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Abstract

Background: To study the role of microRNA (miRNA) in the regulation of Chinese hamster ovary (CHO) cell growth,
gPCR, microarray and quantitative LC-MS/MS analysis were utilised for simultaneous expression profiling of miRNA,
mRNA and protein. The sample set under investigation consisted of clones with variable cellular growth rates
derived from the same population. In addition to providing a systems level perspective on cell growth, the
integration of multiple profiling datasets can facilitate the identification of non-seed miRNA targets, complement
computational prediction tools and reduce false positive and false negative rates.

Results: 51 miRNAs were associated with increased growth rate (35 miRNAs upregulated and 16 miRNAs
downregulated). Gene ontology (GO) analysis of genes (n=432) and proteins (n=285) found to be differentially
expressed (DE) identified biological processes driving proliferation including mRNA processing and translation.
To investigate the influence of MIRNA on these processes we combined the proteomic and transcriptomic data
into two groups. The first set contained candidates where evidence of translational repression was observed
(n=158). The second group was a mixture of proteins and mMRNAs where evidence of translational repression was
less clear (n=515). The TargetScan algorithm was utilised to predict potential targets within these two groups for
anti-correlated DE miRNAs.

Conclusions: The evidence presented in this study indicates that biological processes such as mRNA processing
and protein synthesis are correlated with growth rate in CHO cells. Through the integration of expression data from
multiple levels of the biological system a number of proteins central to these processes including several hnRNPs
and components of the ribosome were found to be post-transcriptionally regulated. We utilised the expression
data in conjunction with in-silico tools to identify potential miRNA-mediated regulation of mRNA/proteins involved
in CHO cell growth rate. These data have allowed us to prioritise candidates for cell engineering and/or biomarkers
relevant to industrial cell culture. We also expect the knowledge gained from this study to be applicable to other
fields investigating the role of miRNAs in mammalian cell growth.
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Background

Our understanding of the role microRNAs play in fun-
damental biological processes in both plants and animals
has increased dramatically over the last decade [1]. Since
the discovery of miRNA in C.elegans [2], the miRBase
data repository has expanded to hold sequence data
from over 21,000 mature miRNAs across 168 species
[3]. These short, highly conserved RNA molecules (~22
nucleotides) form a layer of post-transcriptional control
of gene expression, generally repressing translation [1]
(via translational inhibition, transcriptional degradation
and in some instances mRNA deadenylation [4]) or in
rare cases actually enhancing translation [5]. Thus far,
miRNAs have been implicated in a broad range of pro-
cesses from cell cycle control [6] to apoptosis [7]. In
addition, the effect of miRNAs on diseases such as cancer
[8] and diabetes [9] has been intensively studied.

The complexity of miRNA target recognition remains
a significant challenge to researchers. For instance, a sin-
gle miRNA is estimated to target an average of 100-200
mRNAs [10] while a single mRNA transcript can be tar-
geted by hundreds of miRNAs [11] and multiple miR-
NAs can cooperatively repress a range of targets [12].
The laborious experimental techniques required to con-
firm interaction between a miRNA and mRNA have
necessitated the use of in-silico target prediction to pri-
oritise targets for wet-lab confirmation and to determine
the potential function of a miRNA. The most widely
applied algorithms including miRanda [13], Pictar [10]
and TargetScan [14] use a combination of sequence
complementarity of a transcript to a conserved region
at the 5" end of the miRNA spanning position 2 to pos-
ition 7 (known as the “seed” region), thermodynamic
feasibility of hybridisation and evolutionary conservation
[1]. Until recently, active animal miRNA recognition sites
were thought to be present solely within the 3" UTR of
an mRNA. However, recent evidence has suggested that
sites also exist in the 5" UTR [15], within the coding se-
quence [16], and in some cases these sites may be present
in multiple locations within a transcript. Target predic-
tion algorithms are undoubtedly valuable tools to
researchers in the field providing a rapid appreciation of
the potential processes impacted by a particular miRNA
and prioritising potential direct targets for validation
assays. Quantitative evaluation of algorithm performance
has thus far proved difficult due to the limited number of
experimentally confirmed targets. Previous studies have
yielded less than encouraging false positive and false
negative rates resulting from the use of algorithms
[17,18] prompting an increasing focus on combining
multiple expression profiling datasets with in-silico
target prediction [19].

The Chinese hamster ovary (CHO) cell has been utilised
extensively for the last 20 years in the biopharmaceutical
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industry and has become the cell type of choice for pro-
duction of recombinant proteins for medical applications
due to safety of use, rapid growth characteristics and the
ability to secrete large quantities of correctly folded
proteins. The majority of industrial advances have thus
far stemmed from improvements in cell culture media,
vectors and the design of bioreactors [20]. Several re-
search groups have in recent years been interested in ma-
nipulating CHO at the molecular level to improve protein
production efficiency and create diagnostic tools to moni-
tor manufacturing processes. The recent publication of
the CHO genome [21] along with sequence from similar
initiatives [22,23] promises to facilitate analyses at all
levels of the CHO biological system not only through
direct analysis of genomic sequence but also through
the improvement of analytical platforms such as micro-
arrays and mass spectrometry.

Since the first report of altered miRNA expression in
CHO as a result of modifying bioprocess conditions [24],
the number of publications in this area has increased
steadily. The attraction of miRNA based cell engineering
arises from the potential of miRNAs to alter an entire
pathway or indeed pathways, to enhance industrially
beneficial phenotypes. Various studies have focussed on
miRNA sequence analysis, determining homology to
other species and location of genomic loci via next gener-
ation sequencing technologies [25-27]. To date, miRNAs
have been associated with several important bioproduc-
tion phenotypes including growth rate [28], productivity
[29] and apoptosis [30]. In this study, we elucidate new
and expand existing knowledge on the contribution of
miRNA-mediated regulation to CHO cellular growth
rate. Our previous work has shown that building CHO
cell density to a high level in the bioreactor is intimately
linked to the final volumetric titre of product and can in
some cases be more important than the intrinsic prod-
uctivity rate [31].

The experimental design and stringently controlled
panel of samples used here ensures that the data pre-
sented in this study are applicable to the investigation of
mammalian cell growth beyond the bioprocessing field.
Firstly, the cells under investigation were selected from
the same clonal population following a process of
repeated passaging and monitoring of growth rate in
order to minimise non-growth related variation. A set of
these sister clones spanning a continuous range of low
to high growth rates was selected for analysis. The second
crucial aspect of our approach was to measure expression
of the transcriptome (mRNA & miRNA) and proteome in
parallel. While the number of studies combining miRNA,
protein and mRNA expression data are limited in com-
parison to those comprising of two data types (ie.
miRNA & mRNA or miRNA & protein), it is evident that
the use of all of 3 of these data types can facilitate the
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identification of direct miRNA targets [32] and enhance
our understanding of the biological role of miRNAs [33].
Similar to those studies, we analyse the expression data in
conjunction with miRNA target prediction algorithms in
order to decrease false positives, reduce the effects of
experimental noise and ultimately to increase the likeli-
hood of finding direct miRNA targets.

It is intended that this work will contribute to the
understanding of those biological processes driving
mammalian cell growth as well as supporting other
researchers in the selection of candidates for miRNA-
target confirmation assays.

Results

The growth rates of the final sample set spanned a range
of 0.011 to 0.044 hr' with mean productivity = 24 (+ 3)
pg protein/cell/day. Consistent behaviour in the samples
subjected to expression profiling in terms of growth rate
and productivity was ensured by monitoring over 40
passages. By choosing sister clones derived from the
same transfection pool with similar recombinant protein
production rates and differing only in growth rate we
sought to eliminate noise and expose those variations
related to the proliferation phenotype. To prioritise miR-
NAs, mRNAs and proteins associated with cell growth,
we separated the dataset into 15 “fast” (= 0.025 h™") and
15 “slow” (< 0.023 h™") samples. Note: 3 outlying “slow”
samples (biological replicates) within the LC-MS/MS
dataset were removed following quality control using
principal components analysis (data not shown). To
equalise the sample numbers on both sides of the prote-
omic differential expression analysis a single fast grow-
ing clone (3 biological replicates) was selected at
random and removed leaving 12 fast versus 12 slow
samples (Additional file 1).

Figure 1 shows an overview of the data analysis strat-
egy used in this study. We began by prioritising candi-
dates with respect to growth rate from the miRNA,
mRNA and proteomic datasets in isolation. Enrichment
analysis against GO was conducted using the DAVID
interface for the resulting DE mRNA and protein lists to
determine if any biological processes were overrepre-
sented. The availability of both mRNA and protein data
acquired in parallel is particularly advantageous in iden-
tifying targets undergoing potential miRNA translational
repression.

Prior to target prediction against the DE miRNA list,
we separated protein and mRNA targets into two
groups. “Group A” contains those targets where a degree
of post-transcriptional regulation was observed (possibly
via miRNA mediated translational repression). The pro-
teins in Group A were DE between the fast and slow
clones, their respective mRNAs were expressed above
the microarray detection threshold but no change in
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mRNA expression was observed. The second group of
candidates, referred to as “Group B” were comprised of
(1) DE proteins where the probeset was under the detec-
tion threshold or not present on the chip, (2) DE
mRNAs where the corresponding protein was not iden-
tified within the fraction analysed by LC-MS/MS and (3)
candidates where differential expression was observed at
both the mRNA and protein level (Figure 1). It is there-
fore likely that Group B contains a mixture of targets
that could be undergoing miRNA translational repres-
sion, transcript destabilisation or indeed alteration due
to non-miRNA-mediated processes. Group B candidates
were considered of lower priority than Group A not be-
cause we expected a lower proportion of predicted
miRNA targets, but because of incomplete evidence at
the protein and mRNA levels or both the protein and
mRNA were DE. The final stage in analysis involved in-
silico target prediction with TargetScan 6.1 [14] for
Groups A and B. Each protein/mRNA from the two
groupings was compared with the predicted targets of
anti-correlated DE miRNAs.

miRNA expression levels are associated with variations in
the rate of CHO cell growth

The expression of 667 miRNAs was measured across a
group of CHO cell clones with varying rates of cell
growth. Differential expression analysis revealed 93 miR-
NAs (76 upregulated & 17 downregulated) that exhibited
statistically significant alternations in expression between
the fast and slow growing groups. We further prioritised
these DE miRNAs through calculation of the Pearson
correlation coefficient (PCC) between ACt values and
the sample growth rate. Only those miRNAs with a
PCC < -04 or = +0.4 were retained for further analysis
(Additional file 2). In total, we identified a high priority set
of 51 miRNAs that were both DE between fast and slow
growing CHO cells and exhibited a degree of correlation
with growth rate across the set of clones. The expression
of 16 of these miRNAs diminished when the growth rate
increased, while the expression of 35 miRNAs increased
as growth rate increased (Figure 2A).

Of those miRNAs found to be DE in this study, a
number have been associated with cellular growth previ-
ously [34-40]. Several of these upregulated miRNAs
form part of the miR-17-92 cluster (e.g. miR17, miR20a,
miR20b, miR18a, miR18b and miR106a), a well studied
group of miRNAs linked to cancer [41]. It has been
shown that c-myc [42] and N-myc [43] directly activate
the mir-17-92 cluster, while in contrast repression of the
cluster by p53 has been demonstrated [39]. CHO is a
highly proliferative cell line in general having been
cultured in vitro for over 50 years [44] and previous
studies have shown that the miR-17-92 cluster is highly
expressed [26]. The data presented in this study
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Figure 1 Data analysis overview. Stage 1: Differential expression analysis

analysis of both groups against miRNAs DE in the opposite direction.

Enrichment analysis using DAVID to determine overrepresented GO biological processes in the DE mRNA and protein lists. Stage 3: mapping of

DE proteins to microarray probesets, output of two target groups; Group A contains potential targets of miRNA translational repression (protein

DE without mRNA change), Group B contains translation repression and/or transcriptional degradation targets (contains DE mRNA & DE proteins
where no microarray information was available/probeset was below detection level or both mRNA and protein were DE). Stage 4: TargetScan

between “fast” and “slow” groups for each of the 3 datasets. Stage 2:

indicates a relationship between increased miR-17-92
cluster member expression levels and rapidly proliferat-
ing CHO cells. Several miRNAs, including miR-204,
miR-338-3p, miR-497, miR-30e and miR-206 are down-
regulated as growth rate increases in agreement with in-
dependent studies in other systems [38,45-47]. miR-451
(downregulated at higher growth rates in this study) has
been shown to inhibit growth and induce apoptosis
[37,48]. Godlewski et al. demonstrated that in glioma
cells miR-451 expression is correlated to glucose levels
and upon glucose depletion a downregulation of miR-
451 is observed along with slower proliferation and
increased survival [35]. In contrast, downregulation of
miR-451 in CHO is observed here at higher growth
rates, exemplifying the previously recognised cell-
specific nature of miRNA expression.

Proteomic and transcriptomic profiling reveal several
overrepresented biological processes related to mRNA
processing and translation
285 non-redundant proteins (180 upregulated and 105
downregulated) were found to be DE between fast and
slow growing CHO cell clones (Additional file 3). Following
differential expression analysis of the mRNA data we identi-
fied 432 DE non-redundant annotated transcripts (229
upregulated and 203 downregulated) (Additional file 4). 44
proteins were also dysregulated at the mRNA level (29
upregulated and 15 down regulated, corresponding to 50
DE probesets (Figure 2C)). Correlation between both
datasets was observed for 11 of the 44 proteins in this
group (9 upregulated and 2 downregulated).

GO biological processes found to be overrepresented
within the DE protein list included translation, ribosomal
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Figure 2 miRNA DE analysis heatmap and mRNA-proteomic mapping. miRNA expression profiling identified 51 miRNAs that were DE and
correlated to sample growth rate. (A) HCA analysis confirmed that those DE and correlated genes separate the samples into fast and slow groups
(red indicates diminished miRNA expression and green indicates increased miRNA expression). (B) 260 DE proteins mapped to one or more
probesets. (C) 196 probesets corresponding to 158 DE proteins expressed above the detection threshold and unchanged at the mRNA level

biogenesis and energy metabolism (Table 1 and Additional
file 5). Analysis of DE mRNAs revealed similar categories
to that of the protein list (e.g. RNA processing and RNA
splicing) and also the enrichment of mitotic cell cycle
genes (Table 2 and Additional file 5). The presence of
GO biological processes including translation and mRNA
processing highlighted here agree with reports that the

Table 1 Protein enrichment analysis

GO ID GO Term P-value BH adj.

0006414 translational elongation 757x10%%  121x10°%8
0006412 translation 158x10%  1.26x107°
0006091 generation of precursor 485x107°  236x10"°

metabolites and energy

0055114 oxidation reduction 129x10"  531x107"?
0009060  aerobic respiration 732x101° 233x107°
0006396  RNA processing 3.20x10™" 851x10%
0006732 coenzyme metabolic process  5.77x10"" 131x10%8
0045454  cell redox homeostasis 104x107°  2.07x107%
0008380  RNA splicing 1.04x107° 1.85x10°%8
0045333 cellular respiration 280x107°  446x10°®

availability of cellular translation machinery to process
mRNA and produce the proteins required to generate
new biomass is at least partly responsible for variation in
cellular growth rate [49,50]. For instance, the upregula-
tion of numerous ribosomal proteins (RP) was observed
(e.g. RPL14, RPS15 and RPL15). Several previous studies
have demonstrated the central role of RPs in processes
beyond translation [51] including the regulation of cell
growth and division rates [52]. RP expression has also
been shown to be modulated by oncogenes (e.g. c-Myc
[53]) and tumour suppressor proteins (e.g. p53 [54]). The
translation of these proteins and their role in ribosome

Table 2 mRNA enrichment analysis

GO ID GO Term P-value BH adj.
0000278 mitotic cell cycle 2.38x10%° 0.020
0006396 RNA processing 5.18x10% 0022
0016071 mMRNA metabolic process 403x10% 0023
0008380 RNA splicing 9.95x10%° 0.028
0034621 cellular macromolecular 8.58x10% 0.029
complex subunit organization
0006397 MRNA processing 179109 0030

Top 10 most significantly enriched GO categories for DE proteins. See
Additional file 5 for complete DAVID output.

Enriched GO categories for DE mRNAs. See Additional file 5 for complete
DAVID output.
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biogenesis is known to be controlled through a variety of
post-transcriptional and post-translational factors [55].

mRNA processing and splicing processes were also
found overrepresented within both the protein and tran-
script differential expression lists. Alternative splicing is
understood to represent an important stage at which
regulation of translation can be mediated. Furthermore,
RNA splicing is now recognised as a central step in gene
expression whereby virtually all precursor mRNAs
(pre-mRNAs) undergo alternative splicing, resulting in
a complex level of expression regulation [56]. Specific
splicing factors are known to be important for cell
cycle control, for instance multiple splice variants of
the p53 tumour suppressor are DE in cancer [57]. We
observed the post-transcriptional upregulation of
YBX1/YB1 in rapidly growing CHO cells; this tran-
scription factor is associated with cancer susceptibility
[58] and known to play a role in splice site selection [59].
Previous studies reporting an increase or decrease in
tumour cell growth upon over or under-expression of
this protein respectively [60] are in-agreement with the
evidence reported here.

In recent years, various studies have demonstrated the
role of RNA-binding proteins (RBPs) in the regulation of
groups of transcripts by shuttling them efficiently
through processes such as mRNA splicing, transport and
ultimately translation [61]. This post-transcriptional
regulation of multiple mRNAs, termed “RNA regulons”,
is thought to allow the cell to respond rapidly to envir-
onmental changes. One class of RBPs, known as
hnRNPs, interact with large numbers of pre-mRNAs to
form hnRNP-RNA complexes containing combinations
of at least 20 hnRNPs. Further examination of those
RNA processing and splicing GO categories found to be
enriched in this study revealed the presence of multiple
hnRNPs DE at both the protein (e.g. hnRNPM,
hnRNPC, hnRNPAB, and hnRNPK) and mRNA (e.g.
hnRNPD and hnRNPR) level (Additional files 3 and 4).

Separation of DE mRNA and DE proteins into target
Groups A and B

To compare fluctuations in protein abundance with
transcript expression we identified probesets on the array
representing the DE proteins identified by LC-MS/MS.
In the case of multiple probesets targeting an individual
protein, the probeset with the highest expression was
selected to represent that protein. 554 probesets corre-
sponding to 260 proteins were identified (probesets for
25 proteins were absent from the microarray) (Figure 2B).
Group A contained 196 probesets corresponding to
158 unique DE proteins (Figure 2C) where a degree of
post-transcriptional regulation was observed. Group B
was comprised of 515 candidates including DE mRNAs,
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DE proteins where no probeset was available or the
mRNA was undetected and candidates DE at both the
mRNA and protein level. For the 44 Group B targets
where both the mRNA and protein was DE only the pro-
tein data (i.e. direction) was utilised for miRNA target
overlap.

In-silico analysis identifies a number of transcriptomic and
proteomic targets of priority miRNAs

TargetScan was used to determine if any of the proteins
or mRNAs present within Group A (n = 158) or Group B
(n = 515) were predicted to be targeted by anti-correlated
miRNAs. In total, 22 upregulated and 14 downregulated
priority miRNAs were present within the TargetScan
database and utilised for prediction. 41 out of 158 of the
Group A proteins (25.9%) were predicted to be direct tar-
gets of one or more anti-correlated miRNAs (Additional
file 6). A network overview of the TargetScan predictions
for Group A is shown in Figure 3 to summarise the po-
tential interactions. Each protein is represented by a
circular node and each miRNA by a triangular node; a
line connects those proteins and miRNAs predicted to
have an interaction. Target prediction was carried out
for both the upregulated miRNAs vs. downregulated
proteins (Figure 3A) and downregulated miRNAs vs.
upregulated proteins (Figure 3B). For Group B targets
133 of the 515 (25.8%) mRNA/proteins were predicted
to be targeted by one or more oppositely correlated
miRNAs (Additional file 7).

We would not expect all candidates to be predicted
targets of miRNAs for a number of reasons. It is likely
differential expression of mRNA and proteins is occur-
ring due to a variety of non-miRNA related processes.
Furthermore the dysregulation of proteins such as
hnRNPs suggests the likelihood of non-miRNA post-
transcriptional regulation. The design of the TargetScan
algorithm, considered to be amongst the most stringent
methods, limits the numbers of in-silico predicted tar-
gets. The 15 “star” miRNAs found to be dysregulated
and correlated to growth rate in this study could not be
predicted as the TargetScan database does not contain
entries for these miRNAs. In addition the algorithm only
considers target sites within the 3° UTR and therefore
excludes potential target sites within the coding region
or at the 5" end of a transcript [14].

The expression of several members of the miR-17-92
cluster was found to increase as growth rate increased
(Figure 4A). Coinertia analysis (CIA) was carried out on
the 7 TargetScan predicted targets anti-correlated with
miR-17-92 expression to demonstrate the disparity be-
tween mRNA and protein expression across the dataset
without applying subjective DE criteria (Figure 4B). The
two input (protein & mRNA) data matrices for CIA were
comprised of 24 samples for 7 predicted miRNA targets.
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(A)

of the mRNA and protein datasets.

Figure 3 Summary of TargetScan predicted Group A miRNA targets. TargetScan prediction analysis for (A) upregulated (green) and (B)
down (red) miRNAs against post-transcriptionally regulated proteins. The prioritisation of these targets was possible only through integration

The expression profiles of three of these targets at the
mRNA and protein level are shown: DDX5 (Figure 4C),
MAN2A1 (Figure 4D) and CFL2 (Figure 4E). The
mRNA expression of each of the three genes remains
constant as growth rate increases, while protein expres-
sion decreases. The corresponding 3" UTR transcript se-
quence alignment with predicted miRNA seed region
and conservation across human, mouse, rat and CHO is
also shown for each of the three proteins. We also exam-
ined the expression profiles and sequences for those pro-
teins predicted to be targeted by three miRNAs found to
be downregulated as growth increases, miR-338-3p,
miR-204 and miR-206 (Figure 5A). TargetScan predicted
18 proteins to be directly targeted by the 3 miRNAs,
therefore the CIA input data consisted of two matrices
corresponding to 18 mRNAs/proteins across the 24
samples (Figure 5B). Two hnRNP proteins identified

within enriched categories from the GO analysis were
examined in detail. Poly(rC)-binding protein 1 (PCBP1),
also known as hnRNPE], is a predicted target of miR-
338-3p. As can be seen, protein abundance increases as
growth rate increases while the mRNA levels remain
unchanged (Figure 5C). The TargetScan predicted con-
served binding site is shown for the predicted miR-338-
3p PCBP1 interaction. hnRNPK was also found to
exhibit post transcriptional regulation; once again the
mRNA expression remains constant while protein ex-
pression increases (Figure 5D). TargetScan identified
conserved miR-206 and miR-409-3p (data not shown)
binding sites in the hnRNPK 3’ UTR, both of these
miRNAs are known to suppress cellular proliferation
[40,62,63]. These results correlate well with a previous
study demonstrating that downregulation of hnRNPK
decreases cellular proliferation [64]. Subtle interplay
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Figure 4 Group A proteins downregulated and predicted to be targeted by miR17-92 cluster members. (A) miR-17-92 cluster expression
increases as growth rate increases. (B) Normalised CIA score plot showing the divergence between mRNA and protein expression profiles for
miR17-92 TargetScan predictions. Each predicted target is represented by an arrow, the length of which corresponds to the divergence between
mRNA (circular base) and protein (arrowhead) expression across the dataset. Potential miRNA 17-92 cluster mediated post-transcriptional
repression of (C) DDXS5, (D) MAN2AT and (E) CFL2. For each of the three targets the mRNA expression (red) remains constant while the protein
expression decreases (blue) for the 24 samples were both mRNA and protein data was available. The conserved (human, mouse, rat and CHO)
binding site to the seed region of the miRNA cluster is shown to the right for each protein.

between hnRNPs has been shown to play a role in
miRNA biogenesis [65,66] and miRNAs can act as
“decoys” to disrupt hnRNP-mediated translation inhib-
ition [67]. The results obtained here suggest that miR-
NAs may also directly regulate the translation of
hnRNP proteins during cellular growth. The mRNA
and protein expression profile of RAB1A and sequence
alignment of the conserved seed region match with
miR-204 is shown below (Figure 5E). Numerous Ras
associated binding (Rab) - GTPases were also found to
be DE at the protein (RAB6A, RAB5B, RAB35,
RAB2A, RABIA, RABI14, RAB11A and RABI10) and
mRNA level (RAB18). These proteins play an import-
ant role in processes such as vesicle transport, signal
transduction and cytoskeleton formation [68]. Several
of these Rab (RAB14, RAB1A, RAB10, RAB11A) pro-
teins were post-transcriptionally regulated and were
predicted to be targeted by miRNAs downregulated at
higher growth rates (miR-204, miR-338-3p, miR-409-3p,
and miR-30e).

Discussion

To investigate the impact of miRNA, mRNA and protein
expression on cellular growth rate we have employed an
integrative methodology to combine data from several
global profiling technologies with bioinformatics ana-
lysis. We sought to minimise variation through the use
of carefully selected Mab-secreting CHO cell lines that,
in spite of spanning a wide range of growth rates, were
derived from the same transfection pool. Furthermore
the abundance of miRNA, mRNA and protein was
determined in parallel on identical samples to further
reduce biological noise. The experimental approach
may be applicable to the study of cell growth in other
eukaryotic systems and prove useful in elucidating
mechanisms of cellular proliferation in general.

The most crucial aspect of the experimental design is
the combination of data from multiple expression profiling
methods, genomic sequence and in-silico prediction to
study miRNA function. Both proteomic mass spectrometry
and mRNA microarrays have been used previously to study
miRNA function, however both methods when used in
isolation, suffer from several disadvantages as noted by
previous researchers in the area [32,69]. For instance

quantitative mass spectrometry based proteomics yields
in the order of hundreds of DE proteins and depending
on the prefractionation method may not detect many of
the low abundant proteins or integral membrane pro-
teins. On the other hand gene expression analysis using
microarrays provides a wide coverage of mRNAs but
post-transcriptional processes may be missed. In terms of
the study of the role of miRNAs both methods when
used in isolation rely heavily on computational methods
to predict miRNA interaction and prioritise potential
direct targets. The availability of data on multiple
levels of the biological system allows us to identify tar-
gets that would not have been identified by a single
dataset. Moreover, prioritisation of potential targets
undergoing classical miRNA-mediated translation re-
pression can only be achieved through the integration
of both the mRNA and protein datasets.

The availability of a combined profiling approach
could reduce the false negative or false positive rates
associated with in-silico prediction as well as enriching
priority candidate cohorts for functional validation. For
example, a recent study demonstrated the enhancement
of ribosomal subunit translation and ribosome biogen-
esis upon miR-10a binding via a “non-seed” site at the
transcript 5 UTR [5] and confirmed that ribosome for-
mation can be modulated by miRNA to some extent. In
this study miR-10a was both upregulated (FC = 2.12)
and positively correlated (PCC = 0.53) with cellular
growth rate, and several ribosomal proteins previously
identified as mir-10a targets showed some evidence of
post-transcriptional regulation. We found no predictive
evidence of miR-10a interaction with those RPs using
TargetScan as the algorithm searches for the presence of
sites conforming to classical miRNA seed based rules
within 3" UTR. In addition, RP 3" UTRs tend to be rela-
tively short.

Rab14 is an experimentally validated direct target of miR-
451 and has been shown to activate tumour suppression
[37]. miR451 was downregulated and the Rab14 protein
upregulated (while mRNA expression remained constant)
in fast growing CHO cells. The Rab14-miR451 3’ UTR
binding site is poorly conserved and therefore not ranked
highly by TargetScan; in cases such as this the availability of
evidence from multiple profiling datasets could be used to
prioritise poorly conserved miRNA interactions.
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Figure 5 Group A proteins upregulated and predicted to be targeted by selected downregulated miRNAs. (A) The expression of miR-338-
3p, MiR-206 and miR-204 decreases as growth rate increases. (B) Normalised CIA score plot showing the divergence between mRNA and protein
expression profiles for miR-338-3p, miR-206 and miR-204 TargetScan predictions. Each predicted target is represented by an arrow, the length of
which corresponds to the divergence between mRNA (circular base) and protein (arrowhead) expression across the dataset. Potential post-
transcriptional regulation of (C) PCBP1, (D) hnRNPK and (E) RABTA. For each of the three targets the mRNA expression (red) remains constant
while the protein expression increases (blue) for the 24 samples where both mRNA and protein data was available. The conserved (human,
mouse, rat and CHO) binding site to the seed region of the miRNA cluster is shown to the right for each protein.

Conclusions

In summary, we have analysed a range of production
CHO cell clones to investigate the role of miRNAs in
growth rate variation. The antibody producing clones
under analysis were chosen to control for several pos-
sible confounding factors. We employed global miRNA,
mRNA and proteomic expression profiling in parallel in
order to integrate three levels of the biological system.
Analysis of the datasets in isolation provided informa-
tion on the processes involved in cell growth which
included ribosome biogenesis, translation and mRNA
processing, which were to some degree regulated post-
transcriptionally. The ability to compare mRNA and
proteins in identical samples with respect to miRNA
allowed us to identify potential miRNA targets, and
highlight translational repression targets which could
not have been identified using a single dataset. More-
over, the use of multiple profiling datasets could permit
the identification of non-seed miRNA targets comple-
menting computational prediction tools and reducing
the false positive and false negative rates. While this
study is particularly relevant for the bio-pharmaceutical
industry by prioritising a number of potential miRNA
cell engineering candidates, the experimental design
ensures that the data generated and knowledge gained
on biological processes driving cellular growth are applic-
able to other mammalian systems.

Methods

Cell culture

Clonal cell lines were grown in batch shake flask suspen-
sion culture (60 ml working volume) in proprietary
serum-free media at 37°C, without feeds or temperature
shift. Each clone was grown in triplicate flasks and sam-
ples collected at a single time point (72 hrs - mid/late
log). Cell counts and viability were determined using try-
pan blue exclusion and a hemocytometer. Growth rates
(in reciprocal hours; h™') were calculated according to
the following equation:

growth rate — <ln(denszty2) - ln(densztyl)) 1)

time2 — timel

In total, 30 clones were selected for expression profiling
ranging from 0.011 to 0.044 hr'. 15 clones were

designated as “fast” (= 0.025 h™) and 15 clones designated
as “slow” (< 0.023 h™") (Additional file 1).

PCR screening of miRNA expression

Total RNA was extracted from 10° cells using Trireagent
(Sigma-Aldrich), resuspended in nuclease free water, quan-
tified on a Nanodrop " spectrophotometer and checked for
integrity on a Eukaryote Total RNA Nano Bioanalyzer chip
(Agilent). TagMan Low-Density Array cards (TLDAs)
(Human MicroRNA A&B Cards V2.0) were run as per the
manufacturer’s guidelines (Applied BioSystems). Each card
consists of 384-wells containing primers designed against
individual miRNAs. 100 ng of total RNA was reverse tran-
scribed in 2 individual multiplex reactions. These cDNA
mixes were subjected to 12 cycles of pre-amplification with
pre-amp primer pools and then used to load the TLDA
card. PCR was performed on an AB7900 real time instru-
ment for 10 min at 95°C followed by 40 cycles of 30 sec at
97°C and 1 min at 60°C.

The R statistical software environment (www.r-project.
org) and the HTqPCR bioconductor package were
utilised for data analysis [70]. Mamm-U6 expression
was used to normalize across the samples and differ-
ential expression was calculated using the 244
method. miRNAs with a fold change > 1.2 in either
direction between the fast and slow groups with a
Benjamini-Hochberg (BH) adjusted p-value of < 0.05
were considered significant. The Pearson correlation
coefficient (PCC) between miRNA ACt and sample
growth rate (Additional file 1) was also utilised as an
additional filter.

Microarray analysis

Gene expression analysis was carried out on the proprietary
CHO-specific WyeHamster3a oligonucleotide microarray.
The array contains 19,809 probesets corresponding to 132
control sequences, 11,857 probesets annotated to mouse,
rat and/or human Unigene IDs (9,098 non-redundant
genes) and 7,820 unannotated probesets. The methodology
and criteria used for total RNA purification, cRNA sample
processing and hybridisation to hamster microarrays have
been previously described [71]. All microarray data were
pre-processed as described previously [31]. Prior to data-
analysis probesets that did not reach the detection thresh-
old (fluorescence level > log2 (100) for at least 1 sample)
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were identified and designated undetected. The remaining
probesets were considered differentially expressed between
the fast and slow groups if a fold change > 1.2 in either
direction along with a BH adjusted p-value < 0.05 was
observed. The microarray data used in this study have been
deposited in the NCBI GEO database (GSE37251).

Proteomics sample preparation, LC-MS/MS and data
analysis
Sample preparation and label-free LC-MS was carried
out as previously described [72]. Data analysis was per-
formed using Progenesis label-free LC-MS software
version 3.1 (NonLinear Dynamics LTD, Newcastle upon
Tyne, UK) as recommended by the manufacturer (see
www.nonlinear.com for further background information
regarding alignment, normalisation, calculation of pep-
tide abundance, etc.). Briefly, the raw MS data is pro-
cessed as follows; a run is selected that is representative
of the data, to which the LC retention times of all the
other samples within the experiment are aligned. The
Progenesis peptide quantification algorithm calculates
normalised peptide abundances as the sum of the peak
areas within each peptide isotope boundary. Protein
abundance is calculated from the sum of all unique
peptide abundances for an individual protein on each run.
A number of criteria were used to filter the data
before exporting the MS/MS output files to MASCOT
(www.matriscience.com) for protein identification; only
peptide features with a p-value < 0.05 (determined via
an ANOVA) between experimental groups, mass peaks
(features) with charge states from +1 to +3, and greater
than 3 isotopes per peptide were retained. All MS/MS
spectra were exported from Progenesis software as a
MASCOT generic file (.mgf) for peptide identification
with MASCOT (version 2.2) and searched against the BB-
CHO specific database [73]. The search parameters used
were as follows: peptide mass tolerance set to 20 ppm,
MS/MS mass tolerance set at 0.5 Da; up to two missed
cleavages were allowed, carbamidomethylation set as
a fixed modification and methionine oxidation set as
a variable modification. Peptides with ion scores of
30 and above were re-imported into the Progenesis
LC-MS software for further analysis. Only proteins
with > 2 peptides matched, a > 1.2 fold difference in
abundance in both directions and a p-value < 0.05 were
considered to be DE.

Coinertia analysis

Coinertia analysis is a multivariate statistical method
utilised to compare datasets with different measurement
sources on the same objects/samples. There have been
several examples of CIA applied to “omics” data to
date including a comparison of transcriptomic and
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proteomic data [74] and prediction of miRNA interac-
tions from gene expression analysis [75]. Briefly, CIA
attempts to locate the axes of maximal co-variance
between the proteomics and transcriptomic data from
parallel samples. CIA was carried out using the
MADE4 R package [76]. Gene expression and prote-
omic data were log2 scaled and mean centred prior
to analysis. In this study we employ CIA to visualise
the disparity between transcript and protein abun-
dance across the dataset in an unsupervised manner
negating the requirement for arbitrary thresholds. The
input for the CIA analysis was two matrices equal to
n x p, where n = sample number and p = number
proteins/mRNA potentially targeted by the miRNAs
of interest. Note: Only 24 matched mRNA protein
samples were used for CIA due to the presence of
outlying samples in the LC-MS/MS dataset. Following
CIA the normalised scores were plotted, each target
is represented by an arrow with the circular base cor-
responding to the mRNA and the arrowhead corre-
sponding to the protein. The length of the arrow
relates to the difference between mRNA and protein
expression across the dataset.

miRNA target prediction

Prediction of miRNA and oppositely correlated protein/
mRNA interactions was performed using TargetScan 6.1
(http://www.targetscan.org/vert_61/) [14]. Only con-
served targets were utilised and each predicted target
assigned a rank according to the TargetScan algorithm
quality measure known as the total context+ score.

GO analysis

GO biological process enrichment analysis was carried
out for the DE protein and mRNA lists via the DAVID
interface (david.abcc.nciferf.gov).

Additional files

<
Additional file 1: Sample Information. Growth rates and "fast","slow"
designations for samples subjected to miRNA, mRNA and proteomic
profiling.

Additional file 2: MicroRNA differential expression. DE miRNAs
identified following TLDA analysis. Also included are the PCCs utilised to
identify 51 high priority miRNAs.

Additional file 3: Protein differential expression. DE proteins

identified using LC-MS/MS analysis and the BB-CHO proteomic database.

Additional file 4: mRNA differential expression. DE mRNA identified
using the CHO specific WyeHamster3a Affymetrix microarray.
Additional file 5: GO enrichment analysis. Enrichment analysis of DE
protein and mRNA lists against GO biological processes using DAVID.

Additional file 6: in-silico miRNA target prediction of Group A
targets. dentification of potential targets using TargetScan for candidate

Group A.
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Group B.
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