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Abstract

Background: We applied a new weighted pairwise shared genomic segment (pSGS) analysis for susceptibility gene
localization to high-density genomewide SNP data in three extended high-risk breast cancer pedigrees.

Results: Using this method, four genomewide suggestive regions were identified on chromosomes 2, 4, 7 and 8,
and a borderline suggestive region on chromosome 14. Seven additional regions with at least nominal evidence
were observed. Of particular note among these total twelve regions were three regions that were identified in two
pedigrees each; chromosomes 4, 7 and 14. Follow-up two-pedigree pSGS analyses further indicated excessive
genomic sharing across the pedigrees in all three regions, suggesting that the underlying susceptibility alleles in
those regions may be shared in common. In general, the pSGS regions identified were quite large (average
32.2 Mb), however, the range was wide (0.3 – 88.2 Mb). Several of the regions identified overlapped with loci
and genes that have been previously implicated in breast cancer risk, including NBS1, BRCA1 and RAD51L1.

Conclusions: Our analyses have provided several loci of interest to pursue in these high-risk pedigrees and
illustrate the utility of the weighted pSGS method and extended pedigrees for gene mapping in complex diseases.
A focused sequencing effort across these loci in the sharing individuals is the natural next step to further map the
critical underlying susceptibility variants in these regions.
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Background
Breast cancer (MIM #114480) is the most prevalent can-
cer among women in developed countries [1]. It is a
common, complex disease, including substantial genetic
heterogeneity with respect to both loci and alleles. To
date, many germ-line variants in multiple genes have
been confirmed to increase risk for breast cancer [2].
However, the majority of hereditary breast cancer
remains unexplained and there are clearly more risk var-
iants to identify. In particular, rare variants are likely to
be a part of the missing heritability [3]. Pedigrees
selected for excess disease (i.e. high-risk pedigrees) offer
the potential for increased genetic homogeneity and en-
richment for rare and more penetrant variants. Hence
the high-risk pedigree design is advantageous for the de-
tection of rare risk variants. However, although the
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complexity is arguably reduced, genetic heterogeneity
may still remain and can pose a substantial challenge for
conventional pedigree-based methods, such as linkage
analysis. High-density single nucleotide polymorphism
(SNP) data also provide challenges for conventional
multi-point pedigree methods because of linkage dis-
equilibrium (LD) between markers and because subtle
non-Mendelian genotype errors or inaccuracies of phys-
ical position can confuse estimation of the inheritance
vectors. Genomewide association is well-suited to high-
density SNP arrays, however, the power for this ap-
proach lies with the existence of high LD between a SNP
on the platform and the underlying risk variant; which is
vastly reduced with rare risk variants leading to low
power [4,5]. Identity-by-descent (IBD) mapping, such as
shared genomic segment (SGS) analysis, in extended
pedigrees have been developed precisely for use with
high-density SNP platforms and have been suggested to
be more powerful than association analysis and trad-
itional linkage analysis for the identification of rare var-
iants [3,6,7]. The probability of IBD is a challenge to
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(a) PEDIGREE 1 (17 meioses) (b) PEDIGREE 2 (20 meioses) 

(c) PEDIGREE 3 (33 meioses) 

Figure 1 Three extended high-risk breast cancer pedigrees.
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calculate in large pedigrees. Conversely, identity-by-state
(IBS) is easy to compute. Our SGS methods use exces-
sive lengths of IBS to find regions of IBD. These IBS
regions are assessed for significance empirically, condi-
tional on a model for LD and a genetic model (for re-
combination in the pedigree). Our original SGS method
[8] was designed to identify regions of excessive lengths
of sharing across all, or all but 1 or 2, cases in a pedi-
gree, which is powerful when the cases within pedigrees
are reasonably genetically homogeneous [6]. For com-
mon diseases, large high-risk pedigrees may suffer from
intra-familial heterogeneity, such as when more than
one genetic locus segregates within the same family. In
these situations, even at a true risk locus, a greater pro-
portion of the cases may be non-sharers. Recently, we
proposed an alternate weighted pairwise SGS (pSGS)
method, which combines the sharing evidence across all
possible pairs, which in simulated data indicated sub-
stantial increased robustness to intra-familial genetic
heterogeneity and therefore is likely more useful for
mapping common diseases [9].
We performed genomewide pSGS analysis in three

Utah high-risk breast cancer pedigrees selected as un-
likely to be due to BRCA1 or BRCA2. Regions of exces-
sive sharing in the cases of these pedigrees have good
potential for harboring breast cancer susceptibility
variants.
Methods
High-risk breast cancer pedigrees
Using existing mutation screening and microsatellite
linkage data, pedigrees were selected to have low prob-
ability of being due to mutations in the genes BRCA1
and BRCA2. Each met the following criteria [10]: (1) the
pedigree did not contain any cases known to carry
BRCA1 or BRCA2 mutations, and (2) the pedigree had
no significant linkage to the BRCA1 or BRCA2 regions.
Hence, a-priori these pedigrees have a low probability of
segregating mutations in BRCA1 or BRCA2.
The three extended, high-risk Utah pedigrees studied

are shown in Figure 1. All pedigrees were descended
from European founders. There are no known genea-
logical links between the pedigrees, as determined by the
Utah Population Database (UPDB [11]) which contains
up to eleven generations of genealogy. Pedigree 1 con-
tains five cases connected by a total of 17 meioses. Pedi-
gree 2 contains 9 cases connected by 20 meioses.
Pedigree 3 consists of 10 cases connected by 33 meioses.
Confirmation of cancer diagnoses was obtained from the
Utah Cancer Registry (UCR). All other individuals were
considered “unknown”, and were not genotyped in this
study. These pedigrees are defined as high risk because
they contain significantly more female breast cancer
than expected using cancer rates calculated from the
UPDB (see [12]).
Informed consent was obtained from all participants

in this study. This study is approved by the Institutional
Review Board at University of Utah.

Control Samples for estimation of LD
In SGS approaches, control samples are required to esti-
mate genomewide LD structure that is used in the em-
pirical assessment of significance. The primary set of
controls used was ascertained locally via the UPDB re-
source (also the source of the pedigrees). These control
individuals were known to be cancer-free and were self-
declared Caucasian. These 224 ‘local controls’ comprised
117 males and 107 females. To ensure robustness of our
findings, for regions of interest identified from the geno-
mewide pSGS analysis based on the LD model estimated
from the local controls, we also assessed significance
based on a set of genomically-matched controls. This
second set of controls comprised individuals selected
from the Illumina Genotype Control Database (iCon-
trolDB) (www.illumina.com). Principal components ana-
lysis was carried out on the set of all self-declared
Caucasian samples in iControlDB with genotype data
available for the 550K Illumina SNP array. We pruned
the 550K Illumina SNPs to a set with r2<0.5 and used
smartpca [13] to extract the first two principal compo-
nents and identified 1,490 iControlDB individuals who
resided within 3 standard deviations of the centroid
based on a bivariate normal distribution estimated from
the cases. These 1,490 genomically matched controls
comprised 949 female and 541 males. Figure 2 illustrates
the 1,490 iControlDB individuals selected.

Genotypes
SNPs from the Illumina 550K array were used. SNPs
with a significantly different missing data rate between
cases and controls (p < 10-5), those with a missing rate
greater than 5%, a minor allele frequency (MAF) of less

http://www.illumina.com


Figure 2 Principal Component Analysis for selection of
iControlDB individuals. The first and second principal components
The 24 breast cancer cases from the three pedigrees are shown in
red, and the selected iControlDB individuals are shown in black.
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than 1%, or significantly different from Hardy-Weinberg
Equilibrium (p < 10-4) were removed. This resulted in a
total of 516,475 SNPs genomewide included in the SGS
analyses.

Data analysis
Our primary analysis was a genomewide pSGS analysis.
For regions of interest identified by pSGS with at least
nominal evidence (p≤0.05) we also performed SGS and
multipoint linkage analysis as secondary analyses, for
comparison.

Shared genomic segment analysis
Thomas et al. [8] proposed a method of SGS analysis
based on sharing among all cases in high-risk pedigrees.
Assuming biallelic SNP loci with alleles 1 and 2, the
three possible genotypes at each locus are 11, 12 and 22.
Sharing is impossible between individuals with the two
opposite homozygote types (11 and 22), otherwise IBS
sharing exists. Therefore, the number of individuals
sharing at a locus can be easily calculated on inspection
of the number of homozygote individuals at each locus.
We define Si to be the number of cases sharing at least
one allele IBS at SNP i.

Si ¼ N � min Ni
11N

i
22

� �

where N is the total number of cases in a pedigree,
and N11

i ,N22
i are the counts of cases homozygous 11

and 22, respectively. Missing genotypes are treated as
heterozygotes.
We use Ri (t) to indicate the number of consecutive
SNPs (which includes the ith SNP) with IBS sharing
among at least t cases (also referred to as a “run length”),
where t is usually the total number of individuals whose
genotypes are in comparison (t = N). We recently intro-
duced a new SGS test statistic, the weighted mean pair-
wise Shared Genomic Segment (pSGS) statistic [9]. It
combines evidence from sharing in pairs of cases,
weighted by their genetic distance and hence is less
influenced by and has improved robustness to intra-
familial heterogeneity. Consider a pedigree with N cases,
and denote djk as the number of meioses between cases j
and k, and Ri

jk(2) as the run length shared by the pair of
cases j,k at locus i. The test statistic for the pSGS is
defined as follows:

pSGSi ¼ 1

N
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The significance is assessed empirically based on
expected sharing under a model that includes LD as
described in Thomas [14]. Our methodology is implemen-
ted in freely available java software (http://balance.med.
utah.edu/wiki/index.php/Access_programs_by_name).

pSGS and SGS: LD model
We used FitGMLD to obtain a LD model based on the
224 local control samples using default parameters [15].
This program applies graphical models to estimate a
general finite multivariate distribution for allelic associ-
ation between genetic loci in each autosomal chromo-
some. In the model, the variables are alleles at each SNP
loci, which are indicated using nodes. Edges connect loci
that are in LD with each other and SNPs in a chromo-
some are modeled using a Markov graph. The program
iteratively performs phase imputation and estimation of
LD model from genotype dataset of unrelated indivi-
duals. The method incorporates an error model for
genotyping. The program takes computation time in the
magnitude of O(nm), given n individuals with m geno-
typed markers [15].

pSGS and SGS: Significance assessment
We estimated nominal p-values for each locus using
Monte Carlo procedures, by comparing the observed
lengths to expected lengths under the null. Sharing
under the null was achieved using a gene-dropping pro-
cedure assuming random mating, Mendelian inheritance
and a genetic map for recombination. Founder haplo-
types in the pedigree were generated using the estimated
LD model. These were segregated through the known
pedigree structure using random Mendelian inheritance
to generate genotypes for each descendant in the
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pedigree. Recombinant events were based on an estab-
lished genetic map [14]. Simulated genotypes were only
retained for the studied cases in each pedigree and SGS
statistics were calculated using the null data configura-
tions to generate a distribution of lengths shared under
the null for each pedigree.
The simulation procedure was implemented using a

parallel Java program to improve computational
efficiency.

pSGS and SGS: Genomewide thresholds
Genomewide thresholds provide a correction for the
multiplicity of tests performed across the genome. For
SGS methods, the multiple testing corresponds to the
number of SGS segments across the genome, and this
depends on the pedigree structure (number of meioses
between the studied cases) and the sharing statistic con-
sidered (pSGS or SGS). Hence, we estimated genome-
wide thresholds empirically for each pedigree for both
pSGS and SGS. A genomewide significant threshold was
defined as the level of significance that would be
achieved at a rate of 0.05 times per genome under the
null (false positive rate per genome, μ=0.05). A genome-
wide suggestive threshold was defined as the level of sig-
nificance achieved at a rate of 1 per genome under the
null (μ=1.0). To estimate these thresholds we generated
1,000 null genome configurations for each pedigree
(matched to the real genetic data for LD and recombin-
ation model), performed SGS and pSGS, identified
the shared segments and their respective p-values (with
p-values estimated based on an empirical distribution of
up to 1,000,000 null values). For each pedigree and statis-
tic, the p-values for all segments across all 1,000 genomes
were ranked. We identified the 50th ranked p-value across
all 1,000 genomes (50/1,000 = 0.05 per genome) to deter-
mine the level for the significant threshold; and the
1,000th ranked p-value (1,000/1,000 = 1 per genome) to
determine the suggestive threshold.

Linkage analysis
We also performed multipoint linkage analysis on each
pedigree. In order to eliminate inflation of linkage statis-
tics due to LD, a pruned set of SNPs (n=26,177) were
used for the linkage analysis. This set of “LD-free” SNPs
had a minimum spacing of 0.1 cM, a minimum hetero-
zygosity of 0.3 (to maintain good information content),
and a maximum r2 of 0.16 over a sliding 500 kb window
in the public available HapMap CEU data, and exceeded
an individual call rate of 98% of genotyped subjects. We
used an established genetic map [16], plus linearly inter-
polated SNPs from Human Genome Build 35.1. Allele
frequencies were estimated from all genotyped indivi-
duals at each SNP. The multipoint linkage analysis was
performed using MCLINK, a multipoint Markov chain
Monte Carlo (MCMC) linkage method that can analyze
extended pedigrees [17]. A cases-only parametric ana-
lysis was performed based on a general dominant model.

Results
For all three pedigrees, nominal evidence was considered
to be p≤0.05. For pedigree 1, the empirical genomewide
suggestive and significant thresholds for pSGS were
p=6.5×10-3 and p=3.0×10-4, respectively, and the geno-
mewide suggestive and significant thresholds for SGS
were p=1.3×10-4 and p<1.0×10-6. For pedigree 2, no
results surpassed the nominal threshold therefore empir-
ical genomewide thresholds were not determined. For
pedigree 3, the empirical genomewide suggestive and
significance thresholds for pSGS were p=5.0×10-3 and
p=2.5×10-4, respectively, and the suggestive and signifi-
cant thresholds for SGS were estimated as p=3.8×10-5

and p<1.0×10-6. Genomewide thresholds for suggestive
and significant linkage signals have been previously
established to be LODs of 1.86 (p=1.7×10-3) and 3.30
(p=4.9×10-5), respectively [18].
Figure 3 shows the genomewide pSGS results for each

pedigree based on a LD model estimated from the local
controls. Table 1 illustrates all pSGS regions containing
at least nominal evidence. For each of these regions,
Table 1 also summarizes the best SGS p-value in the re-
gion (all N cases sharing) and the multipoint LOD score
from linkage analysis. Table 2 shows a comparison be-
tween the pSGS p-values attained based on the local
controls LD model and those based on the iControlDB
individuals LD model and indicates that our results are
extremely robust.
Four genomewide suggestive pSGS regions were iden-

tified, with an additional two borderline. One of these
regions was also genomewide suggestive in the SGS ana-
lysis, and one was genomewide suggestive using a dom-
inant linkage analysis (Table 1). Three of the
genomewide suggestive pSGS results were found in
pedigree 1 on chromosome 4 (37.5-54.6 Mb; p=0.006;
μ=0.98, indicating that a finding this extreme would be
expected 0.98 times per genome under the null),
chromosome 7 (16.7-31.2 Mb; p=0.005; μ=0.82) and
chromosome 8 (38.3-122.6 Mb; p=0.0025; μ=0.48).
Hence for pedigree 1, three genomewide suggestive
regions were observed, compared to less than 1 expected
under the null. One genomewide suggestive region was
identified in pedigree 3 on chromosome 2 (74.8-163.0 Mb;
p=0.004; μ=0.92), in addition two borderline suggestive
findings were also identified on chromosome 7 (11.4-
96.7 Mb; p=0.0065; μ=1.08, an overlap with the
genomewide suggestive region in pedigree 1) and
chromosome 14 (56.9-99.3 Mb; p=0.007; μ=1.25, an
overlap with a nominal region in pedigree 1). Hence,
for pedigree 3, three regions were found compared to a



(a) PEDIGREE 1

(b) PEDIGREE 2

(c) PEDIGREE 3

Figure 3 Genomewide pSGS results. For pedigree 1, genomewide suggestive and significance pSGS thresholds were estimated to be
p=6.5×10-3 (−log10p=2.2) and p=3.0×10-4 (−log10p=3.5), respectively. For pedigree 3, genomewide suggestive and significance pSGS thresholds
were estimated to be p=5.0×10-3 (−log10p=2.3) and p=2.5×10-4 (−log10p=3.6), respectively.
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Table 1 Regions with at least nominal evidence in pSGS (p≤0.05)

Pedigree (number cases;
min. possible sharing)†

Chromosome Region€ Length
(Mb)

pSGS
p-value¥

Average cases
sharing (range)

SGS Linkage

1 4* 37,542,764 - 54,575,432 17.0 0.0060 4.78 (3–5) 0.00017 1.19

(n=5; min=3) 7* 16,704,212 - 31,213,647 14.5 0.0050 4.83 (3–5) 0.00010 2.62

8 38,344,499 - 122,638,989 83.3 0.0025 4.78 (3–5) 0.000018 1.55

10 28,738,098 - 49,576,878 20.8 0.019 4.78 (3–5) 0.0020 1.25

14* 66,272,834 - 77,581,481 11.3 0.040 4.78 (3–5) 0.029 1.19

16 359,567 - 8,197,462 7.8 0.041 4.76 (3–5) 0.009 1.03

17 10,784,088 - 16,883,680 6.1 0.019 4.81 (3–5) 0.0015 1.30

3 2 74,758,934 - 162,960,873 88.2 0.0040 9.41 (6–10) 0.00014 1.66

(n=10; min=5) 4* 47,003,076 - 88,807,556 41.8 0.013 9.44 (5–10) 0.00033 0.89

6 31,320,810 - 31,628,733 0.3 0.037 9.60 (7–10) 0.0062 0.19

7* 11,358,235 - 96,674,424 85.3 0.0065 9.40 (6–10) 0.00025 1.04

12 67,987,630 - 101,376,241 33.4 0.0095 9.44 (6–10) 0.00020 1.27

14* 56,883,760 - 99,254,712 42.4 0.0070 9.43 (6–10) 0.00050 0.57

17 32,760,735 - 51,072,912 18.3 0.039 9.33 (6–10) 0.0014 0.03

18 8,247,249 - 50,460,551 42.2 0.017 9.43 (6–10) 0.0011 1.32
† For each pedigree the total number of cases in the pedigree, and the minimum possible number of cases that can share (i.e. the number of cases sharing
cannot go below this value) are shown.
€Coordinates are based on GRCh37/hg19.
¥Significance based on a LD map from 224 local controls.
*Overlapping regions are indicated by an asterisk.
For pedigree 1, genomewide pSGS thresholds are p=6.5×10-3 and p=3.0×10-4, for suggestive and significance, respectively, and corresponding SGS thresholds are
p=1.3×10-4 and p<1.0×10-6.
For pedigree 3, genomewide pSGS thresholds are p=5.0×10-3 and p=2.5×10-4, for suggestive and significance, respectively, and corresponding SGS thresholds are
p=3.8×10-5 and p<1.0×10-6.
For linkage, genomewide suggestive and significance LOD thresholds are 1.86 and 3.30, respectively, corresponding to p-values of 1.7×10-3 and 4.9×10-5.
Genomewide suggestive signals are indicated in bold. Borderline genomewide suggestive signals are bold and italicized.
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false positive rate of 1.25 or less per genome (3
observed, 1.25 expected). Even accounting for the mul-
tiple testing of analyzing three independent pedigrees,
we identified 6 signals (5 distinct chromosomal regions)
with μ≤1.25, which is greater than the 3.75 would be
expected by chance at this significance level.
For all 15 regions shown in Table 1, the average num-

ber of cases sharing across the regions was high (> N-1
cases), although the range of the number of cases sharing
was wide; generally spanning the total range possible. The
size of the shared regions also varied quite widely; for the
six regions of interest 14.5 – 88.2 Mb (Table 1). Shared
regions were defined as the segment of contiguous loci
remaining above nominal statistical evidence. Under the
null hypothesis (no disease locus) and the assumption
that recombinations at each meiosis occur as independent
Poisson processes, the expected length of a shared IBD
segment is Exponentially distributed with mean 1/d Mor-
gans, where d is the number of meiosis separating the
individuals. For example, a cousin-pair (d=4) will share
segments of size 25 cM on average. Under the alternate
hypothesis that a disease locus exists, the length follows a
Gamma distribution with mean 2/d. In the cousin-pair
example, the average segment length surrounding a
shared disease locus would be 50 cM. In our pedigrees,
breast cancer pairs ranged from siblings (d=2), to pairs
separated by 11 meioses (Figure 1). Importantly, it should
be noted that our SGS analysis, by design, identifies IBS
segments (a less stringent criteria than IBD), with an aim
is to identify excessively long regions that are therefore
likely to be IBD. For the above reasons, the region lengths
we identify may be longer than expected by chance for
the given relationships.
Three regions on chromosomes 4, 7 and 14 showed

overlapping evidence in pedigrees 1 and 3 (Table 1). To
investigate these three regions for evidence of common
sharing across pedigrees, we performed two-pedigree
pSGS analyses across all cases in pedigrees 1 and 3. Be-
cause there were no known genealogical links between
these pedigrees, the pSGS statistic in these two-pedigree
analyses could not be weighted by the number of mei-
oses between cases, so an un-weighted paired average
method was used. Table 3 illustrates the results of these
two-pedigree analyses. All regions remained at least
nominally significant indicating that the underlying risk
variants could be the same in the two pedigrees. Of par-
ticular note was the 7.6 Mb region on chromosome 4
that increased in significance, despite the potential loss
of power due to our inability to weight the sharing by
meioses in the two-pedigree analysis.



Table 2 Comparison of pSGS p-values: local controls and iControlDB individuals

Pedigree Chromosome Region Length
(Mb)

Local Controls (n=224) iControlDB (n=1,490)

pSGS pSGS

1 4* 37,542,764 - 54,575,432 17.0 0.0060 0.015

7* 16,704,212 - 31,213,647 14.5 0.0050 0.0060

8 38,344,499 - 122,638,989 83.3 0.0025 0.0013

10 28,738,098 - 49,576,878 20.8 0.019 0.014

14* 66,272,834 - 77,581,481 11.3 0.040 0.041

16 359,567 - 8,197,462 7.8 0.041 0.044

17 10,784,088 - 16,883,680 6.1 0.019 0.017

3 2 74,758,934 - 162,960,873 88.2 0.0040 0.0033

4* 47,003,076 - 88,807,556 41.8 0.013 0.013

6 31,320,810 - 31,628,733 0.3 0.037 0.035

7* 11,358,235 - 96,674,424 85.3 0.0065 0.0055

12 67,987,630 - 101,376,241 33.4 0.0095 0.0095

14* 56,883,760 - 99,254,712 42.4 0.0070 0.0055

17 32,760,735 - 51,072,912 18.3 0.039 0.032

18 8,247,249 - 50,460,551 42.2 0.017 0.012
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Discussion
We investigated three extended Utah high-risk breast
cancer pedigrees using weighted pSGS analysis to iden-
tify regions of excessive sharing that could potentially
harbor breast cancer susceptibility loci. Five regions of
interest were identified on chromosomes 2, 4, 7, 8 and
14. Three of these regions (chromosomes 4, 7 and 14)
showed evidence for excessive sharing in two pedigrees
(pedigrees 1 and 3), with chromosome 4 being perhaps
of particular interest because the region gained signifi-
cance in the two-pedigree analysis. All five of these
regions have either been identified previously in geno-
mewide searches or candidate susceptibility genes reside
in them. Our region on chromosome 4 is supported by
evidence from two previous genomewide linkage studies
of families not attributable to BRCA1 or BRCA2. A large
international multi-center linkage study of 149 breast
cancer families identified the chromosome 4 region as
the best linkage across the genome (LOD=1.8) [19]. This
location on chromosome 4 was also reported as one of
the top candidate regions in another genomewide link-
age scan (LOD=1.3) [20]. In addition, our region
includes cytogenetic band 4q12 which has previously
been proposed as a location potentially harboring genes
Table 3 pSGS results for two-pedigree analyses including ped

Chr Region Length
(Mb)

pSGS
pedigree 1

4 47,003,076 - 54,575,432 7.6 0.0060

7 16,704,212 - 31,213,647 14.5 0.0050

14 66,272,834 - 77,581,481 11.3 0.040
important in breast cancer development because of
observed loss of heterozygosity at 4q12 in both BRCA1/
2 and sporadic breast cancer tumors [21,22]. Further-
more, there has been recent interest in two candidate
genes in this region, with increased gene copy number
for genes KIT and VEGFR2 found in triple negative
breast cancer, an aggressive and difficult to treat form of
the disease [23]. Our region on chromosome 14q
includes the breast cancer candidate gene RAD51L1,
which contains one of the two most significant associa-
tions reported in a multi-stage genomewide association
study of 9,770 cases and 10,799 controls [24]. Our re-
gion on chromosome 7 contains the AHR gene that has
been associated with breast cancer risk [25,26], and IL6
[27], which contains a marker associated with increased
risk for breast carcinoma [28]. Our 88.2 Mb region on
chromosome 2 includes the gene ZEB2 that is involved
in RAS pathway that has been proposed as involved in
clinical breast cancer progression [29]. There are also
two SNPs (rs17188434 and rs12472911) that have been
associated with age at menarche in this region [30], and
early menarche is suggested to be a risk factor for breast
cancer. The large 83.3 Mb region on chromosome 8
encompasses multiple possible breast cancer candidate
igrees 1&3 in the overlapping regions

pSGS
pedigree 3

Two-ped-pSGS
(local controls)

Av. sharers in 2-ped
analysis (range)

0.013 0.0025 14.14 (10–15)

0.0065 0.0076 14.00 (9–15)

0.0070 0.011 14.04 (9–15)
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genes: for example, POLB [31] and NBS1 (NBN) [32,33]
have previously been implicated in heritable susceptibil-
ity to breast cancer; EBAG9 has been suggested to be
involved in early stage breast cancer [34].
Seven nominal regions were also identified in our ana-

lyses. Notably two of these regions are on chromosome
17. One of the chromosome 17 regions in pedigree 1
(10.8-19.9 Mb) contains the candidate gene, ELAC2,
which was previously proposed as a susceptibility gene
for prostate cancer using Utah high-risk pedigrees [35].
Genes that increase susceptibility to both breast and
prostate cancer have been observed previously; for ex-
ample, BRCA2 [36]. The second chromosome 17 region
was found in pedigree 3 (32.8-51.1 Mb) and contains the
high-risk breast cancer gene, BRCA1. It is perhaps sur-
prising that a region containing BRCA1 would arise,
given our aim to screen out families with known BRCA
mutations. In agreement with our selection criteria, we
show no linkage at this locus (LOD=0.03). Nonetheless,
it is possible that BRCA1 remains a potential factor for
risk in this pedigree.
We selected weighted pairwise SGS as our primary

analysis specifically because the original SGS method
will lose power quickly with intra-familial heterogeneity,
and breast cancer is known to be a complex and very
heterogeneous disease. In line with this assumption, only
one of our genomewide suggestive pSGS regions also
showed genomewide suggestive evidence using the ori-
ginal SGS algorithm. Furthermore, while the number of
sharers across our regions of interest remained high, the
range was wide and often reduced to the minimum pos-
sible number sharing. Hence, it appears that the pairwise
algorithm may have been successful at providing more
robustness to noise from heterogeneity, in addition to
any residual genotyping error. One of our most signifi-
cant pSGS regions (chromosomes 2) also showed geno-
mewide suggestive evidence using multipoint linkage
analysis with a dominant model.
An advantage of a pedigree design for gene identifica-

tion is that a small number of cases and a well-delimited
region can be easily defined and increases the efficiency
of downstream experiments. Sequencing multiple cases
selected for their high likelihood of sharing the under-
lying susceptibility variant provides an additional and
powerful filter that can be used to parse findings from
sequencing efforts. Hence, follow-up regionally-focused
sequencing of the most compelling of these regions is a
cost-effective and logical next step to identify the critical
underlying risk variant at these loci.

Conclusions
Our pSGS analyses have highlighted several regions that
have the potential to harbor susceptibility variants for
breast cancer, some of which confirm loci previously
proposed by others. Three of our most significant
regions (chromosomes 4, 7 and 14) were observed in
two pedigrees and show evidence for shared risk variants
across those pedigrees. Arguably, these three regions in
pedigrees 1 and 3 are particularly good candidates to
pursue using regionally-focused sequencing to identify
novel breast cancer risk variants. In addition, and more
broadly, this study has illustrated the potential utility of
our new weighted pSGS method and extended pedigrees
for gene mapping in complex diseases.
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