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Abstract

Background: With the advent of next-generation sequencing (NGS) technologies, researchers are now generating
a deluge of data on high dimensional genomic variations, whose analysis is likely to reveal rare variants involved in
the complex etiology of disease. Standing in the way of such discoveries, however, is the fact that statistics for rare
variants are currently designed for use with population-based data. In this paper, we introduce a pedigree-based
statistic specifically designed to test for rare variants in family-based data. The additional power of pedigree-based
statistics stems from the fact that while rare variants related to diseases or traits of interest occur only infrequently
in populations, in families with multiple affected individuals, such variants are enriched. Note that while the
proposed statistic can be applied with and without statistical weighting, our simulations show that its power
increases when weighting (WSS and VT) are applied.

Results: Our working hypothesis was that, since rare variants are concentrated in families with multiple affected
individuals, pedigree-based statistics should detect rare variants more powerfully than population-based statistics.
To evaluate how well our new pedigree-based statistics perform in association studies, we develop a general
framework for sequence-based association studies capable of handling data from pedigrees of various types and
also from unrelated individuals. In short, we developed a procedure for transforming population-based statistics
into tests for family-based associations. Furthermore, we modify two existing tests, the weighted sum-square test
and the variable-threshold test, and apply both to our family-based collapsing methods. We demonstrate that the
new family-based tests are more powerful than corresponding population-based test and they generate a
reasonable type I error rate.
To demonstrate feasibility, we apply the newly developed tests to a pedigree-based GWAS data set from the
Framingham Heart Study (FHS). FHS-GWAS data contain approximately 5000 uncommon variants with frequencies
less than 0.05. Potential association findings in these data demonstrate the feasibility of the software PB-STAR (note,
PB-STAR is now freely available to the public).

Conclusion: Our tests show that when analyzing for rare variants, a pedigree-based design is more powerful than a
population-based case–control design. We further demonstrate that a pedigree-based statistic’s power to detect
rare variants increases in direct relation to the proportion of affected individuals within the pedigree.
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Background
In the last few years, researchers have conducted many
Genome-Wide Association Studies (GWAS) to identify
common variants underlying common human disorders.
Although earlier analyses of GWAS data revealed that
this approach can detect common variants with modest
effects, only a small portion of significantly associated
common variants prove to be functional. In addition,
GWAS typically requires large sample sizes to achieve
reasonable power [1].
Therefore, to detect rare variants associated with com-

mon disorders, researchers are increasingly turning to
next generation sequencing (NGS) [2]. In recent years,
advances in NGS technology have generated large
amounts of data on the exome and on whole-genome
sequencing, moving us ever closer to an understanding
of how rare variants contribute to human traits and dis-
eases. While NGS technology holds great promise, its
platforms suffer from a number of drawbacks including
high rates of calling error (particularly for the rare var-
iants) and many missing values (due either to variants’
low quality or their location in difficult regions). How-
ever, the family-based designs proposed in this study,
can be used to reduce error rates by detecting Mendelian
errors and to impute missing values.
Statistical approaches currently available for the ana-

lysis of rare variants’ contributions to the development
of complex traits include: the Combined Multivariate
and Collapsing (CMC) Method [3], the Multivariate
test of collapsed sub-groups, the Hotelling T2 test [4],
MANOVA, the Fisher’s product method, the Weighted
Sum-square (WSS) [5], the Kernel-Based Adaptive Test
(KBAT) [6], the Variable-Threshold (VT) test [7]; the Se-
quence Kernel Association Test (SKAT) [8]; and the
Functional Principal Component Test [9]. In addition,
Neale et al. [10] proposed a method for testing the vari-
ance of the effects and Wu et al. [8] suggested a similar
test using a slightly different approach. Han and Pan
[11] modified Liu and Leal’s [3] original burden test to
include the effect’s direction. More recently, Lin and
Tang [12] have developed a generalized framework for
the conduct of the statistical tests listed above. Research-
ers seeking to use different statistical methods to analyze
NGS data may also wish to consult the following reviews
of current methods for collapsing and pooling data:
Bansal et al. [13], Basu and Pan [14], Feng et al. [15],
and Lin and Tang [12].
Inasmuch as many common diseases such as cancer,

cardiovascular disease, diabetes, immune disorders, and
psychiatric disorders are known to cluster in pedigrees,
there is a clear need to develop efficient statistical methods
for analyzing sequence-based pedigree data. Yet despite its
obvious importance, the use of pedigree-based collapsing
methods to detect associations between diseases and rare
variants in NGS-generated data has yet to be investi-
gated in depth.
With the aim of finding how multiple rare variants

within a genomic region contribute individually and
collectively to disease, this study shows how collapsing
techniques currently used to analyze population-based
data can be adapted for the analysis of pedigree-based
data. In our study design, therefore, all rare variants
within a gene or a genomic region in pedigree data or a
combination of pedigree and case–control data are col-
lapsed into an overall variable.
To accomplish this aim, we developed a new pedigree-

based method of association analysis for rare variants.
Following the work of Thornton and McPeek [16],
which used case–control association tests of common
variants in related individuals, we devised a novel
weighted statistic to compare affected and unaffected
individuals within pedigrees using the value of their
integrated overall variables, weighted by their Identity
by Descent (IBD) coefficients. To evaluate the perform-
ance of this new method, we use simulations with var-
ied pedigree structures to compute the type I error
rates and power under different disease models. Our
simulation results demonstrate that the proposed new
method can be used with data from various study
designs including case–control, sib-pairs, nuclear fam-
ilies, and multi-generation families.
This manuscript introduces several new methods for the

statistical analysis of pedigree-based data. These include
new ways to estimate allele frequency and a kinship
matrix from genotype data, statistics for collapsing family-
based data, and a correction factor for relatedness affected
and unaffected pairs within pedigrees. Using simulations
with seven types of data structures, we evaluate our test
statistics for impact of sample size, proportion of risk var-
iants, and proportion of variants with effects in opposite
directions, on type I error rates, and analytical power for
detecting rare-variant association. After these evaluation
tests and demonstrations, we conclude with a summary of
our statistics’ merits and limitations.

Methods
For our readers’ convenience, we have included a gloss-
ary for parameters and definitions used in equations
in Table 1.

Estimation of kinship matrix when allele frequencies
are known
Consider m markers. Let xik be the indicator variable of
genotype for the k-th variant of the i-th individual, and
the values are taken to be 0, 1 and 2 as the number of
reference alleles. Let pk be the frequency of the refer-
ence allele of the k-th variant (the allele frequency is
the count of reference allele over the sum of two alleles



Table 1 Glossary of parameters

Notations Meaning

subscript Individuals
i, j = 1,. . .,n

subscript k = 1,. . .,m variant/marker

s Iteration

pk frequency of the reference allele of the
k-th variant

xik = 0,1,2 indicator variable of genotype for the
k-th variant of the i-th individual

Φ kinship matrix

superscript T matrix transpose

zi indicator variable of presence of rare variants
in the region for the i-th individual

hi inbreeding coefficient of individual i

γ2k, γ1k relative risks

Pcorr correction factor in the test statistics
accounting for the relatedness

nG number of controls

nc number of cases

p Pr(presence of rare variants in the
genomic region)

TC population-based collapsing test statistic

TCF family-based collapsing test statistic

TWSS population-based weighted sum statistic

TWSSF family-based weighted sum statistic

TVT population-based variant threshold statistic

TVTF family-based variant threshold statistic
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in all individuals at a particular marker). The kinship
coefficient matrix (Φ) is given by

Φ ¼
ϕ11 ϕ12 ⋯ ϕ1n
ϕ21 ϕ22 ⋯ ϕ2n
⋯ ⋯ ⋯ ⋯
ϕn1 ϕn2 ⋯ ϕnn

2
664

3
775;

where φij is the kinship coefficient between individual
i and j In cases where the kinship matrix Φ quantifying
relatedness among individuals is unknown, it can be
estimated from genetic variants in the data. Recently,
Yang et al. [17] derived equations to estimate the ge-
nealogy matrix (defined as genetic relationship matrix
between pairs of individuals which mathematically
equals 2Φ). We simply followed the equation in Yang
et al. [17] as:

ψij ¼
1
m

Xm
k¼1

xik � 2pkð Þ xjk � 2pk
� �

2pk 1� pkð Þ ; i≠j

ψii ¼ 1þ 1
m

Xm
k¼1

x2ik � 1þ 2pkð Þxik þ 2p2k
2pk 1� pkð Þ ;i ¼ j:

ð1aÞ
The kinship coefficients are estimated by

φij ¼
1
2
ψij: ð1bÞ

In the presence of inbreeding, the estimated ψii is
greater than 1 (in the manuscript by Yang et al., this is
refer to as the “background effect”).

Estimation of kinship matrix when the population allele
frequencies are not known
When estimates of allele frequencies based on population
data are not available (i.e. variants that have not been gen-
otyped in reference datasets such as 1000 Genomes or
HapMap), we estimate the allele frequencies using the
genetic marker information from pedigree members. An
iterative algorithm initialized with the observed frequency
across pedigrees is used to estimate these frequencies. We
note that the use of rare variants could lead to unstable
estimates of kinship coefficients, therefore, only common
variants should be used for the estimation.
Step 1 (Initialization): Use the allele frequency com-

puted in all pedigree members as p̂k to estimate the kin-
ship matrix Φ(0).
Step 2 (Iteration) Let k be the k-th variant in the gen-

omic region. For the s-th iteration, we conduct the fol-
lowing steps:

a) Use Φ(s) to estimate p̂ sð Þ, p̂k sð Þ ¼
1TΦ sð Þ�11
� ��1

1TΦ sð Þ�1 x1k;x2k;...;xnk
� �T

where 1 is a
vector of 1’s and (x1k, x2k,. . .,xnk) is a vector of the
indicator variable for genotypes at the k-th variant in
the genomic region as defined above (k = 1,. . .,m).

b)Use this p̂ sð Þ to estimate Φ(s+1).
c) Stop at convergence or at a predetermined
maximum iteration limit.

Collapsing method fundamentals
We extend the population-based collapsing test to fam-
ilies with either known or unknown population struc-
tures. Let n be the number of individuals in the sampled
pedigrees, an indicator variable for the i-th individual in
the pedigrees is defined as

zi ¼ 1 if rare variants are present in the region
0 otherwise

;

�

where i = 1, . . ., n.
Let Z = [z1, z2,. . ., zn]

T. Under the null hypothesis (the
genomic region has no association with the disease), the
expectation of the vector of indicator variables is given by:

E0 Z½ � ¼ p; p; . . . ; p½ �T ;
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where p = Pr(presence of rare variants in the genomic
region). If we reject the null hypothesis, it is assumed that

E zi½ � ¼ μi ¼ pþ uir;

where

0 < p < 1; 0 < pþ r < 1; and

ui ¼ 1 if the ith individual is affected
0 otherwise:

�

We define μ = [μ1, μ2, . . ., μn]
T. The partial derivative

of μ with respect to p is given by

Dp ¼ ∂μ
∂p

¼ 1; 1; . . . ; 1½ �T :

Similarly, we have Dr ¼ ∂μ
∂r ¼ u; where u = [u1, u2, . . .,

un]
T.
Next, we calculate the covariance matrix of the vector

Z. Let hi be the inbreeding coefficient of individual i. Let
σ2 = p(1–p). For computing the expectations by condi-
tioning, we have

Cov zi; zj
� � ¼ E zizj

� �� E zi½ �E zj
� �

¼ E
h
E
�
zizj

��zi�
i
� E zi½ �E

h
E
�
zj
��zi�

i
¼ ϕijE z2i

� �� ϕij E zi½ �ð Þ2
¼ ϕijσ

2: ð2aÞ

By the same token, we have

Var zið Þ ¼ 1þ hið Þσ2 ¼ ϕiiσ
2; ð2bÞ

The kinship coefficients in equations (2a) and (2b) are
estimated by equation (1a) and (1b), where the inbreeding
coefficient hi of individual i can be estimated by φii–1.
Combining equations (2a) and (2b), we can obtain the

following covariance matrix of vector Z:

Σ ¼ Var Z;Zð Þ ¼ σ2Φ: ð3Þ
Let

HC ¼ Dr � nc
n
Dp

� 	T
Z;

where nc is the number of cases and the variance of HC

is given by

Γ ¼ Var HC ;HCð Þ
¼ Dr � nc

n
Dp

� 	T
Φ Dr � nc

n
Dp

� 	
σ2:

The statistic for testing the association of a genomic
region containing the disease locus can be defined as

TCF ¼ H2
C

Γ
: ð4Þ
However,

HC ¼ DT
r Z � nc

n
DT

p Z

¼
X
i∈cases

zi� nc
n

Xn
i¼1

zi

¼ nc�ZA � nc
n

nc�ZA þ nG �ZGð Þ
¼ ncnG

n
�ZA � �ZGð Þ; ð5Þ

where nG is the number of controls, �ZA and �ZG are the
averages of indicator variables in cases and controls, re-
spectively. The test statistic can then be rewritten as:

TCF ¼
ncnG
n

�ZA � �ZGð Þ2
σ2

n
ncnG

Dr � nc
n
Dp

� 	T
Φ Dr � nc

n
Dp

� 	

¼ TC

Pcorr
;

ð6Þ

where TC is the population-based collapsing test statistic

and Pcorr ¼ n
ncnG

Dr � nc
n Dp

� �T
Φ Dr � nc

n Dp
� �

is a correc-

tion factor. Under the null hypothesis of no association,
TCF is distributed as a central χ(1)

2 distribution. It follows
that when the correction factors are computed using the
IBD information, the relatedness effect (if present) can
be easily corrected.
Similarly, population-based weighted sum (WSS) and

variant threshold (VT) tests can also be extended to
pedigrees:

TWSSF ¼ TWSS

Pcorr
and

TVT

Pcorr
:

Single marker analysis
Although the main focus of this investigation is to de-
velop weight-based collapsing statistics to analyze for
rare variants in families, for comparison, we also use a
Chi-squared test to calculate an individual p-value for
each variant in a given gene. For every gene considered,
we select the variant with the lowest p-value and then
permute the disease-normal status 5000 times to obtain
an empirical p value for the selected variant. This per-
mutation test is conducted using the following mathem-
atical formula.
Let Pmin be the minimum p value of the Chi-square tests

among all variants in a gene. Let pmim
(1) ,. . ., pmim(5000) be

the minimum p value in 5000 permutations. The empir-
ical p value can be expressed as

P
b = 1
5000I(Pmin

(b) ≤ Pmin)/5000.

Using simulation to estimate power and type I error rate
In this study, the forward evolutionary simulation tool
ForSim [18] was used to simulate genetic data taking
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pedigree structures and evolutionary processes (such as
natural selection, mutation rate and population demo-
graphics) into account. These simulated data were then
analyzed with our PB_STAR software to calculate the
power and type I error rates for family-based single mar-
ker analysis (using a Chi-square test) and for two collaps-
ing methods: WSS and VT. Under four simulation models
(dominant, multiplicative, additive and recessive), the mu-
tation rate was assumed to be 2.5 × 10-8. We set the total
number of generations as 100, the recombination rate as
1 cM per Mb, the disease prevalence as 0.09 and the
growth rate as 2.1. Parameters were set to simulate the
desired pedigrees with a fixed ratio of affected and un-
affected individuals within a pedigree.
ForSim is a flexible software package that allows users

to re-define case or control status by making specific
assumptions about disease frequency and penetrance
when associated with dominant, recessive and multi-
plicative models. When we later re-assigned case status
using a penetrance function, we found that, changing
simulation parameters does not significantly impact ei-
ther power or type I error rates (data not shown).
ForSim also allows generation of hundreds of func-

tional variants in two unlinked genes, with only one
gene relevant to the disease phenotype of interest. All
variants were presumed to influence the disease in an
additive fashion. Variants arising by mutation were
assigned effect sizes. In this way, we simulated 100 gen-
erations of a single population, allowing variants to ac-
cumulate until the last generation, which showed a total
disease prevalence of 0.09. From this set of pedigrees, we
Table 2 Type I error rates

Study Design Nominal Level Estim
Coe

Population Design with equal number
of case and control

0.050 0.05

0.010 0.00

0.001 0.00

Mixed family and case–control design 0.050 0.05

0.010 0.01

0.001 0.00

Sib-pair-1 0.050 0.04

0.010 0.00

0.001 0.00

Nuclear-family-1 0.050 0.05

0.010 0.00

0.001 0.00

Three-generation-1 0.050 0.05

0.010 0.00

0.001 0.00

5000 replicates were conducted to calculate type I error rates for each study design
randomly sampled for six types of desired pedigree, each
with at least two affected individuals. The procedure for cal-
culating the type I error rate and power is detailed below.

Type I error rate
To assess type I error rates of the test statistics, we
simulated seven settings of data with different sample
sizes and pedigree designs: 1) a population design with
equal number of cases and controls (case–control de-
sign); 2) Sib-pair families without parental genotypes,
ratio of affected/unaffected is 1 (Sib-pair-1); 3) sib-pair
families without parental genotypes, ratio of affected/
unaffected is 2 to 1 (Sib-pair-2); 4) nuclear families
with offspring, ratio of affected/unaffected is 1 (Nuclear-
family-1); 5) nuclear families with offspring, ratio of
affected/unaffected is 2 (Nuclear-family-2); 6) three gen-
eration families with children and grandchildren, ratio of
affected/unaffected is 1 (Three-generation-1) and 7)
Three generation families with children and grandchil-
dren, ratio of affected/unaffected is 2 (Three-generation-
2). To calculate type I error rates, 5000 simulated repli-
cates were performed for each design. “Rare variants”
were defined as variants with Minor Allele Frequency
(MAF) of less than 1%.

Power
To evaluate the power of the proposed test statistics by
simulation, we had first to determine disease status
based upon individual genotype and penetrance at each
locus. Each group’s population attributable risk (PAR)
was set as 0.006 [19], the genotype relative risk was set
ated Kinship
fficient

Theoretic Kinship
Coefficient

Without Correction
for Relatedness

15 0.0480 0.0505

96 0.0099 0.0099

10 0.0010 0.0010

04 0.0494 0.0620

02 0.0097 0.0160

10 0.0010 0.0015

86 0.0475 0.0813

97 0.0092 0.0129

10 0.0011 0.0012

31 0.0497 0.0829

93 0.0093 0.0107

10 0.0009 0.0014

12 0.0484 0.0874

94 0.0102 0.0099

10 0.0010 0.0019

.
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to be inversely proportional to its MAF. It was further
assumed that the baseline penetrance of the wild-type
genotype is equal across all variants sites and that var-
iants influence disease susceptibility independently (i.e.
with no epistasis). More specifically, at the k-th variant
site, let γ2k be the relative risk for genotype 2, and let γ1k
be the relative risk for genotype1. For the dominant
model: γ2k = γ1k, for the additive model: γ2k = 2γ1k–1, for
the multiplicative model: γ2k = γ1k

2 , and for the recessive
model: γ1k = 1. Seven design settings were simulated
under these four different models. We assigned each in-
dividual to either a case or control groups depending
upon their “disease status”. We also varied study design
and pedigree structure in our simulations to see how
sample size and proportion of causal variants (PCV) to
non-causal variants (NCV) affect the power of test sta-
tistics and to provide practical guidelines for sampling.
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Figure 1 The power curves of the family-based corrected single mark
at the significance level α = 0.05 in the test under seven settings: unr
and 2, sib-pair groups 1 and 2 and three generation family groups 1
a baseline penetrance of 0.01.
Weights
Madsen and Browning [5] proposed analyzing for rare
variants using a collapsing method with weights based
on variant frequency. Because these weights depend on
phenotypic values, they further suggested a permutation-
based test to calculate p-values. Although it also requires
the use of permutation to calculate p-values, the VT
method, by contrast, does not rely on assumptions about
the distribution of effect size. In this study, both WSS and
VT were used to analyze our simulated data and to calcu-
late p-values based upon permutations. Obviously, more
permutation runs are likely to lead to more precise esti-
mation of power, although the computational burden is
also increasingly greater. In this study, estimation of
power is based upon 5000 permutation runs.
In addition evaluations based on results from the

seven simulation designs described above, we used our
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elated individuals in cases-controls study, nuclear family groups 1
and 2, assuming a dominant model, 20% of the risk variants and
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test statistics in two additional simulations, whose mixed
population designs more closely resemble those found in
actual studies. The first design is a mix of 33% Sibpair-2
families, 33% Nuclear-2 families, and 34% Three-
generation-2 families (Mix-1). The second design is a mix
of 50% Sib-pair-2 families and 50% Nuclear-2-families
(Mix-2). We compared the power of two mixed designs
and un-mixed designs using simulation.

Results
In this section, we present the results from tests asses-
sing the power and type I error rate of our proposed
method. The following section describes our tests for
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Figure 2 The power curves of the family-based collapsing test (variant
the total number of individuals at the significance level α = 0.05 in the
study, nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
20% of the risk variants and a baseline penetrance of 0.01.
the effects of sample size, the proportion of risk variants,
and variants functioning in opposite directions in seven
different simulated pedigree settings.

Empirical Type I error rates
To evaluate type I error rates, we consider two scenarios
for relatedness of individuals. In the first scenario, we
use theoretical kinship coefficients between pairs of indi-
viduals in the same pedigrees as our kinship coefficients,
assuming that kinship coefficients between pairs of indi-
viduals who are in different pedigrees are zero. In the
second scenario, whether or not paired individuals are
from the same pedigree, all kinship coefficients between
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s with frequencies ≤0.005 were collapsed) statistic as a function of
test under seven settings: unrelated individuals in cases-controls
generation family groups 1 and 2, assuming a dominant model,
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pairs of individuals are estimated by genotyped variants.
These tests show that in both single-marker and collaps-
ing tests, failure to correct for population structure
results in inflated type I error rates. Simulation results
also indicate that with or without weights, Type I error
rates for all collapsing tests do not deviate from the
nominal level (Table 2).
Calculations further show similar type I error rates re-

gardless of pedigree structure (hybrid design, sib-pair,
nuclear family, or three-generation family). Even after
correction factors (calculated using estimated or true
IBD coefficients) are applied, type I error rates do not
differ significantly from nominal levels (α = 0.05, 0.01,
and 0.001), regardless of the type of collapsing methods
used. (See Table 2 for results from our type I error rate
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Figure 3 The power curves of the family-based VT test statistic as a f
level α = 0.05 in the test under seven settings: unrelated individuals i
groups 1 and 2 and three generation family groups 1 and 2, assumin
penetrance of 0.01.
validity tests in a hybrid design (N = 2100), in which half
the data come from nuclear families).
Analytic power
To test the analytic power of our proposed method, we
conducted three sets of simulations in which four statis-
tics (corrected single-marker Chi-squares, family-based
collapsing methods, VT, and WSS) are used to analyze
for four disease models (dominant, additive, multiplica-
tive, and recessive).
In Figures 1, 2, 3, 4, the X axis stands for sample size,

which varies from 900 to 2100. “1” indicates single mar-
ker test; “2” indicates family-based collapsing test; “3”
indicates family-based VT test; “4” indicates family-
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Figure 4 The power curves of the family-based WSS test
statistic as a function of the total number of individuals at
the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a dominant
model, 20% of the risk variants and a baseline penetrance
of 0.01.
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Figure 5 The power curves of the family-based corrected single
marker χ2 test statistic as a function of the proportion of risk
variants at the significance level α = 0.05 in the test under
seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and
three generation family groups 1 and 2, assuming a dominant
model, a total of 1,800 sampled individuals and a baseline
penetrance of 0.01.
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based WSS test. In Figures 5, 6, 7, 8, the X axis stands
for the proportion of risk variants. “5” indicates single
marker test; “6” indicates family-based collapsing test;
“7” indicates family-based VT test; “8” indicates family-
based WSS test. In Figures 9, 10, 11, 12, the X axis
stands for the sample size when the variants with effect
of opposite side are considered. “9” indicates single mar-
ker test; “10” indicates family-based collapsing test; “11”
indicates family-based VT test; “12” indicates family-
based WSS test)In all instances, total trend significance
level of alpha = 0.05. To reduce the number of graphs
presented in the main body of this manuscript, power
calculations for additive, multiplicative, and recessive
models appear as Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36.
Power was tested in seven study designs: unrelated

individuals in case–control studies, Nuclear-family-1 and
−2, Sib-pair-1 and −2, and Three-generation-1 and −2.
General assumptions are a homogeneous population,
20% of causal variants, and a baseline penetrance of
0.01. Figure 2(A-D) shows the calculation of power to
PCV when N = 1800 individuals.
Results from these analyses, although preliminary,
confirm our hypothesis that a pedigree-based study de-
sign is more powerful than designs based on data from
unrelated cases and controls, and that collapsing meth-
ods are more powerful than single-marker analysis. As
expected, our results also confirm that collapsed meth-
ods without weights have weaker analytic power than
either WSS or VT (although with or without weighting,
differences in power are reduced with an assumed PCV
as high as 20-30%), (See Figures 1, 2, 3, 4 for dominant
model and Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12 for non-dominant models).
The finding that is perhaps most significant for the de-

sign of studies in future is that analytic power is directly
related to both the complexity of pedigree structure and
the proportion of affected individuals in the sample. We
believe that the fact that more complex pedigrees con-
tain more information on the co-inheritance of rare risk
variants in association with disease status accounts for
much of our proposed method’s increased power to de-
tect rare causal variants.
This exploratory study also shows that a mixed design

(Sib-pair-2, Nuclear-family-2, and Three-generation-2) is
slightly less powerful than a Three-generation-2 design,
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Figure 6 The power curves of the family-based collapsing test
(variants with frequencies ≤0.005 were collapsed) statistic as a
function of the proportion of risk variants at the significance
level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and
2, sib-pair groups 1 and 2 and three generation family groups
1 and 2, assuming a dominant model, a total of 1,800 sampled
individuals and a baseline penetrance of 0.01.
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Figure 7 The power curves of the family-based VT test statistic as
a function of the proportion of risk variants at the significance level
α= 0.05 in the test under seven settings: unrelated individuals in
cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2,
assuming a dominant model, a total of 1,800 sampled individuals
and a baseline penetrance of 0.01.
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and that a half-and-half mixed design (50% Sib-pair-2
and 50% Nuclear-family-2) has analytic power similar to
that of the Sib-pair-2 and Nuclear-family-2 designs (See
Table 3). Since mixed designs more closely approximate
reality, this result increases our confidence that the pro-
posed new method will work well with real data.
According to our calculations (in which PCV varied

from 10-30% and the number of sampled individuals in
the pedigree varied from N= 900 to 2,100), the Three-
generation-2 design consistently gives the best power,
followed by Nuclear-family-2 and Sib-pair-2 designs. That
is, with a power difference of approximately 4-9%, Three-
generation-2 outperforms Three-generation-1; Nuclear-
family-2 outperforms Nuclear-family-1; and Sib-pair-2
outperforms Three-generation-1. As expected, the case–
control design gives the lowest power (See Figures 5, 6, 7,
8 and Additional files 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24).
To evaluate power where variants are associated with

varying directions of association, we simulated a data set
assuming that of 20% causal variants, half confer risk
and half are protective. Although the presence of both
risk and protective variants reduces the power to some
extent, we found that the impact of opposing directions
of association on power is reduced under the dominant
model as the complexity of pedigree structure increases.
Our method, in fact, performs best under the dominant
model (see Figures 9, 10, 11, 12); has slightly reduced
power under the multiplicative model, less under the
additive model, and least under the recessive model
(see Additional files 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36).

Applying PB-STAR to Framingham Heart Study data set
To test our proposed study statistics on real data, we ap-
plied it to a GWAS data set from the Framingham Heart
Study (FHS) [20] hosted by dbGAP. The proposed statis-
tics were then used to test for associations of multiple
variants with various cardiovascular diseases (CVD) in-
cluding coronary heart disease (CHD), stroke, heart failure
(HF) and atrial fibrillation (AF) (see Kannel et al. [21]).
We applied our proposed statistics to the Framingham

Study data set using the Affymetrix 500 K platform, with
CVD as the main phenotype. (Note that, to gain more
variants with the Affymetrix 500 K platform, we changed
our threshold variants from our standard 0.01 to 0.05).
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Figure 8 The power curves of the family-based WSS test
statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings:
unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming a dominant model, a total of
1,800 sampled individuals and a baseline penetrance of 0.01.
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Figure 9 The power curves of the family-based corrected single
marker χ2 statistic under opposite directions of association as a
function of the total number of individuals at the significance
level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and
2, sib-pair groups 1 and 2 and three generation family groups
1 and 2, assuming a dominant model, 20% of the risk variants
and a baseline penetrance of 0.01.
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Figure 10 The power curves of the family-based collapsing test
(variants with frequencies ≤0.005 were collapsed) statistic
under opposite directions of association as a function of the
total number of individuals at the significance level α = 0.05 in
the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1
and 2 and three generation family groups 1 and 2, assuming a
dominant model, 20% of the risk variants and a baseline
penetrance of 0.01.
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In this data set, a total of 1,603 individuals were geno-
typed, of which 267 were affected. In the end, our pedi-
gree analysis included 462 pedigrees: 320 sib-pairs
without parents, 138 pedigrees with 2 generations and 4
pedigrees with 3 generations. SNPs that failed to pass
the Mendelian error check test or had allele frequencies
greater than 0.05 were excluded. Our analysis included
4,376 genes with 35,507 SNPs. To obtain the estimated
IBD for each pair of individuals, we randomly selected
1000 SNPs (the R-square between any pair of these SNPs
was less than 0.2) spaced over the genome.
In our simulations, the WSS statistic shows consis-

tently higher power than the other three test statistics
evaluated. Using WSS with a cut-off threshold of 2 × 10–3,
we identified 21 potentially significant genes including
B4GALNT2, AKAP7, DYRK1A and FAM19A2 (See
Table 4). Although the biological relationship between
B4GALNT2 and human heart diseases has yet to be docu-
mented, AKAP7 [22], DYRK1A [23] and FAM19A2 [24]
have all been implicated in its etiology. Taken together,
these results from our analysis of FHS data support the
hypothesis that the genes B4GALNT2, AKAP7 and
DYRK1A may be significant for development of CVD al-
though further molecular tests are needed to test these hy-
potheses although further molecular tests are warranted.
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Figure 11 The power curves of the family-based VT statistic
under opposite directions of association as a function of the
total number of individuals at the significance level α = 0.05 in
the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1
and 2 and three generation family groups 1 and 2, assuming a
dominant model, 20% of the risk variants and a baseline
penetrance of 0.01.
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Figure 12 The power curves of the family-based WSS test
statistic under opposite directions of association as a function
of the total number of individuals at the significance level
α = 0.05 in the test under seven settings: unrelated individuals
in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2,
assuming a dominant model, 20% of the risk variants and a
baseline penetrance of 0.01.
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Discussion
While a number of methods currently exist for collaps-
ing rare variants into a single group to test for differ-
ences in their collective frequency in cases and controls,
methods using family-based statistics to test for rare var-
iants associations in multi-generational families have
rarely been discussed. Since we expect causal rare var-
iants to be more enriched in extended pedigrees than in
the general population and also in nuclear families, com-
plex pedigrees should be the ideal source of information
on rare variants’ contribution to human disorders.
Results from our preliminary simulations appear to sup-
port the added value of looking for rare causal genetic
variants in large and complex pedigrees.
As described in the Methods and Results sections

above, we devised simulations to test the power of our
new statistics and their type I error rates. Results from
tests using seven different study designs and dominant,
additive, recessive, and multiplicative models of disease
indicate that our statistic performs best with the
dominant disease model and, as expected, a study popu-
lation made up of three-generation families with an
affected/ unaffected ratio of 2 to 1.
These results suggest that our proposed statistics can

substantially benefit researchers seeking to sequence
exomes or whole genomes with a pedigree-based ap-
proach. Since computations based on family data associ-
ation tests are almost as efficient as those based on
population data, moreover, it should be possible to com-
bine results from both. (See, for instance, Table 3, which
contains results from pedigree-based association tests to
detect rare variants in mixed-pedigree populations.)
Additionally, while earlier family-based linkage ap-

proaches rely on chromosomal segments shared by
related individuals within pedigrees, our method reveals
nucleotide-site similarities in segments shared across
pedigrees.
As indicated in our introduction, this work was

inspired by Thornton and McPeek [25] who offer two
ways to analyze genetic associations: 1) using the stand-
ard χ2 statistic with a correction factor that takes



Table 3 Power of mixed and unmixed study designs

Sample Size and Power

Uniform Data Design

Sib-Pair-2 900 1200 1500 1800 2100

χ2 0.37 0.48 0.52 0.55 0.57

Collapsing 0.51 0.58 0.62 0.66 0.69

VT 0.6 0.68 0.73 0.77 0.79

WSS 0.61 0.7 0.74 0.78 0.81

Nuclear Family 2 900 1200 1500 1800 2100

χ2 0.40 0.50 0.54 0.57 0.59

Collapsing 0.52 0.60 0.64 0.67 0.70

VT 0.62 0.70 0.76 0.79 0.80

WSS 0.63 0.72 0.78 0.81 0.82

Three Generation 2 900 1200 1500 1800 2100

χ2 0.44 0.53 0.57 0.6 0.63

Collapsing 0.54 0.62 0.67 0.7 0.73

VT 0.64 0.71 0.79 0.82 0.84

WSS 0.65 0.74 0.8 0.84 0.85

Mixed Data Designs

Mix1 (33% Sib-Pair-2, 33% nuclear-2,
and 34% Three- generation-2)

900 1200 1500 1800 2100

χ2 0.39 0.51 0.53 0.56 0.60

Collapsing 0.53 0.59 0.64 0.68 0.70

VT 0.62 0.68 0.73 0.77 0.82

WSS 0.62 0.69 0.75 0.81 0.84

Mix2 (50% Sib-Pair-2 and 50%
Nuclear Family-2)

900 1200 1500 1800 2100

χ2 0.36 0.45 0.50 0.55 0.58

Collapsing 0.49 0.55 0.59 0.63 0.65

VT 0.59 0.68 0.74 0.78 0.82

WSS 0.6 0.69 0.76 0.8 0.83

Table 4 P-values of four statistics for testing the
association of a gene with CVD in Framingham Heart
Study

Gene Number
of SNPs

χ2 Collapsing VT WSS

B4GALNT2 6 2.01E-03 2.10E-04 2.27E-03 6.00E-05

AKAP7 3 6.38E-02 6.61E-04 1.42E-02 1.00E-04

BOMB 5 2.48E-03 3.51E-03 8.16E-04 3.00E-04

STX11 4 1.35E-02 3.11E-03 7.78E-04 3.60E-04

PIWIL3 4 5.89E-02 8.67E-03 1.06E-02 4.50E-04

CRY1 10 5.87E-04 4.92E-01 2.84E-02 4.70E-04

PTGES3 7 3.57E-02 1.40E-02 6.42E-03 5.46E-04

HMSD 8 9.62E-03 7.65E-01 3.33E-02 8.38E-04

MNB/DYRK 9 1.02E-02 4.87E-02 3.64E-02 8.85E-04

PIK3R4 5 2.89E-03 5.51E-01 5.79E-04 1.01E-03

MAP3K5 19 7.57E-02 9.61E-02 2.36E-03 1.31E-03

ZNF823 3 2.78E-02 1.18E-03 1.58E-02 1.34E-03

CTCF 3 1.12E-01 3.83E-02 1.73E-01 1.36E-03

TRPC4 14 4.15E-02 5.99E-02 7.32E-04 1.50E-03

OSBPL9 12 9.09E-03 1.45E-04 1.83E-02 1.53E-03

DYRK1A 12 1.47E-02 7.78E-02 3.47E-02 1.58E-03

FAM19A2 13 2.65E-01 2.28E-03 9.43E-03 1.60E-03

MRPS18C 12 2.19E-03 5.37E-03 2.51E-03 1.63E-03

FAM175A 9 2.43E-03 3.51E-03 2.11E-03 1.67E-03

ZNF714 6 3.40E-03 1.16E-02 2.39E-03 1.85E-03

AGPAT5 9 1.96E-02 1.68E-01 6.85E-03 1.94E-03
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pedigree information into account; and 2) using a factor
that corrects for the conditional probability of IBD shar-
ing. In a later publication [16], the same authors pro-
posed the “Quasi-likelihood Score” (WQLS), another
useful statistic that, according to their simulations, out-
performs earlier methods. The new method introduced
here uses a correction method (detailed in the Method
section above) similar to that of Thornton and McPeek.
While earlier pedigree-based methods are limited to the
analysis of single markers, ours analyzes associations
among multiple markers. Our results confirm the super-
ior power of family-based analysis. They also confirm
the need to correct for relatedness in order to reach ap-
propriate rates of type I error.
Before drawing conclusions from this study, we would

like to point out its limitation. As a ‘proof of concept’
analysis for a new statistic for the analysis of pedigree
data, this study is of necessity schematic and
introductory. In our simulations, for instance, both dis-
ease models and population structures were purposefully
kept simple enough for us to monitor statistical behav-
ior. Although our results are preliminary, they appear to
confirm the new test statistic’s potential usefulness for
the analysis of pedigree-based NGS data.

Conclusions
This study introduces a new, family-based statistic to
analyze for rare variants segregated in pedigrees. This
new statistic is based on three principles: 1) It collapses
data to deal with the problem of identifying rare variants
in a gene or a genomic region. 2) It uses IBD coefficients
to correct for relatedness and assure validity and power.
3) It applies two weights, WSS and VT, to increase the
statistic’s power to detect rare variants.
Using computer simulations, we showed that 1) our

pedigree-based design is more powerful than population
based case–control designs; 2) the higher the number of
affected individuals in a pedigree, the higher the comple-
ment of rare variants 3) WSS performs slightly better
than VT; and 4) as the proportion of causal variants
increases, so does the power gain of WSS or VT over an
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un-weighted collapsing method. The power gain using
WSS and VT versus the collapsing method without
weights increases with the increase in proportion of
causal variants. Finally, we confirmed the usefulness of
our new statistic in real data, a GWAS data set from the
FHS. Since NGS data from the same cohort are expected
to be available soon on the genes containing rare var-
iants associated with heart disease identified by our ana-
lysis, we look forward to being able to use these data to
validate our current findings, and to discover new sig-
nals, in the near future. Our “PB-STAR” software is
now freely available at: https://sph.uth.edu/hgc/faculty/
xiong/software-E.html.
Additional files

Additional file 1: Figure S1A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the total number
of individuals at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming an additive model, 20% of the risk variants and
a baseline penetrance of 0.01.

Additional file 2: Figure S1B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
as a function of the total number of individuals at the significance level
α = 0.05 in the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1 and 2
and three generation family groups 1 and 2, assuming an additive model,
20% of the risk variants and a baseline penetrance of 0.01.

Additional file 3: Figure S1C. The power curves of the family-based VT
test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming a
dominant model, 20% of the risk variants and a baseline penetrance of
0.01.

Additional file 4: Figure S1D. The power curves of the family-based
WSS test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming an
additive model, 20% of the risk variants and a baseline penetrance of
0.01.

Additional file 5: Figure S2A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the total number
of individuals at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming a multiplicative model, 20% of the risk variants
and a baseline penetrance of 0.01.

Additional file 6: Figure S2B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
as a function of the total number of individuals at the significance level
α = 0.05 in the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1 and 2
and three generation family groups 1 and 2, assuming a multiplicative
model, 20% of the risk variants and a baseline penetrance of 0.01.

Additional file 7: Figure S2C. The power curves of the family-based VT
test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming a
multiplicative model, 20% of the risk variants and a baseline penetrance
of 0.01.

Additional file 8: Figure S2D. The power curves of the family-based
WSS test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming a
multiplicative model, 20% of the risk variants and a baseline penetrance
of 0.01.

Additional file 9: Figure S3A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the total number
of individuals at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming a recessive model, 20% of the risk variants and
a baseline penetrance of 0.01.

Additional file 10: Figure S3B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
as a function of the total number of individuals at the significance level
α = 0.05 in the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1 and 2
and three generation family groups 1 and 2, assuming a recessive model,
20% of the risk variants and a baseline penetrance of 0.01.

Additional file 11: Figure S3C. The power curves of the family-based
VT test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming a
recessive model, 20% of the risk variants and a baseline penetrance of
0.01.

Additional file 12: Figure S3D. The power curves of the family-based
WSS test statistic as a function of the total number of individuals at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming a
recessive model, 20% of the risk variants and a baseline penetrance of
0.01.

Additional file 13: Figure 4A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the proportion of
risk variants at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming an additive model, a total of 1,800 sampled
individuals and a baseline penetrance of 0.01.

Additional file 14: Figure 4B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
as a function of the proportion of risk variants at the significance level α
= 0.05 in the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1 and 2
and three generation family groups 1 and 2, assuming an additive model,
a total of 1,800 sampled individuals and a baseline penetrance of 0.01.

Additional file 15: Figure 4C. The power curves of the family-based VT
test statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming an
additive model, a total of 1,800 sampled individuals and a baseline
penetrance of 0.01.

Additional file 16: Figure 4D. The power curves of the family-based
WSS test statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming an
additive model, a total of 1,800 sampled individuals and a baseline
penetrance of 0.01.

Additional file 17: Figure S5A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the proportion of
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risk variants at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming a multiplicative model, a total of 1,800
sampled individuals and a baseline penetrance of 0.01.

Additional file 18: Figure S5B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic as
a function of the proportion of risk variants at the significance level α = 0.05
in the test under seven settings: unrelated individuals in cases-controls
study, nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a multiplicative model, a total
of 1,800 sampled individuals and a baseline penetrance of 0.01.

Additional file 19: Figure S5C. The power curves of the family-based
VT test statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming
the multiplicative model, a total of 1,800 sampled individuals and a
baseline penetrance of 0.01.

Additional file 20: Figure S5D. The power curves of the family-based
WSS test statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming
the multiplicative model, a total of 1,800 sampled individuals and a
baseline penetrance of 0.01.

Additional file 21: Figure S6A. The power curves of the family-based
corrected single marker χ2 test statistic as a function of the proportion of
risk variants at the significance level α = 0.05 in the test under seven
settings: unrelated individuals in cases-controls study, nuclear family
groups 1 and 2, sib-pair groups 1 and 2 and three generation family
groups 1 and 2, assuming a recessive model, a total of 1,800 sampled
individuals and a baseline penetrance of 0.01.

Additional file 22: Figure S6B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
as a function of the proportion of risk variants at the significance level α
= 0.05 in the test under seven settings: unrelated individuals in cases-
controls study, nuclear family groups 1 and 2, sib-pair groups 1 and 2
and three generation family groups 1 and 2, assuming a recessive model,
a total of 1,800 sampled individuals and a baseline penetrance of 0.01.

Additional file 23: Figure S6C. The power curves of the family-based
VT test statistic as a function of the proportion of risk variants at the
significance level α = 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming
the recessive model, a total of 1,800 sampled individuals and a baseline
penetrance of 0.01.

Additional file 24: Figure S6D. The power curves of the family-based
WSS test statistic as a function of the proportion of risk variants at the
significance level α= 0.05 in the test under seven settings: unrelated
individuals in cases-controls study, nuclear family groups 1 and 2, sib-pair
groups 1 and 2 and three generation family groups 1 and 2, assuming the
recessive model, a total of 1,800 sampled individuals and a baseline
penetrance of 0.01.

Additional file 25: Figure S7A. The power curves of the family-based
corrected single marker χ2 statistic under opposite directions of association as
a function of the total number of individuals at the significance level α = 0.05
in the test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming an additive model, 20% of the risk variants
and a baseline penetrance of 0.01.

Additional file 26: Figure S7B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
under opposite directions of association as a function of the total
number of individuals at the significance level α = 0.05 in the test under
seven settings: unrelated individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming an additive model, 20% of the risk
variants and a baseline penetrance of 0.01.

Additional file 27: Figure S7C. The power curves of the family-based
VT statistic under opposite directions of association as a function of the
total number of individuals at the significance level α = 0.05 in the test
under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming an additive model, 20% of
the risk variants and a baseline penetrance of 0.01.

Additional file 28: Figure S7D. The power curves of the family-based
WSS test statistic under opposite directions of association as a function of
the total number of individuals at the significance level α = 0.05 in the
test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming an additive model, 20% of
the risk variants and a baseline penetrance of 0.01.

Additional file 29: Figure S8A. The power curves of the family-based
corrected single marker χ2 statistic under opposite directions of association as
a function of the total number of individuals at the significance level α = 0.05
in the test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming a multiplicative model, 20% of the risk
variants and a baseline penetrance of 0.01.

Additional file 30: Figure S8B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
under opposite directions of association as a function of the total
number of individuals at the significance level α = 0.05 in the test under
seven settings: unrelated individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming a multiplicative model, 20% of the risk
variants and a baseline penetrance of 0.01.

Additional file 31: Figure S8C. The power curves of the family-based
VT statistic under opposite directions of association as a function of the
total number of individuals at the significance level α = 0.05 in the test
under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a multiplicative model, 20%
of the risk variants and a baseline penetrance of 0.01.

Additional file 32: Figure S8D. The power curves of the family-based
WSS test statistic under opposite directions of association as a function of
the total number of individuals at the significance level α = 0.05 in the
test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a multiplicative model, 20%
of the risk variants and a baseline penetrance of 0.01. (PDF 4 kb)

Additional file 33: Figure S9A. The power curves of the family-based
corrected single marker χ2 statistic under opposite directions of association as
a function of the total number of individuals at the significance level α = 0.05
in the test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming a recessive model, 20% of the risk variants
and a baseline penetrance of 0.01.

Additional file 34: Figure S9B. The power curves of the family-based
collapsing test (variants with frequencies ≤0.005 were collapsed) statistic
under opposite directions of association as a function of the total
number of individuals at the significance level α = 0.05 in the test under
seven settings: unrelated individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2 and three generation
family groups 1 and 2, assuming a recessive model, 20% of the risk
variants and a baseline penetrance of 0.01.

Additional file 35: Figure S9C. The power curves of the family-based
VT statistic under opposite directions of association as a function of the
total number of individuals at the significance level α = 0.05 in the test
under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a recessive model, 20% of
the risk variants and a baseline penetrance of 0.01.
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Additional file 36: Figure S9D. The power curves of the family-based
WSS test statistic under opposite directions of association as a function of
the total number of individuals at the significance level α = 0.05 in the
test under seven settings: unrelated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups 1 and 2 and three
generation family groups 1 and 2, assuming a recessive model, 20% of
the risk variants and a baseline penetrance of 0.01.
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