the subset
of features sampled at each node, we used the default
classification value »1,,., = sqrt(p), where p is the number
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of features. Compared to other classifiers, random for-
ests have the advantage of being relatively resistant to
overfitting and relatively insensitive to parameter tuning,
as long as 7., is sufficiently large [24,50]. All reported
area under the Receiver Operating Characteristic curve
(auROC) values are for random forests, though, for thor-
oughness, classifications were repeated using support
vector machines (SVMs); comparable results were
obtained. Fitting of both random forests and SVMs
made recourse to the corresponding R packages [50,51]
and to the ROCR package [52].

Classification was performed using two distinct feature
types: histone modification features and DNA sequence
features. For histone modification features, we used the
19 histone methylations remaining in the Barski et al.
[11] dataset, as well as 18 histone acetylations from the
Wang et al. [12] dataset, which was generated by the
same research group and in the same cell type. The lat-
ter dataset was downloaded from: <http://dir.nhlbi.nih.
gov/papers/Imi/epigenomes/hgtcellacetylation.aspx>. To
create the overlap matrix, an array of length 37 (for 37
histone modification features) was created for each
stable H2A/H4R3me2s or H2A.Z nucleosome. Each
entry in the array indicates the number of de-duplicated
sequence reads for the given feature modification that
co-localize with the stable nucleosome boundaries in a
strand-specific manner. Specifically, to be scored: ‘+’
strand feature reads must map within + 50 bp of the 5'
stable nucleosome boundary, and ‘-’ strand feature reads
must map within + 50 bp of the 3' stable nucleosome
boundary.

To generate DNA sequence features, we used DMFS:
<https://bitbucket.org/haoxiong/dmfs-code/> [22]. DMEFS
elicits a small set of a priori informative motifs that dis-
criminate between positive (here, H2A/H4R3me2s) and
negative (here, H2A.Z) classes. Unlike enumerative (e.g.,
all 6-mers) approaches, DMFS avoids the generation of
abundant noise features, which can compromise predic-
tion and interpretation [23]. Additionally, it allows longer,
potentially informative features to be evaluated. To avoid
data reusage, DMFS requires an additional level of data
partitioning, utilizing a discovery set for initial discrimin-
atory motif finding and a classification set for subsequent
random forest (or SVM) analysis. For the fraction of nu-
cleosomal sequences allocated to the discovery set, we
used the recommended value f = 0.2 [22]; we ultimately
evaluated five instances of the data being randomly parti-
tioned as such, to ensure partitioning did not impact the
results. A key component of the DMFS pipeline is the tool
employed for eliciting discriminatory motifs. We used the
default tool — Wordspy [53,54] — selected in view of its
impressive performance in benchmarking studies [54].
Remaining DMFS parameter settings were: minimum
motif length / = 5, maximum motif length m = 10 (with
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both DNA strands being searched); and at most M = 2
mismatches, when aligning elicited motifs to classification
set sequences.

Feature importance and downstream analysis

To identify the most individually predictive features,
random forest feature importance was assessed using the
mean decrease in Gini index (MDG). Briefly, the Gini
index is a measure of statistical impurity. Every time a
node is split in a tree, the daughter nodes become more
homogenous and, thus, have a lower Gini index than the
parent node. A robust measurement of feature import-
ance can obtained as follows: for each feature, average
across all random forest trees the decrease in Gini index
that results from splitting a node on that feature [25].
Permutation testing was performed to estimate the stat-
istical significance of variable importance: MDG scores
were compared to the distribution of scores from
100,000 classifications using data with permuted class
labels.

Downstream analysis was performed for a motif found
in many of the elicited sequence features. The genomic
coordinates of repetitive DNA sequences were down-
loaded from the RepeatMasker track of the Table
Browser [55] of the UCSC Genome Browser (build
hg18). Based on Repbase Update [56] annotations, satel-
lite I DNA (repName = HSATII) and satellite III DNA
(repName = (CATTC)n, (GAATG)n) coordinates were
extracted. For each histone modification, we calculated
the percentage of its total stable nucleosome-bound
DNA sequence that consists of satellite II or III DNA.
Additionally, for each histone modification, we calcu-
lated its occupancy along satellite II DNA, or satellite III
DNA, sequences aligned by start site — where occu-
pancy [32] is defined as the fraction of sequences bound
to a stable nucleosome, in this context, with the histone
modification.

Additional files

Additional file 1: Table S1. Number of sequence reads (or stable
nucleosomes) for histone methylations and H2A.Z at each data pre-
processing step. Table S2. Number of sequence reads for histone
acetylations at each data preprocessing step. Table S3. Percentage of
sequence reads at each data pre-processing step that contain the motif
"TCCATT".
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