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Abstract

Background: Exome sequencing has transformed human genetic analysis and may do the same for other
vertebrate model systems. However, a major challenge is sifting through the large number of sequence variants to
identify the causative mutation for a given phenotype. In models like Xenopus tropicalis, an incomplete and
occasionally incorrect genome assembly compounds this problem. To facilitate cloning of X. tropicalis mutants
identified in forward genetic screens, we sought to combine bulk segregant analysis and exome sequencing into a
single step.

Results: Here we report the first use of exon capture sequencing to identify mutations in a non-mammalian,
vertebrate model. We demonstrate that bulk segregant analysis coupled with exon capture sequencing is not only
able to identify causative mutations but can also generate linkage information, facilitate the assembly of scaffolds,
identify misassembles, and discover thousands of SNPs for fine mapping.

Conclusion: Exon capture sequencing and bulk segregant analysis is a rapid, inexpensive method to clone mutants
identified in forward genetic screens. With sufficient meioses, this method can be generalized to any model system
with a genome assembly, polished or unpolished, and in the latter case, it also provides many critical genomic
resources.

Keywords: Exon capture sequencing, Forward genetics, Xenopus tropicalis, Bulk segregant analysis, Cilia, Kidney
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Background
High throughput sequencing (HTS) has revolutionized
our ability to analyze genomes for mutations that cause
disease phenotypes. Whole genome sequencing (WGS)
can identify causative mutations in smaller invertebrate
genomes such as D. melanogaster [1] and C. elegans [2]
and also larger vertebrate genomes such as mouse and
zebrafish [3-5]. However, most disease causing muta-
tions are in exons, and WGS of vertebrate genomes
remains relatively expensive compared to exome sequen-
cing. Therefore, for disease mutation discovery, exome
sequencing is high-yield at a minimum cost.
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To perform exome sequencing, exons are captured
using arrays [6-8] or in solution [9] with specifically
designed probes. Since the exome represents <5% of ge-
nomes, a fraction of an Illumina HiSeq lane can generate
sufficient coverage depth for confident variation detection.
Much more sequencing is necessary for WGS. Exome se-
quencing has successfully led to discovery of mutations in
polished genomes such as human and mouse [10-17].
However, exon capture HTS is limited by the quality

of the genome assembly and annotation. For example,
in X. tropicalis, a frog genetic model system, many of
the exons have been identified, yet at least 5% of the
genome, including exonic sequence, is in gaps in the la-
test genome assembly (v7.1) [18]. These difficulties also
affect the analysis of zebrafish and other emerging
model systems. In addition, even in polished genomes, a
major challenge in the analysis of exomes is to identify
a causative mutation amongst the large array of natural
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Figure 1 ruby and grinch mutant phenotypes. ruby (a) and grinch
(b) mutant phenotypes start with pericardial edema at stage (st.) 39.
At st. 45, the edema worsens and is lethal. Wildtype (WT) embryos
from the same cross are shown for comparison. All embryos are
lateral views with dorsal to the top and anterior to the left.
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sequence variations present in the genome. In forward
genetic screens, heavily mutagenized genomes have
additional changes, further complicating discovery of
causative mutations.
Using X. tropicalis, we aimed to circumvent these dif-

ficulties by combining exon capture HTS with bulk seg-
regant analysis (BSA). In BSA, carriers of a recessive
phenotype are crossed to produce wildtype and mutant
progeny. These progeny are sorted based on their pheno-
type into two pools (or bulks), mutant and wildtype. Ge-
netic markers (e.g. heterozygous SNPs, microsatellites, or
RFLPs) are then assayed on the bulk DNA. If the bulks
contain a sufficient number of embryos (i.e. meioses),
then unlinked genetic markers will be detected as hetero-
zygous in both pools. On the other hand, genetic markers
linked to the causative mutation will appear homozygous
in mutant pools but will remain heterozygous in wildtype
pools. This loss of heterozygosity (LOH) in mutant pools
indicates linkage and can be used to identify candidate
loci. By combining data from BSA and exon capture se-
quencing, we can sift through the large array of sequence
variations to identify a region containing the mutant gene.
In polished genomes such as mouse, exon capture/BSA
can be adapted to narrow candidate mutations in a single
step at much lower costs than WGS.
Xenopus is an extraordinarily valuable system for bio-

medical research, but forward genetic analysis only
became effective with the introduction of the diploid
X. tropicalis as a model [19-22]. Employing forward ge-
netic screens, numerous mutants have been identified
[23-25], but discovering the underlying causative muta-
tions is difficult due to the relative paucity of genetic mar-
kers and limitations of the long-range genome assembly.
Despite these difficulties, some causative mutations have
been characterized [26-28]. To facilitate the discovery of
mutations in X. tropicalis, we sought to incorporate
meiotic data into our exon capture HTS by adding BSA
into the sequencing step. We show that exon capture
HTS with BSA facilitates local genome assembly, genetic
marker identification, and causative mutation discovery.
Using this method, we were able to identify candidate
genes for two X. tropicalis mutants in just a few weeks.
We then verified the identity of the mutated gene using
either mRNA overexpression to rescue the phenotype, or
morpholino knockdown to phenocopy. In one case, gaps
in the genome and local misassembly would have made
mutation identification extremely difficult without exon
capture/BSA. This method produces genomic resources
inexpensively and can quickly identify candidate muta-
tions amongst many sequence variations.

Results
In a forward genetic screen in X. tropicalis, we identi-
fied two mutants, ruby and grinch that follow simple
Mendelian inheritance, show similar phenotypes, but fall
into different complementation groups (Figure 1). Both
mutants appear wildtype until stage 38–39 when edema
starts to appear around the heart, steadily worsens, and
finally causes death by stage 46–48 (Figure 1a,b). The
etiology of the edema is unclear and could be due to
cardiac, lymphatic or renal defects [29-34]. To determine
the causative genes, we developed a HTS approach com-
bining exon capture with BSA. First, we developed an
exon capture array containing coding exons identified in
the published X. tropicalis v4.1 genome [35]. Because
approximately 5-10% of the genome is missing from this
assembly [18,35], we also identified coding exons from
available EST clusters and full-length mRNA sequences
to augment the array.
We then captured and sequenced coding exons and

flanking intronic sequence from DNA of pooled embryos,
in order to exploit BSA. Hybrid carriers from our muta-
genized strain (N) and mapcross strain (ICB or PopA)
were crossed to generate mutant and wildtype embryos.
Two pools of these embryos were collected: one pool had
only phenotypically mutant (MUT) embryos and the
other had wildtype (WT) embryos (Figure 2a). We per-
formed exon capture using our custom arrays and, using
the Illumina platform, sequenced each pool individually
(see Methods). We first analyzed the WT pool for hetero-
zygosity, which identified SNPs in these populations. In
mutant pools, we examined these same genomic posi-
tions for LOH suggesting linkage to the causative muta-
tion (Figure 2a and Methods). Our analysis identified
over 30,000 putative SNPs that were common across all
mutant and WT pools, with a subset of SNPs becoming
homozygous in the mutant pools.
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Figure 2 BSA and Exon Capture HTS. (a) Schematic of Exon Capture HTS with BSA. Two pools of embryos are sequenced, one mutant and
one WT from a mapcross. The WT pool is sequenced and SNPs identified based on allele counts where the major allele fraction (MAF) is
approximately 50%. These positions are examined in the mutant pools for LOH. (b,d) Graph of homozygosity ratio to scaffold number using
genome v4.1 for ruby (b) and grinch (d). (c,e) same as b,d but version 7.1 of the genome. In (b-e), scaffolds or scaffold intervals with <20 SNPs
have been excluded. The peaks with the highest homozygosity ratios are labeled.
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For the v4.1 genome assembly, we calculated a homo-
zygosity ratio by dividing the number of homozygous
SNPs to heterozygous SNPs per scaffold. We focused on
scaffolds that had at least 20 SNPs per scaffold to avoid
bias from falsely called SNPs (Figure 2b-e). For grinch,
these excluded scaffolds (with <20 SNPs) represent less
than 0.7% of the genome, and for ruby, this represents
less than 0.9% of the genome. Although this introduces
the risk of missing smaller scaffolds that are linked to
the mutation, this filter helped clarify and prioritize our
analysis. When we had completed this analysis, the v7.1
genome assembly became available so we repeated the
analysis on this assembly. The v7.1 genome assembly
employed a preliminary X. tropicalis meiotic map as well
as synteny to other genomes to create chromosome-
sized super-scaffolds [18]. In this case, for all scaffolds
larger than 0.5 Mb, we divided the scaffold into 0.5 Mb
intervals and calculated the homozygosity ratio for these
smaller intervals, again excluding intervals that had less
than 20 SNPs from further analysis. This analysis identi-
fied scaffolds or genomic intervals with high homozygo-
sity ratios indicating linkage to the causative mutation in
ruby and grinch mutants (Figure 2b-e).

Cloning ruby phenotype
Prior to this analysis, we had no previous mapping in-
formation for ruby. Exon capture/BSA from mutant
ruby embryos found six v4.1 scaffolds with high LOH
signal (Figure 2b) and a striking signal in scaffold 3 in
the v7.1 genome (Figure 2c). Using our newly identified
SNPs, we sought to both validate our SNP discovery and
narrow down the interval carrying the causative muta-
tion. For fine mapping purposes, we focused on SNPs
that led to Restriction Fragment Length Polymorphisms
(RFLPs) and found that 46/51 SNPs (90%) tested had
the expected polymorphism. We then showed that three
of the scaffolds from v4.1 (30, 34, 143) were tightly
linked to the ruby locus, thus effectively assembling the
scaffolds at this locus (Figure 3a). Analyzing the v7.1 as-
sembly, we confirmed that scaffold 3 contains the ruby
locus and identified a misassembly of a portion of scaf-
fold 7 (Figure 3a). Although we did not test markers on
scaffolds 40 and 363 (v4.1) (Figure 2b), in the v7.1 ge-
nome, both scaffolds are incorporated into scaffold 3
and therefore are likely linked to the mutation. Scaffolds
1911 (v4.1) and 218 (v7.1) may be linked to the ruby
locus, but were not tested since we mapped ruby to a
220 kb or 0.3 cM interval on scaffold 3 (v7.1) using 650
mutant embryos.
This interval contains only 7 genes (Figure 3a), and

analysis of exon capture sequence revealed that three of
these genes, il1b, psd4, and pax8, had sequence variants
leading to amino acid changes or splice site changes.
Il1b had one amino acid change but was outside the
mapped interval (markers 1791–2011). psd4 had 3 amino
acid changes that were all conservative. More import-
antly, the expression pattern of psd4 did not support a
role in ruby, as there appears to be little expression
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prior to the onset of the phenotype (Additional file 1:
Figure S1).
Pax8 had a mutation in the acceptor splice site of

intron 2, causing a mis-splice and frameshift, elimina-
ting the entire paired-box domain (Figure 3b). We con-
firmed this splice site mutation by RT-PCR and Sanger
sequencing (Figure 3b cDNA). Pax8 has previously been
shown to be a principal and early regulator of pronephric
development in Xenopus [36]. Furthermore, mutant
embryos had a reduced expression of pax8 (Additional
file 1: Figure S2) and defects in pronephric development
as shown by pax2 (Figure 3c) and several other prone-
phric markers [37] (Additional file 1: Figure S2). This is
consistent with the edema phenotype, especially because
the onset of the edema is shortly after the pronephros
becomes functional [38].
To demonstrate that pax8 is the causative gene for

the ruby phenotype, we used an antisense translation
blocking morpholino (MO) to knockdown pax8. Injec-
tion of pax8 MO at the one cell stage caused a clear
impairment of pronephric development in 59% of the
embryos (Figure 3d) phenocopying ruby mutants. In
Xenopus, we can target either the left or right prone-
phros by injecting one cell at the two-cell stage. When
targeted to one side, pax8 knockdown causes impair-
ment in pronephric development in 54.7% of the
embryos on the injected side (Figure 3d and Additional
file 1: Figure S3). Taken together, these results indicate
that the phenotype in ruby mutants is caused by a pax8
mutation that leads to a truncated protein and disrupts
pronephric patterning at early stages of development.

Cloning grinch phenotype
Similar to ruby, grinch mutants also develop significant
ventral edema, but unlike ruby, grinch mutants have a
ciliary defect that can be detected by reduced cilia-driven
flow on the epidermis of mutants (Figure 4c, Additional
file 2 and Additional file 3). Scanning Electron Mi-
croscopy (SEM) also demonstrates fewer and abnor-
mal cilia in multi-ciliated epidermal cells (Additional
file 1: Figure S4).
However, mapping the grinch mutation has been diffi-

cult from the start. grinch is a background mutation in
X. tropicalis, identified in numerous unrelated animals
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from different labs. They all cause the same edema
phenotype and based on complementation testing are at
the same loci. This and the fact that the phenotype fol-
lows simple Mendelian inheritance suggest a mutation
at a single gene locus, with the possibility of more than
one mutant allele. Furthermore, preliminary mapping
linked the grinch mutation to a 10 cM gap in the meiotic
map on chromosome 10 (Figure 4a) [39]. Scaffolds span-
ning the interval were unknown in the v4.1 assembly,
making traditional positional cloning difficult.
We employed exon capture with BSA to identify

linked scaffolds. We identified nine scaffolds in v4.1 that
appeared linked to this locus (Figure 2d). Aligning our
exome sequences with v7.1 scaffolds, we demonstrated
linkage to chromosome 10, consistent with our previous
mapping. We also found linkage to scaffold 29 and a por-
tion of chromosome 7, which indicates a misassembly
(Figure 2e). Of note, the homozygosity signal in the
grinch mutant pools was lower than for ruby (see below).
We next sought to validate these scaffolds as linked

to the grinch locus by meiotic mapping on a panel of
mutant embryos. This again highlights the power of exon
capture/BSA sequencing. With thousands of newly iden-
tified SNPs, some of which were RFLPs, we used meiotic
mapping to create our own local assembly and fill the
gap containing the grinch locus (Figure 4a). We success-
fully amplified 14/17 SNPs/RFLPs and 12 of them (86%)
had the expected polymorphism. Fine mapping revealed
that the interval containing the mutation is at the ends of
scaffold 148 and 304 (v4.1). Both scaffolds share the
ccdc40 gene suggesting that either these two scaffolds are
overlapping or are adjacent with a local gene duplication.
In the v7.1 genome, ccdc40 is triplicated on three differ-
ent scaffolds, chromosome 3, scaffold 29, and scaffold
608 (Figure 4a). In addition, one other gene, ribosomal
protein L38, fell within our genetic interval. The other
v4.1 scaffolds (176, 282, 317, 796, 973 and 1714) indi-
cated by our exon capture/BSA analysis (Figure 2d) are
all assembled into scaffold 10 in v7.1. Therefore,
although not tested by fine mapping, they are all likely
linked to the mutation.
ccdc40 in X. tropicalis is an 18 exon, 3033 bp tran-

script. Mutations in CCDC40 were recently found in
patients with Primary Ciliary Dyskinesia [40,41]. SEM
and Transmission Electron Microscopy (TEM) images of
grinch cilia show similar microtubule displacement as
well as shorter and fewer cilia consistent with the human
disease [40] (Additional file 1: Figure S4). To assess
alterations in the transcript, we analyzed pools of mutant
or wt embryos and performed RT-PCR using gene spe-
cific primers within the 5’ and 3’ UTR regions. We then
cloned and sequenced the PCR products. Overall, 20/21
clones from mutants have open reading frames that
lead to truncated proteins. The remaining clone has a
deletion of three consecutive amino acids (Figure 4b
and Additional file 1: Figure S5). In the WT pool, which
includes WT embryos as well as heterozygote carriers,
17/19 of the clones are WT. Of the two others, one has a
premature stop codon and the other an internal deletion,
which are both found in the mutant transcripts.
It is interesting to note that we found heterozygous

SNPs in the mutant transcripts, suggesting two different
mutant alleles (Additional file 1: Figure S5). This was
also confirmed in exon capture sequence and may
explain the relatively low homozygosity ratios seen in
Figure 2d,e (see Discussion).
Within the 21 mutant transcripts cloned (Figure 4b),

we found several different mutations, most of which
show features of aberrant splicing leading to frameshifts
and premature stop codons (Additional file 1: Figure S5).
17/21 of the clones (1–3, 6,7, 10–21) suggest a splicing
defect between exons 2 and 3, but neither genomic
sequencing nor the exon capture data elucidated any
obvious mutations in the splice acceptor/donor sites
flanking or within intron 2. grinch clones 4 and 5 (also
10, 11, 13, 14, 16–19) retain intron 9 although again, we
detect no mutations in the genomic or exon capture
sequences (Additional file 1: Figure S5b). Clones 8 and 9
have a deletion of 88 bp within exon 9, whether this is
due to aberrant splicing is uncertain. We consider the
1 bp insertion in clone 9 to be a PCR and sequencing
artifact since it occurs after a string of “A” nucleo-
tides and has not been detected in any other clones
(Additional file 1: Figure 5b). Nevertheless all the mutant
transcripts for ccdc40 are abnormal compared to wildtype.
To confirm ccdc40, we attempted to rescue the cilia-

driven epidermal fluid flow using mRNA microinjection.
We injected WT ccdc40 mRNA along with a GFP tracer
into one cell at the two-cell stage embryos. We assayed
for cilia-driven flow over the surface of the embryo
using colored beads and then genotyped the embryos.
ccdc40 mRNA injection rescued the severe reduction in
epidermal flow in grinch mutants only on the injected
side in 51/55 genotyped mutants (Figure 4c and
Additional file 4 and Additional file 5).
Unfortunately, identifying the exact nucleotides mutated

in grinch has not been possible despite exon capture or
genomic sequencing. It is not clear if the mutant variants
are due to more than one allele or a single allele that
causes multiple abnormalities in splicing. However, taken
together, mapping, transcript sequencing, imaging of cilia,
and rescue are all consistent with ccdc40 mutation(s)
causing the grinch phenotype. Given the complexity of the
locus, exon capture/BSA was essential to identify this gene.

Discussion
Exon capture sequencing has transformed genetic ana-
lysis in humans and has demonstrated utility in mice.
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However, to date, exon capture HTS has been scarcely
reported in other genetic models [42,43] despite the sig-
nificant need to facilitate cloning of mutants identified
in forward genetic screens. Very recently, WGS with
BSA has identified causative mutations in both zebrafish
and mouse validating HTS and BSA as an effective
method [4,5]. For smaller genomes, such as yeast, worms,
flies or Arabidopsis WGS is probably cost efficient, there-
fore there is no need to pre-capture the exome. However,
in model systems with large genomes, currently the cost
of WGS remains relatively expensive compared to exome
sequencing, especially for routine use in the large num-
bers of mutants. In addition, to maximize the power of
BSA, depth of sequencing is useful to accurately identify
SNPs especially given the challenges of unambiguously
mapping short read sequences and sequence errors. In
our mapping intervals, we validated ~90% of the SNPs
identified by exon capture/BSA. Finally, exome sequen-
cing is high-yield since most disease mutations are in
exons [44].
Despite the advantages of exome sequencing, a

number of barriers exist including unpolished genome
assemblies, partial genome annotation, incomplete or
poor characterization of variations in strains, and incom-
plete inbreeding of strains. As a consequence, deciphe-
ring causative mutations from the sea of variants within
an exome can be a significant challenge. There are also
limits to exon capture sequence regardless of genome
quality or model organism. Exon capture sequencing
only identifies exons and nearby flanking sequence so
causative mutations deep in introns, promoters, or
enhancers can be missed. Also, insertions, deletions, and
splice variants may be missed by exon capture sequence
due to limitations in alignment software and short read
sequencing. In each of these cases, linkage information
can ameliorate these problems.
The identification of the causative mutation in ruby

was rapid and the significant advantage of exon capture/
BSA sequencing was that many variants could be elimi-
nated, thousands of genetic markers identified, and a
relatively narrow interval analyzed for a causative muta-
tion within the exon capture sequence. No preliminary
mapping is necessary and the meiotic interval can be
narrowed based on available meioses.
In the case of grinch, positional cloning was difficult.

The linked interval was not present in the meiotic map
and misassembled in both versions of the genome. Exon
capture/BSA identified a large number of markers and
scaffolds within the gap that allowed us to assemble the
grinch locus.
However, we observed some heterozygosity at the

grinch locus, suggesting more than one mutant allele.
An additional allele could have been introduced since
grinch was identified in numerous unrelated animals
from different labs. They all cause the same edema
phenotype and based on complementation testing are at
the same loci. Of note, the homozygosity ratios are
lower for grinch compared to ruby. The presence of
another mutant allele could explain the lower homozy-
gosity signals since each allele may be associated with
different SNPs and therefore appear heterozygous. Alter-
natively, the mutant transcripts could be due to a single
allele causing multiple abnormalities in splicing.
Regardless, all mutant transcripts had either an internal

deletion or a frameshift leading to a premature stop
codon. Alignment with other species shows that the
C-terminus of the protein is most conserved, and we
hypothesize that these truncated proteins will be non-
functional. Furthermore, microinjection of the WT ccdc40
mRNA into mutant embryos was sufficient to rescue
cilia-driven epidermal flow. Thus, despite the complexity
at the grinch locus, which would have made traditional
positional cloning very difficult, using exon capture/BSA,
we were able to identify ccdc40 mutations as causative
of the grinch phenotype.
Additionally, because exon capture/BSA is independent

of the genome assembly, it can detect misassemblies.
In fact, WGS/BSA experiments have identified unex-
pected linkage across disparate parts of the genome [4,5].
The cause was not further investigated in these studies
so genome misassembly or inaccurate SNP calling re-
main a possibility. In our study, we found evidence of
misassembly in our exon capture/BSA data for both ruby
and grinch and validated these misassemblies by meiotic
mapping. Once identified by exon capture/BSA, we can
use meiotic mapping to reassemble the genome and
continue fine mapping.
Conclusions
Based on our study, we propose the following method to
rapidly clone causative mutations in model systems with
large genomes, such as Xenopus, zebrafish, and mice.
First, an exon capture array needs to be generated using
exons from a draft genome assembly and/or transcripts
from ESTs, mRNA full-length sequencing, or transcrip-
tome studies using next generation sequencers. Second,
exon capture sequencing of a wildtype pool is necessary
if SNPs are not well characterized in the model system.
As more individuals in a strain are sequenced, wildtype
sequencing becomes less essential. Third, exon capture
sequencing in a mutant pool is done to identify regions
of LOH. Exon capture sequence can then be analyzed
for deleterious mutations in those regions. However, in
more challenging cases where the LOH interval is large
or complex, we recommend validating linkage by ad-
ditional fine mapping to narrow the meiotic interval fur-
ther or reassemble the locus. Lastly, once a candidate
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gene is identified, an independent validation is necessary
such as a second allele, MO phenocopy, or rescue.
For model systems with large and unpolished genomes,

exon capture HTS with BSA can be critical for identifying
causative mutations because so many genomic resources
can be obtained inexpensively. The cost of HTS is con-
tinuously decreasing and by using multiplexing techni-
ques like barcoding, a single Illumina sequencing lane
can generate sufficient sequence at considerable depth
for multiple mutants. This represents a considerable cost
savings compared to WGS. Furthermore, exon capture
with BSA identifies a host of SNPs, facilitates local ge-
nome assembly, and discovers candidate mutations. This
can be done very quickly (weeks) compared to the labo-
rious methods such as chromosome walking across gaps.
For model systems with polished genomes, bulk segre-

gant analysis and HTS can rapidly identify candidate
genes within a narrow locus all in a single sequencing
step. Finally, developing methods to rapidly and inex-
pensively clone mutants strongly encourages additional
forward genetic screens to discover phenotypes and gene
mutations that will yield fascinating new insights.

Methods
Frog husbandry
X. tropicalis were housed and cared for in our aquatics
facility according to established protocols that were
approved by our local IACUC.

Mutant identification
We identified both grinch and ruby in a forward genetic
screen using gamma-ray irradiation as a mutagen. We
immediately recognized that grinch was in the back-
ground of our N strain since multiple, even unmuta-
genized animals generated the same grinch phenotype
[24]. Other labs also identified a grinch phenotype (Lyle
Zimmerman, Robert Grainger, personal communication),
which based on complementation testing were muta-
tions at the same loci and at the time thought to be
identical alleles.
ruby was identified from a single mutagenized founder

in the N strain. Although the ruby phenotype was simi-
lar to grinch, complementation testing revealed that
they were at different loci. ruby and grinch animals
were crossed to our mapcross strains, ICB or PopA
respectively for analysis.

DNA extraction for exon capture
Either 50 mutant or wildtype tadpoles at stage 42 were
collected in 15 ml of lysis buffer (20 mM Tris pH 7.5-8.0,
100 mM NaCl, 20 mM EDTA, 1% SDS) supplemented
with 200 mcg/ml proteinase K. Tube was rotated end
over end at 55°C overnight. A phenol extraction was fol-
lowed by a phenol:chloroform extraction, and then the
DNA was precipitated with isopropanol, washed with
70% ethanol, and resuspended in TE buffer. DNA was
processed for exon capture sequencing according to
established protocols [10].

Exon capture and sequencing analysis
We generated an exon capture array by identifying
all exons in gene models present in the X. tropicalis
v4.1 genome [35]. We also analyzed full-length mRNA
sequences and EST clusters to see if they mapped to the
genome. Unmapped sequences (due to gaps in the ge-
nome) were also added to the exon capture array. Roche-
Nimblegen technical support generated probes against
these targets (gene models and unmapped transcripts)
using their in-house proprietary software and then
manufactured the arrays.
For ruby, we generated 1 lane of 100 bp paired-end

Illumina GAIIx sequencing data for each wildtype (WT)
and mutant (MUT) pool generating 36.1 M pairs of
reads for WT and 34.0 M for MUT. For grinch, we ge-
nerated 2 lanes of 100 bp paired-end Illumina GAIIx
data for each pool with 68.2 M pairs of reads for WT
and 67.2 M for MUT. The Illumina reads were first
trimmed based on their quality scores using Btrim [45].
We used a cutoff of 25 for average quality scores within
a moving window of 5 bp. A minimum acceptable read
length is 25 bp. Other parameters for Btrim were set at
defaults. After the quality trimming, 96% of reads were
kept for ruby WTand 89% for MUT. For grinch, the trim-
ming passing rates were 91% and 93% for WT and MUT
respectively. The trimmed reads were mapped to the refer-
ence genomes (v4.1 [accession number AAMC00000000]
and v7.1 [accession number AAMC02000000] available
at www.xenbase.org) using Burrows-Wheeler Aligner
with default parameters [46]. The mapping results were
converted into bam format first and then pileup format
using samtools [47].
Using the two pileup files from WT and MUT as

inputs, we created a script to analyze the alleles and
their frequencies along each position of the genome with
mapped reads. At each position, a minimum of 10 mapped
reads in both WT and MUT pools were required for ana-
lysis. We identified a putative SNP if (i) the major allele
frequency (MAF) in reads of WT is in the range of
50% and 75%; or (ii) WT major allele differs from
that of MUT.
For all putative SNPs, we counted the number of

homozygous SNPs (nh) in the MUT pools where MAF ≥
90%. Then the homozygosity ratio (r) of homozygous
SNPs in a region is calculated as r = nh/nt, where nt is the
total number of SNPs in the same region. For reference
genome v4.1, we used each scaffold as a region. For refer-
ence genome v7.1, since the scaffolds are much longer,
non-overlap sliding windows with a size of 0.5 Mb was

http://www.xenbase.org
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used for a region. Detailed protocols and scripts
for mapping sequence data and calling SNPs is avail-
able at our website (tropicalis.yale.edu/geneticResources/
geneticResources_main.html), and SNP data is available
per request.
Mapping
RFLP markers were designed in regions with LOH.
All the SNPs in these regions were evaluated with WAT-
CUT (http://watcut.uwaterloo.ca/watcut/watcut/template.
php) to generate primers flanking SNPs that create or
abolish a restriction site (RFLP markers). Primers were
designed to amplify at least 100–250 bp flanking a SNP so
we could resolve genotypes on a simple 4% agarose gel. A
list of all the primers used is described in Additional file 1:
Table S1. PCR with each pair of primers was performed in
96-well plates using genomic DNA from a large panel of
individual mutant embryos and WT embryos as controls.
PCR conditions were as follows: 94°C for 2 min, followed
by 39 cycles at 94°C for 10 s, 58°C for 30 s and 72°C for
30 s. Final extension was at 72°C for 5 min. PCR products
were digested with the corresponding enzyme either 4 h
or overnight at 37 º C and run in 4% 50:50 regular agarose
(American Bioanalytical): NuSeive agarose (LONZA) gels.
Preliminary mapping of grinch was done using primers

designed around Simple Sequence Length Polymor-
phisms (SSLPs) as identified by the meiotic map. PCR
conditions were the same as above. Primers 148E4,
148 M1, s304-875 K, s304-219 K, 560E1, and 560B2 were
designed around SSLPs with a florescent 5’-m13 tail on
the Forward primer [48]. PCR was done in 2 steps. Step
1: Using 5’-m13-F primer and R-primer; PCR conditions
were 94°C for 2 min, followed by 34 cycles at 94°C for
10 s, 58°C for 30 s and 72°C for 30 s, and final extension
for 5 min at 72°C. Step 2: Using NED, PET, VIC, or
6-FAM-m13-F primer and original R-primer and 1/50×
concentration of PCR product from Step 1; PCR condi-
tions were 94°C for 2 min, followed by 25 cycles at 94°C
for 10 s, 52°C for 30 s and 72°C for 30 s. Final extension
for 5 min at 72°C. PCR products were analyzed using
fragment analysis at Yale’s DNA sequencing facility.
Whole mount in situ hybridization (WMISH)
We obtained clones from Open Biosystems (Thermo
Scientific). The DNA templates were in vitro tran-
scribed with T7 High Yield RNA Synthesis Kit (E2040S)
from New England Biolabs to synthesize digoxigenin-
labeled antisense probes. Pronephric markers clones
were obtained from Open Biosystems: atp1a1, IMAGE:
6988026; slc7a8, IMAGE: 53828775: slc5a9, IMAGE:
5308256; smp-30, IMAGE: 6999181; hnf1-β, TNeu141k07;
cdh16, TNeu004i09. Whole mount in situ hybridization
was performed according to the standard protocol with
minor modifications [49,50]. We stained embryos using
BM purple at room temperature or 4°C depending on
each probe. If embryos needed to be genotyped after
WMISH, fixation after staining was done with 4% para-
formaldehyde instead of Bouin’s fixative to preserve
DNA. After bleaching and equilibration in 100% glycerol,
embryos were examined and photographed.

In vitro fertilization and microinjections
In vitro fertilization and microinjection were done as
previously described [51] and protocols available on our
website (http://tropicalis.yale.edu). Embryos were injected
either at one or at two cell stage with 0.5 or 1 ng of MO
solution or at 2 cell stage with up to 500 pg ccdc40
mRNA. Ccdc40 mRNA was co-injected with 100 pg GFP
mRNA. After injections, embryos were left in 1/9X MR +
3% Ficoll for 1 hr and then transferred to 1/9X MR sup-
plemented with 50 μg/ml of gentamycin. Embryos were
raised at 22-27°C until the appropriate stage for fixation
or evaluating phenotype. Pax8 translation blocking MO
was obtained from Genetools, LLC. The sequence of the
MO was: 5’ ATGCTGCTGTTGGGCATCTTCCTCC 3’.
MO was co-injected with Alexa 488 dye (Invitrogen) as a
lineage tracer.

RT-PCR and cloning strategy
RNA was extracted from WT or from mutant embryos
using Trizol solution according to the manufacturer's
instructions (Invitrogen). A 1.5 μg aliquot of RNA was
used to perform RT–PCR with SuperScript III Reverse
Transcriptase (Invitrogen) using a gene specific primer
located in the 3’UTR (UTR3-1R, 2R or 3R, Additional
file 1: TableS 2) of ccdc40 transcript according to the
manufacturer’s instructions. PCR was performed using
oligonucleotides in the 5’UTR or at beginning of the
transcript (Additional file 1: Table S2). PCR was done
with Phusion High-Fidelity DNA Polymerase (NEB) and
conditions were as follows: 98°C for 2 min, followed by
39 cycles at 98°C for 15 s, 62°C for 30 s and 72°C for
3.5 min. Final extension was at 72°C for 5 min. Samples
were then incubated with Taq polymerase for 30 min
at 72°C to incorporate A overhangs for TOPO TA clon-
ing (Invitrogen) and sequenced with several primers
(Additional file 1: Table S2).

Epidermal cilia-driven flow videos
A 6 cm petri dish was coated with 1% agarose. A small
wedge shaped hole was cut into the agarose to position
embryos with dorsal side up. 1 μL of 1/10× solution of
5 μm diameter polystyrene beads (Bangs Laboratories)
were injected dorsally. Movies were captured using
Canon EOS 5D Mark II DSLR camera.

http://watcut.uwaterloo.ca/watcut/watcut/template.php
http://watcut.uwaterloo.ca/watcut/watcut/template.php
http://tropicalis.yale.edu
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Additional files

Additional file 1: Additional file Figures 1–5 and Additional files
Tables S1 and S2.

Additional file 2: Movie 1. Epidermal cilia driven flow imaging of
Wildtype embryos.

Additional file 3: Movie 2. Epidermal cilia driven flow imaging of
grinch mutant.

Additional file 4: Movie 3. Epidermal cilia driven flow imaging of
rescued grinch mutant embryo (left side injected).

Additional file 5: Movie 4. Epidermal cilia driven flow imaging of
rescued grinch mutant embryo (right side injected).
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