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Abstract

Background: ChIP-seq provides new opportunities to study allele-specific protein-DNA binding (ASB). However,
detecting allelic imbalance from a single ChIP-seq dataset often has low statistical power since only sequence reads
mapped to heterozygote SNPs are informative for discriminating two alleles.

Results: We develop a new method iASeq to address this issue by jointly analyzing multiple ChIP-seq datasets. iASeq
uses a Bayesian hierarchical mixture model to learn correlation patterns of allele-specificity among multiple proteins.
Using the discovered correlation patterns, the model allows one to borrow information across datasets to improve
detection of allelic imbalance. Application of iASeq to 77 ChIP-seq samples from 40 ENCODE datasets and 1 genomic
DNA sample in GM12878 cells reveals that allele-specificity of multiple proteins are highly correlated, and demonstrates
the ability of iASeq to improve allelic inference compared to analyzing each individual dataset separately.

Conclusions: iASeq illustrates the value of integrating multiple datasets in the allele-specificity inference and offers a
new tool to better analyze ASB.

Keywords: Allele-specific binding, Transcription factor, Histone modification, Data integration, Next-generation
sequencing, Statistical model

Background
In a diploid organism, each somatic cell has two copies
of the genome. At certain genomic loci, gene expression,
DNA methylation, transcription factor (TF) binding or
histone modification (HM) can be allele-specific. In other
words, the two alleles can behave differently. These phe-
nomena, also known as allele-specific expression (ASE),
allele-specific DNAmethylation (ASM) and allele-specific
binding (ASB, including both allele-specific TF binding
and allele-specific histone modifications), can contribute
to phenotypic diversity and may play important roles in
adaptive evolution [1-3]. Many allele-specific (AS) events
have been found to correlate with variants in genomic
sequences [4-11]. Comprehensively characterizing allele-
specificity therefore can help with linking genotypes to
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phenotypes. Abnormal AS events have also been linked to
various diseases [12-15]. For instance, loss of imprinting
in IGF2 has been associated with increased risk of col-
orectal cancer [12]. This again highlights the importance
of studying allele-specificity.
Early methods for analyzing AS events rely on low-

throughput technologies such as real time quantitative
PCR [1]. Later, application of SNP arrays has made the
AS analysis high-throughput [16-19]. More recently, the
rapidly evolving high-throughput sequencing technolo-
gies opened the door to produce digital read-out of AS
events genome-wide without being constrained by any
specific array design [5,14,15,20-24]. This brings many
new opportunities as well as analytical challenges.
ChIP-seq, a technology that couples chromatin immu-

noprecipitation with high-throughput sequencing, has
become the state-of-the-art approach for mapping
genome-wide TF binding sites and HMs [25-28]. How-
ever, so far the value of this technology for studying ASB
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has not been fully utilized. Detecting ASB from a sin-
gle ChIP-seq dataset often suffers from low statistical
power. This is because only a small fraction of reads in
each ChIP-seq sample are mapped to heterozygote SNPs,
and only these reads are informative for inferring allele-
specificity. To make the ChIP-seq based ASB analysis
more useful, it is important to have either experimental or
analytical innovations to increase the power for detecting
allele-specificity.
ChIP-seq data in public domains grow rapidly. A

recently developed database hmChIP, for instance, has
compiled over 450 human and mouse ChIP-seq datasets
representing approximately 2000 samples from 140+ dif-
ferent TFs and HMs [29,30]. The large volume of data
provides a new opportunity to improve detection of ASB.
Conceptually, an integrative analysis of ChIP-seq data for
different TFs and HMs from the same individual and cell
type may allow one to discover the synergistic correla-
tion patterns of allele-specificity among different proteins.
These correlation patterns can then be utilized to inte-
grate information from multiple datasets to improve the
ASB detection. For example, if the allelic imbalance of
TF A and HM B always co-occur, then analyzing their
ChIP-seq data jointly will increase the effective number
of reads available for allelic inference which will then
increase the statistical power. Unfortunately, existing data
analysis tools cannot deal with this emerging opportu-
nity. Methods available for analyzing ASE or ASB using
the next-generation sequencing data are all designed for
analyzing one dataset at a time. While a few methods
are developed for solving problems such as read map-
ping biases [31], construction of individualized genome
sequences [32], and combining multiple SNPs in the same
gene to infer ASE [33], no methods and software tools are
available for jointly analyzing multiple ChIP-seq datasets
together to discover synergy patterns of allele-specificity
among multiple proteins and then use the correlation pat-
terns to increase the power of ASB detection by borrowing
information across datasets.
In this article, we present an integrated solution to this

problem by developing a new approach, iASeq, for jointly
analyzing allele-specificity in multiple ChIP-seq datasets.
iASeq uses a Bayesian hierarchical mixture model to
describe unknown correlation patterns of allele-specificity
among multiple datasets. These patterns can be discov-
ered automatically from the data by fitting themodel using
an Expectation-Maximization (EM) algorithm. Using the
identified correlation patterns, the model allows one to
integrate information from multiple datasets to improve
the ASB detection. Applying this approach, we analyzed
40 ENCODE [34] ChIP-seq datasets in GM12878 cells,
representing a total of 77 samples from 34 TFs and HMs.
The analysis demonstrates the ability of iASeq to auto-
matically integrate information from multiple datasets to

significantly improve the detection of allelic imbalance.
iASeq is implemented as an R package which is freely
available from Bioconductor [35].

Methods
Data structure
Suppose there are D ChIP-seq datasets generated using
cells from the same individual and the same cell type.
Each dataset d corresponds to one TF or HM, and has Jd
replicate samples (Figure 1a). Different datasets represent
different TFs or HMs, or data generated by different labs.
For the individual in question, assume one is interested
in analyzing I heterozygote SNPs with known genotypes.
We want to know whether the two alleles of each SNP
behave differently in each dataset, and if possible how
the AS events are correlated among datasets. For each
SNP, the allele consistent with the reference genome is
called the reference allele, and the other allele is called the
non-reference allele.
After read mapping and data preprocessing (see

Additional file 1: Supplemental Methods S.1), we count
reads for each allele at each heterozygote SNP. For SNP i,
dataset d and replicate sample j, let xidj and yidj be the read
counts for the reference allele and non-reference allele
respectively. Let nidj = xidj + yidj be the total read count
(See Figure 1a for a toy example). Protein-DNA binding
can be skewed to the reference allele (SR), skewed to the
non-reference allele (SN), or not allele-specific (NS). We
use a binary variable bid to indicate whether SNP i is SR
(bid = 1) or not (bid = 0) in dataset d. If bid = 1, then SNP
i is assumed to be SR in all replicate samples in dataset
d. Similarly, we introduce another binary indicator cid to
indicate whether SNP i is SN or not in dataset d. bid and
cid cannot be equal to one at the same time. If bid = 0
and cid = 0, then SNP i is NS in dataset d. The config-
uration at each SNP i can be described by two vectors
Bi = (bi1, · · · , biD) and Ci = (ci1, · · · , ciD) (See Figure
1d for a cartoon illustration). Based on these notations,
(xidj, yidj), or equivalently (xidj, nidj), are the observed data
for SNP i in sample (d,j), whereas the indicators bid and
cid are unobserved.

Main intuition and challenge
Our primary goal is to infer for each SNP whether there
is allelic imbalance in each dataset. This is equivalent
to inferring bid and cid. A simple solution to this prob-
lem is to analyze each individual dataset separately, but
this approach has low statistical power since the counts
(xidj, nidj) usually are small.
If one knows how different datasets are correlated in

terms of allelic imbalance, this knowledge may be used to
improve the data analysis. For instance, if the allelic imbal-
ance of two proteins A and B are closely correlated, then
observing skewed read counts for protein A will provide



Wei et al. BMC Genomics 2012, 13:681 Page 3 of 19
http://www.biomedcentral.com/1471-2164/13/681

Figure 1 The iASeqmodel. (a) An example of the data structure. Each row represents a SNP and each column corresponds to either the reference
allele (R) or the non-reference allele (N) read counts from a ChIP-seq sample in a dataset. A dataset could be a TF ChIP-seq experiment or a HM
ChIP-seq experiment, and can have multiple replicate samples (Rep). iASeq assumes the following data generating process. (b) First, SNPs belong to
K + 1 classes with different ASB patterns. For each SNP, a class label ai is randomly assigned according to a class abundance probability vector π .
Given the class label, a configuration [ bid , cid] is generated for each SNP in each dataset according to the probabilistic allele-specificity patterns
specified by two vectors V k andW k . In the figure, the darkness of each cell in V andW represents the probability for bid or cid to be 1. (c) Next, a
skewing probability pidj is generated for each SNP i, dataset d and replicate sample j based on [ bid , cid]. The distribution of pidj for NS SNPs in each
sample follows a Beta distribution (blue lines). pidjs for SR SNPs are uniformly distributed in the interval [ pdj0, 1] where pdj0 is the mean of the
background Beta distribution (dark blue lines). pidjs for SN SNPs are uniformly distributed in the interval [ 0, pdj0] (light blue lines). (d) Finally, given
the configuration [ bid , cid], skewing probability pidj and a total read count nidj for SNP i, dataset d and sample j, the read count for each allele is
generated according to a binomial distribution. The length of the orange bar represents the non-reference allele read count, and the length of the
red bar represents the reference allele read count.

information for inferring the allelic imbalance of protein
B. Integrating the data from both A and B will increase the
effective number of reads available for statistical inference,
which will then lead to increased statistical power.
In reality, how different proteins are correlated is usu-

ally unknown. However, one may learn it by studying the

data from many SNPs. Each SNP has three possible states
in each dataset: SR, SN and NS. For D datasets, there are
3D possible configurations in total. From studying many
SNPs, one can know the relative frequencies (or mixing
proportions) of these 3D configurations. The mixing pro-
portions will tell how different datasets are correlated. For
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instance, let [ s1, s2, · · · , sD] be the skewness configuration
of a SNP in the D datasets. If the mixing proportions for
three configurations [NS,NS, · · · ,NS], [ SR, SR, · · · , SR]
and [ SN , SN , · · · , SN] are 0.9, 0.05 and 0.05, then no other
configurations exist in the data and all datasets are per-
fectly correlated in terms of the allelic imbalance. In other
words, at a particular SNP, if one dataset is SR, then all
the other datasets are also SR. If one is SN, then all the
others are also SN. On the other hand, if other config-
urations have non-zero mixing proportions, then not all
datasets are perfectly correlated, and at a particular SNP,
one allows the possibility that only a subset of datasets
are correlated. For instance, if the mixing proportion for
a configuration [ SR, SR,NS, · · · ,NS] is 0.03, then there
will be 3% of SNPs that are skewed to the reference allele
in the first two datasets but not skewed in the other
datasets. Therefore, knowing the mixing proportions of
all 3D configurations will tell one the correlation structure
in the data. This knowledge can then be used to improve
statistical inference at each individual SNP by facilitat-
ing information sharing across datasets. For example, if
the configuration [SR, SR, SN] has a much higher mix-
ing proportion than [SR, SR, NS], then observing strong
skewness towards the reference allele of a SNP in the first
two datasets will imply that, a priori, the SNP is highly
likely to be skewed to the non-reference allele in the third
dataset and has much lower probability to be non-skewed
for both alleles. The principle here is the same as the prin-
ciple represented by the Bayesian hierarchical models in
the statistical literature.
A limitation of this approach is that one has to enumer-

ate all 3D AS configurations in order to describe the corre-
lation. As the number of datasets increases, the number of
possible configurations increases exponentially. Thus this
approach does not scale well with the increasing D. Later,
in our analysis of GM12878 data, D = 40 and 3D > 1019.
This simple approach is clearly intractable.
To circumvent the difficulty of documenting the fre-

quencies of all 3D configurations, iASeq employs a tech-
nique that can describe the major correlation patterns
in the data using a few probability vectors whose val-
ues vary from 0 to 1 rather than being dichotomous
(i.e., 0 or 1). This approach significantly reduces the
model complexity but keeps the flexibility to account
for all 3D configurations. It is easily scalable to increas-
ing dataset number. The correlation structure in the
model can then be used to improve the statistical infer-
ence of allelic imbalance at each SNP in each individual
dataset.

Probability model
iASeq is based on the Bayesian hierarchical mixturemodel
below that uses several probability vectors to describe
the major correlation patterns among multiple datasets

(Figure 1). The model assumes that SNPs can be grouped
into K + 1 classes with different allele-specificity patterns
(K � 3D), and the observed data are viewed as generated
as follows:

• First, a class label ai is randomly assigned to each
SNP i according to a probability vector
π = (π0,π1, · · · ,πK ). Here, πk = Pr(ai = k) is the
prior probability to assign a SNP to class k.∑

k πk = 1.
• If the class label ai = 0, then Bi = (0, · · · , 0) and

Ci = (0, · · · , 0). In other words, all SNPs in class 0
are background SNPs, and they are NS in all datasets.
If ai = k and k �= 0, then SNP i can be skewed, and
its [ bid; cid]s in different datasets are generated
independently according to the following
probabilities: Pr(bid = 1, cid = 0|ai = k) = vkd and
Pr(bid = 0, cid = 1|ai = k) = wkd . We assume
vkd + wkd < 1, i.e., Pr(bid = 0, cid = 0|ai = k) =
1 − vkd − wkd > 0. The model implies that each class
is associated with two vectors of probabilities
V k = (vk1, · · · , vkD) andW k = (wk1, · · · ,wkD). For
SNPs in class k, Bi and Ci are generated according to
the probabilities in V k andW k .

• Next, the observed read counts are generated based
on the AS configurations specified by Bis and Cis.
Consider SNP i and dataset d. If bid = 1, then
(xidj, nidj) in each replicate sample (d,j ) is generated
according to a probability distribution
Pr(xidj, nidj|bid = 1, cid = 0) = Pr(nidj|bid = 1, cid =
0)Pr(xidj|nidj, bid = 1, cid = 0) ≡ Pr(nidj)fidj1(xidj).
Here we assume that the marginal distribution of nidj
does not depend on bid and cid , and we use fidj1(xidj)
to denote the conditional distribution
Pr(xidj|nidj, bid = 1, cid = 0). Data in different
replicate samples are assumed to be generated
independently. Similarly, if cid = 1, then (xidj, nidj)s
are generated according to Pr(xidj, nidj|bid = 0,
cid = 1) = Pr(nidj)fidj2(xidj). If bid = 0 and cid = 0,
then (xidj, nidj)s are generated according to
Pr(xidj, nidj|bid = 0, cid = 0) = Pr(nidj)fidj0(xidj).

For SNP i and dataset d, we organize data from all
replicates j = 1, · · · , Jd into X id = (xid1, · · · , xidJd ) and
N id = (nid1, · · · , nidJd ). For SNP i, X i = (X i1, · · · ,X iD)

and N i = (N i1, · · · ,N iD) contain data from all datasets.
The final observed data are X = (X1, · · · ,XI) and N =
(N1, · · · ,N I) which are the ensemble of data from all
SNPs.
Let A = (a1, · · · , aI) be the collection of class member-

ship indictors of all SNPs, and let B = (B1, · · · ,BI) and
C = (C1, · · · ,CI) be the SR and SN indictors for all SNPs.
A, B and C are the unobserved missing data one wants
to infer.
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Organize the probability vectors V k and W k from dif-
ferent classes into two matrices VK×D = (VT

1 , · · · ,VT
K )T

and WK×D = (WT
1 , · · · ,WT

K )T . V, W, and the probabil-
ity vector π that describes the class abundance are the
unknown model parameters. K is assumed to be fixed.
The choice of K and specification of data generating dis-
tributions Pr(nidj), fidj0(xidj), fidj1(xidj) and fidj2(xidj) will
be discussed later.
Based on this model, each SNP class k (k �= 0) is asso-

ciated with two vectors of probabilities V k andW k which
characterize the allelic imbalance preferences in different
datasets for SNPs belonging to class k. For example, if
a class has [V k ;W k] = [(0.8,0.7,0.1,0.1); (0.1,0.1,0.8,0.1)],
then SNPs in this class have high probability to be SR in
datasets 1 and 2, and high probability to be SN in dataset
3, but they have low probability to be allele-specific in
dataset 4. Since V k and W k are probabilities rather than
0-1 vectors, each class k can generate all 3D AS con-
figurations. Therefore, SNPs in the same class are not
required to have the same AS configuration (e.g., a class
can have one SNP with configuration [ SR, SR,NS,NS]
while at the same time another SNP with configuration
[ SR,NS, SR,NS]), although they usually have similar AS
configurations because SNPs in the same class are all
generated using the same probability vectors. Meanwhile,
there are K different classes, and each class has a different
[V k ;W k] which specifies a different preference to gen-
erate the skewing configurations. Thus, whereas SNPs in
the same class tend to have similar [Bi;Ci] configurations,
SNPs from different classes tend to have very different
configurations. Conceptually, this is similar to a model-
based clustering analysis in which SNPs are grouped into
K+1 clusters based on their [Bi;Ci] configurations. How-
ever, an important difference here is that [Bi;Ci]s are
unknown.
Our model assumes that [ bid; cid]s of the same SNP

in different datasets are a priori independent condi-
tional on the class membership ai. However, [ bid; cid]s
from different datasets are not independent marginally
if one integrates out the class label ai. For exam-
ple, the marginal probability Pr([ bid; cid]= [ 1; 0] ) =∑

k Pr([ bid; cid]= [ 1; 0] |ai = k)Pr(ai = k) =∑K
k=1 πkvkd. On the other hand, the joint probability

Pr([Bi;Ci]=[(1, 1,· · ·,1); (0, 0, · · · , 0)] ) = ∑K
k=1 πk(

∏
d vkd),

which is clearly different from the product of the
marginals

∏
d Pr([ bid; cid]=[ 1; 0] ) = ∏

d(
∑K

k=1 πkvkd).
This explains why our model can be used to describe the
correlation among multiple datasets despite the condi-
tional independence assumption. Intuitively, if one views
the model as a clustering analysis of SNPs based on
[Bi;Ci], then each cluster will represent a co-occurrence
pattern of allele-specificity across multiple proteins. The
marginal correlation amongmultiple datasets is described
by multiple clusters, whereas within each cluster the data

in different datasets are generated independently. In real
data, a small K (i.e., a small number of SNP classes) usu-
ally is sufficient to describe themajor correlation structure
among datasets. Using π , V and W to describe the cor-
relation among datasets only requires O(KD) parameters,
which is significantly less complex than O(3D) parame-
ters. At the same time, the iASeq model still provides the
flexibility to accommodate all 3D possible [Bi;Ci] con-
figurations as all of them have non-zero probability to
occur.

Data generating distributions
To fully specify the model, one also needs to specify
the data generating distributions Pr(xidj, nidj|bid , cid) =
Pr(nidj)Pr(xidj|nidj, bid , cid). The primary goal of iASeq
is to infer whether two alleles are different. We assume
that information on allele-specificity is only contained
in Pr(xidj|nidj, bid , cid), and therefore the exact form of
Pr(nidj), i.e., the marginal probability distribution of the
total read count, is irrelevant for our purpose. As such,
we mainly focus on modeling the conditional distribution
of xidj given nidj, bid and cid, i.e., the three distributions
fidj0(x), fidj1(x) and fidj2(x).
iASeq models these distributions hierarchically in two

steps. First, xidj is assumed to follow a binomial dis-
tribution xidj|nidj, pidj ∼ Bin(nidj, pidj), where pidj is the
probability that a read generated at SNP i in sample
(d, j) represents the reference allele. Next, we model pidj
depending on the values of bid and cid.
If bid = 0 and cid = 0, SNP i is NS in dataset d. In

this case, we assume that pidj follows a Beta distribu-
tion Beta(αdj,βdj) with mean pdj0 = αdj/(αdj + βdj). Note
that a simpler model for pidj would be to set it to a con-
stant pdj0 which reflects the background ratio of read
counts between two alleles. However, previous studies
have shown that many background SNPs can have pidj
slightly different from the average background pdj0 even
though they do not have biologically meaningful allele-
specificity [33]. As a result, a constant pdj0 is not sufficient
to describe the background variation. For this reason, we
adopt the Beta distribution to describe pidj instead of set-
ting it to a constant (See the blue lines illustrated for
f (pidj|bid = 0, cid = 0) in Figure 1c). In the ideal world, the
mean of the Beta distribution, pdj0, would be equal to 0.5.
However, in reality pdj0 may be slightly different from 0.5
due to various sources of read mapping biases. For exam-
ple, allowing the same number of mismatches, reads from
the reference allele are easier to bemapped back to the ref-
erence genome than reads from the non-reference allele.
Therefore, in iASeq pdj0 may take values different from
0.5. Indeed, it is determined by the parameters αdj and βdj
in the Beta distribution which are estimated from the data
using a moment matching approach (see Additional file 1:
Supplemental Method S.2). Once estimated, αdj, βdj and
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pdj0 are treated as fixed and known parameters. Based on
the model for pidj, we integrate out all possible values of
pidj to obtain the distribution of xidj conditional on bid = 0
and cid = 0, which is a beta-binomial distribution:

fidj0(xidj) = Pr
(
xidj|nidj, bid = 0, cid = 0

)
=

∫ 1

0
Pr(xidj|nidj, pidj, bid = 0, cid = 0)

× f
(
pidj|bid = 0, cid = 0

)
dpidj

= Cxidj
nidj

B
(
αdj,βdj

)∫ 1

0
pxidj+αdj−1(1−p)nidj−xidj+βdj−1dp

= Cxidj
nidjB

(
xidj + αdj, nidj − xidj + βdj

)
B

(
αdj,βdj

) (1)

HereCk
n is the binomial coefficients “n choose k”, andB(., .)

is the beta function.
If bid = 1 and cid = 0, SNP i is SR in dataset d. In

this case, we assume that pidj follows a uniform distri-
bution U[ pdj0, 1](See the dark blue lines illustrated for
f (pidj|bid = 1, cid = 0) in Figure 1c). Here pdj0 =
αdj/(αdj + βdj) is defined as above. After integrating out
pidj, the distribution of xidj conditional on bid = 1 and
cid = 0 is

fidj1(xidj) = Pr(xidj|nidj, bid = 1, cid = 0)

=
∫ 1

0
Pr(xidj|nidj, pidj, bid = 1, cid = 0)

× f (pidj|bid = 1, cid = 0)dpidj

= Cxidj
nidj

1 − pdj0

∫ 1

pdj0
pxidj(1 − p)nidj−xidjdp (2)

If bid = 0 and cid = 1, SNP i is SN in dataset
d, and we assume that pidj follows a uniform distribu-
tion U[ 0, pdj0] (See the light blue lines illustrated for
f (pidj|bid = 0, cid = 1) in Figure 1c). After integrating out
pidj, the distribution of xidj conditional on bid = 0 and
cid = 1 is

fidj2(xidj) = Pr(xidj|nidj, bid = 0, cid = 1)

=
∫ 1

0
f (xidj|nidj, pidj, bid = 0, cid = 1)

× f (pidj|bid = 0, cid = 1)dpidj

= Cxidj
nidj

pdj0

∫ pdj0

0
pxidj(1 − p)nidj−xidjdp (3)

Joint probabilities andmodel fitting
Based on the model above, the complete data likelihood
can be derived as:

Pr(X,N ,A,B,C|π ,V ,W )

= Pr(N)Pr(X,A,B,C|N ,π ,V ,W )

= Pr(N)

I∏
i=1

Pr(X i, ai,Bi,Ci|N i,π ,V,W ) (4)

Define Lid0 = ∏Jd
j=1 fidj0(xidj), Lid1 = ∏Jd

j=1 fidj1(xidj)
and Lid2 = ∏Jd

j=1 fidj2(xidj). Define δ(.) to be an indica-
tor function. δ(.) = 1 if its argument is true, and δ(.) = 0
otherwise. We have

Pr (X i, ai,Bi,Ci|N i,π ,V ,W )

= Pr (ai|π)

D∏
d=1

Pr (bid, cid|ai,V ,W )Pr(X id|N id, ai, bid , cid)

=
{
π0

D∏
d=1

Lid0

}δ(ai=0) K∏
k=1

{
πk

D∏
d=1

[vkdLid1]bid [wkdLid2]cid

× [(1 − vkd − wkd)Lid0]1−bid−cid

}δ(ai=k)

(5)

To infer π , V andW, we employ a Bayesian approach by
imposing a Dirichlet prior D(η, · · · , η) on π and impos-
ing independent Dirichlet priors D(η, η, η) on all triplets
(vkd,wkd, 1 − vkd − wkd). The joint posterior distribution
of unknown parameters and indicators given the observed
data is:

Pr (A,B,C,π ,V ,W |X,N)

∝ Pr (X,N ,A,B,C|π ,V ,W ) f (π ,V ,W )

∝
I∏

i=1
Pr(X i, ai,Bi,Ci|N i,π ,V ,W )

{ K∏
k=0

π
η−1
k

}

×
{ K∏
k=1

D∏
d=1

vη−1
kd wη−1

kd (1 − vkd − wkd)
η−1

}
(6)

Conditional on the observed data, Pr(N) is a constant
that does not contain parameters of interest, therefore it is
absorbed into a proportionality constant not shown in the
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formula above. Using this joint posterior, an EM algorithm
can be derived to search for posterior mode (π̂ , V̂ , Ŵ ) of
Pr(π ,V ,W |X,N) = ∑

A,B,C Pr(A,B,C,π ,V ,W |X,N) in
which the missing indictors A, B and C are all integrated
out (see Additional file 1: Supplemental Method S.4).
For the Dirichlet prior, we use η = 2 (see Additional

file 1: Supplemental Method S.3 for a discussion on the
choice of parameter for the Dirichlet prior). In the EM
algorithm, we assume that the class number K is given.
In order to choose the optimal K, we run the algorithm
multiple times using different values of K. We choose the
best K using the Bayesian Information Criterion (BIC)
(see Additional file 1: Supplemental Method S.5).

Statistical inference of allele-specificity
The estimated π , V and W can describe the corre-
lation patterns of allele-specificity among datasets.
Given π , V and W, one can infer whether SNP i
belongs to class k based on the posterior probability
Pr(ai = k|X i,N i,π ,V ,W ) (see Additional file 1: Supple-
mental Method S.4 equations S.12-S.13). One can
then infer whether each SNP i is skewed in each
individual dataset d based on the posterior probabil-
ity Pr(bid, cid|X i,N i,π ,V ,W ) = ∑

ai Pr(ai, bid , cid|X i,N i,
π ,V ,W ) after summing over all possible values of ai
(see Additional file 1: Supplemental Method S.4 equation
S.14). Note that

Pr (bid ,cid|X i,N i,π ,V ,W ) =∑
k
Pr (ai=k|X i,N i,π ,V ,W )Pr (bid , cid|ai=k,X i,N i,π ,V ,W )

(7)

Define

P̃id = max
{

Pr (bid = 1, cid = 0|X i,N i,π ,V ,W ) ,

Pr (bid = 0, cid = 1|X i,N i,π ,V ,W )

}
(8)

Using P̃id, SNPs can be rank ordered for biologists to
choose candidates to design follow-up studies. For each
top ranked SNP, one can determine its skewing direction
by comparing Pr(bid = 1, cid = 0|X i,N i,π ,V ,W ) and
Pr(bid = 0, cid = 1|X i,N i,π ,V ,W ). The one with the
larger value determines the direction. Finally, the poste-
rior probabilities of top N SNPs can be converted to an
estimate of false discovery rate (FDR) using FDR(N) =∑

i∈top N SNPs(1 − P̃id)/N .
Formula 7 shows that two types of informa-

tion contribute to Pr(bid , cid|X i,N i,π ,V ,W ): (1)
Pr(ai = k|X i,N i,π ,V ,W ), which is determined using

information from all D datasets, and (2) Pr(bid, cid|ai =
k,X i,N i,π ,V ,W ), which only uses information specific
to dataset d conditional on π , V and W. Thus for each
particular dataset d, the dataset-specific information is
weighted by information obtained from other datasets to
determine the SNP ranking. Intuitively, if allelic imbalance
in two datasets are correlated, then observing an AS event
in one dataset will suggest that a relatively weak skewing
event observed at the same SNP in the other dataset is
very likely to be a true AS event. In contrast, if no AS
event is observed in one dataset, then a relatively weak
skewing event observed at the same SNP in the other
dataset is likely to be a false positive. This is the underly-
ing nature of using Pr(ai = k|X i,N i,π ,V ,W ) to re-weigh
information in Pr(bid , cid|ai = k,X i,N i,π ,V ,W ), and it
provides the foundation for improving SNP ranking by
borrowing information across datasets. In real applica-
tions, π , V ,W are unknown, and they are replaced by the
posterior mode obtained from the EM algorithm.

Results
GM12878 data and preprocessing
We collected 40 ENCODE [36] ChIP-seq datasets with a
total of 77 samples together with a genomic DNA sample
in GM12878 lymphoblastoid cells (Additional file 2: Table
S1). GM12878 is a female and is one of the most exten-
sively studied cell lines in ENCODE. Within each dataset,
the number of replicate samples varied from 1 to 3. We
downloaded the raw sequence reads of all 78 samples and
mapped them to human genome (hg18) (see details in
Additional file 1). We removed repeated sequences from
the ChIP-seq datasets to avoid PCR duplicates, whichmay
skew the determination of allelic biases. In other words,
if multiple reads have exactly the same sequence, only
one copy is retained. We obtained the genotype data for
GM12878 from [37].
As previously described in [31], there are two different

types of read mapping biases that may affect the analy-
sis of AS events: the reference bias and the inherent bias.
The reference bias often occurs when one maps sequence
reads to a reference genome. If one allows the same num-
ber of mismatches in the alignment, a read from the
non-reference allele is less likely to be mapped back to
the reference genome compared to a read from the ref-
erence allele, since the non-reference read has one more
mismatch to the reference genome. This phenomenon is
known as the reference bias. This type of bias, if it exists,
is automatically taken care of by the iASeq model through
the parameter pdj0 which models the background skew-
ing probability and is estimated using all reads mapped
to heterozygote SNPs in each sample. If there is reference
mapping bias, pdj0 will take a value different from 0.5 to
adjust for the bias. One may remove reference bias before
the analysis by masking SNPs in the reference genome
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during the alignment or by aligning reads to a diploid
personal genome. This situation will also be automatically
recognized by iASeq through the estimation of pdj0 from
the data (if there is no bias, pdj0 = 0.5). Therefore, regard-
less of whether the reference bias has been removed from
the data in the preprocessing or not, the iASeq model is
able to automatically handle it and adjust the inference
accordingly.
The intrinsic bias is a different type of bias. As shown

by [31], even if the reference bias is removed (e.g., by
masking SNPs in the reference genome), the inherent
bias still exists. For example, suppose sequence 1 (e.g.,
xxxAxxx) and sequence 2(e.g., xxxTxxx) are two reads
that differ only in one position (i.e., A/T). It is possi-
ble that sequence 1 is easier to be mapped back to its
correct location in the genome than sequence 2 if the
second sequence has many repeats in the genome. This
bias reflects the inherent characteristics of the genome
and cannot be removed by masking variants in the refer-
ence genome or by mapping reads to a diploid personal
genome. In the above example, masking A and T in the
original reads is also not a solution, since a priori one
does not know which position in a read corresponds to
a SNP position and therefore should be masked without
first aligning the read to the genome. When a heterozy-
gote SNP has inherent bias, one allele will have higher read
counts than the other even if the two alleles have the same
binding level. To avoid this bias, we used the approach
described in [22,31] to remove SNPs with the inherent
bias.
We began with 1,704,166 heterozygote SNPs and fil-

tered out 149,996 (8.8%) SNPs with inherent bias.
Next, we eliminated SNPs that were not bound by
any TF or associated with any HM in any dataset
(see Additional file 1: Supplemental Methods S.1.1,
S.1.2 and Additional file 3: Table S2 for details).
After applying these filters, 94,519 heterozygote SNPs
remained. These 94,519 SNPs were then analyzed by
iASeq.

A simulation study
Before we apply iASeq to the real data, we first tested
its performance in simulations that took into account
real data characteristics. Our simulations kept the same
design as the real GM12878 ChIP-seq data, with the same
number of datasets and the same number of replicates
within each dataset, except that the genomic DNA sam-
ple was not used here since we knew the truth in the
simulations and did not need genomic DNA as a con-
trol for potential bias. To create the simulation data, we
first applied iASeq to the real GM12878 data to identify
86,353 SNPs that were not skewed in any dataset using
Pr(ai = 0|X i,N i,π ,V ,W ) > 0.5 as cutoff. To mimic
the real background noise, these SNPs were resampled by

a bootstrap procedure to create the background SNPs in
the simulations, and we kept the read counts (xidj, nidj) of
each background SNP as is in the simulated data. Next,
we simulated ASB SNPs and added them to the back-
ground. Simulations were carried out under two different
scenarios (Figure 2).

• Scenario 1: Two types of ASB SNPs (classes 1 and 2)
were created in addition to the background SNPs
(class 0). The SNP number for class 0, 1, and 2 was
85,069, 4,725 and 4,725 respectively. Thus the true πk
for the three classes was 0.90, 0.05 and 0.05
respectively. SNPs in class 1 were SR in datasets 1 to
30 (i.e., their bid = 1 for d = 1, · · · , 30). SNPs in class
2 were SN in datasets 1 to 30 (i.e., cid = 1 for
d = 1, · · · , 30). In datasets 31 to 40, no SNPs had
allelic imbalance. Class 2 can be viewed as the mirror
image of class 1. This symmetric design reflects the
symmetry of allele-specificity, that is, the skewing to
the reference allele and to the non-reference allele is
approximately symmetric. The class abundance
(0.90,0.05,0.05) roughly matched the abundance
observed in the analysis of real GM12878 data.

• Scenario 2: Four correlation patterns (classes 1-4)
were created in addition to the background class
(class 0). Class 1 and class 2 were the same as in
simulation 1. Classes 3 and 4 were two new patterns.
SNPs in class 3 were SR in datasets 21-40, and SN in
datasets 1-10. Class 4 was the mirror image of class 3.
The abundance of the classes 0 to 4 was
(0.90,0.025,0.025,0.025,0.025).

Given the simulated [Bi;Ci] configurations, we then
simulated the read count data for ASB SNPs as described
in detail in Additional file 1: Supplemental Methods S.6.
Simulations done in this way was able to keep the major
characteristics of real data while allowing us to benchmark
the performance of different methods since we knew the
truth.
We applied iASeq to both simulations. In both cases,

iASeq was able to identify the correct number of SNP
classes using BIC (Figures 2a,b,d,e). Figures 2c and 2f
show that the ASB patterns reported by iASeq matched
the true patterns well. In order to test whether iASeq
can improve the statistical power of detecting SNPs with
allelic imbalance, we compared the SNP ranking provided
by iASeq with rankings provided by five other meth-
ods that analyze each dataset separately (Figure 3). In
iASeq, SNPs were ranked in each dataset d according
to the posterior probability P̃id defined by Formula 8.
Since we know the truth, we can count how many of
the top N SNPs were true positives. Here the true posi-
tives were defined as SNPs that were truly allele-specific
and also had the skewing direction correctly inferred.
The five single-dataset based methods for ranking SNPs
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Figure 2 Simulation design and patterns discovered by iASeq. (a) The true ASB patterns in simulation 1. Two patterns were simulated in
addition to the background pattern. The two non-background patterns are shown. Each pattern has 4725 SNPs. Each row in the plot represents a
SNP class, and each column represents a dataset. Black means skewed, and white means not skewed. (b) The BIC values for different class number K
in simulation 1. The BIC achieves the minimum at K = 2. (c) Patterns discovered by iASeq in simulation 1. The plot shows the estimated V andW
when K = 2. Each row corresponds to a class. Each column represents a dataset. The color in the cell (k, d) demonstrates the estimated SR or SN
probability in class k and dataset d. From white to dark, the probability increases from 0 to 1. The numbers shown under π are the estimated
number of SNPs in each class (i.e., π̂k∗ the total number of SNPs). The numbers shown under ai are the number of SNPs identified for the
corresponding class using the posterior probability Pr(ai = k|X i ,N i ,π ,V ,W ) > 0.9 as cutoff. (d) The true ASB patterns in simulation 2. Four
patterns were simulated in addition to the background pattern. The four non-background patterns are shown. Each pattern has 2362 SNPs. (e) The
BIC values for different class number K in simulation 2. The BIC achieves the minimum at K = 4. (f) The patterns discovered by iASeq in simulation 2.

include a deviation statistic d, naive z statistic, naive Bayes
statistic, empirical Bayes statistic and single dataset EM.
These methods were applied to each individual dataset.
For each dataset d, we merged data from all replicates
to obtain xid = ∑Jd

j=1 xidj and nid = ∑Jd
j=1 nidj. We

then computed the statistics used for SNP ranking as
described below.

1. Deviation statistic (d) : SNPs were ranked based on
|xid/nid − pd0|. Here we estimated
pd0 = 1

I′
∑

i:nid �=0 pid = 1
I′

∑
i:nid �=0

xid
nid , where I

′ is
the number of SNPs for which nid �= 0.

2. Naive z statistic (z) : SNPs were ranked based on
|xid/nid−pd0|√

(pd0∗(1−pd0)/nid)
. Here pd0 was estimated as in the

deviation statistic d.
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Figure 3 The Receiver Operating Characteristic (ROC) curves for simulations. (a)-(c)We plot the number of true allele-specific SNPs (i.e., true
positives, TP) among the top q ranked SNPs in each dataset against the rank cutoff q. Results for different methods in three representative datasets
in simulation 1 are shown. Results in all other datasets were similar. (d) For each ranking method and each dataset, we computed the area under
the ROC curve (AUC) using the 2000 top ranked SNPs. dAUC, the proportion of improvement of AUC brought by iASeq over the best AUC obtained
from the single-dataset based methods, was computed for each dataset. dAUC > 0 means iASeq brings improvement. The distribution of dAUC in
all 40 datasets is shown for simulation 1. (e)-(g) Results in three representative datasets from simulation 2. Results in all other datasets were similar.
(h) The distribution of dAUC in all 40 datasets is shown for simulation 2.

3. Naive Bayes statistic (b) : SNPs were ranked using
|(xid + 2∗p̃d0)/(nid + 2) − p̃d0|. Here
p̃d0 = 1

I
∑

i
xid+2∗pd0
nid+2 where pd0 was estimated as in

the deviation statistic d. The implicit assumption here
is that xid|pid ∼ Bin(nid, pid) and pid ∼ Beta(αd,βd)
with αd = 2p̃d0 and βd = 2(1 − p̃d0). The posterior
mean of pid is used to construct the ranking statistic.

4. Empirical Bayes statistic (B) : SNPs were ranked using
|(xid + α̂d)/(nid + α̂d + β̂d) − p̌d0|. We estimated
p̌d0 = α̂d

α̂d+β̂d
. The implicit assumption is the same as

the naive Bayes statistic, but now we estimate αd and
βd based on the observed data using the method of
moments as in iASeq (see Additional file 1:
Supplemental Method S.2).

5. Single dataset EM (singleEM) : We fitted a mixture
model of SR, SN and NS with distributions
fidjp(·), p = 0, 1, 2 and mixing probabilities vd , wd and
1 − vd − wd for each dataset d without considering
other datasets. SNPs were ranked using a posterior
probability similar to P̃id , but now determined based
on information in dataset d only (see Additional
file 1: Supplemental Method S.7 for details).

Figure 3 compares the number of true positives, TPd(q),
in the top q SNPs reported by eachmethod in each dataset
d. In Figures 3a-c and 3e-g, TPd(q) is plotted as a function

of q in a few representative datasets. These plots show
that iASeq outperformed all single-dataset based meth-
ods, and it was able to substantially improve the power for
detecting allele-specificity.
In general, the observed differences between iASeq and

the d, z, b and B statistics could be caused by many fac-
tors such as use of different statistical models, ranking
statistics, or methods for parameter estimation. However,
the comparison between iASeq and the single dataset EM
represents a well-controlled comparison since these two
methods used exactly the same distributional assumptions
and parameter estimation methods. The only difference
between themwas that iASeq used information frommul-
tiple datasets whereas singleEM was based on one dataset
only. This well-controlled comparison shows that jointly
modeling multiple datasets is able to improve the allelic
inference.
To examine whether iASeq was able to bring improve-

ment in all datasets, we computed the Area under the
Receiver Operating Characteristic (ROC) curves (AUC)
for each method in each dataset using the top 2000
ranked SNPs. In each dataset, we computed the propor-
tion of improvement in terms of AUC brought by iASeq
over the best single-dataset based ranking method (i.e.,
dAUC = AUCiAseq−AUCbestsingle

AUCbestsingle
). dAUC > 0 means iASeq

is able to bring improvement. Figures 3d and 3h show the
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distribution of dAUC across all 40 datasets as a histogram.
The results show that iASeq was able to improve the SNP
ranking in almost all datasets.
In Figure 4, we converted the iASeq posterior proba-

bilities of top N SNPs to FDR estimates and plotted the
estimated FDR against the true FDR. The figure shows
that iASeq was able to provide reasonable FDR estimates
as well. Shown in the figure are a few representative
datasets. Results in all other datasets were similar.

Analysis of real data
Our simulation study demonstrates the ability of iASeq
to discover correlation patterns of allele-specificity and
improve the detection of skewed SNPs. Next, we applied
iASeq to analyze the 41 real datasets (78 samples) in
GM12878 cells. In real data, we do not have comprehen-
sive knowledge about the truth. Therefore, unlike sim-
ulations, we were not able to assess the FDR estimates.
For this reason, we mainly focused on analyzing the cor-
relation patterns of allele-specificity and testing whether
iASeq can improve the SNP ranking.

Correlation patterns of allele-specificity
Figure 5a shows the BIC in the real data. Based on BIC, the
optimal K was 2. In other words, in addition to the back-
ground class (k = 0), iASeq discovered two other SNP
classes, representing different allele-specificity patterns.
For these two non-background classes, πk was estimated
to be 0.0696 and 0.0691 respectively, suggesting that they
cover 6.96% and 6.91% of the analyzed SNPs. Due to the

background noises, not all SNPs in these two classes can
be confidently detected. At the 0.90 posterior probabil-
ity cutoff, iASeq reported 1868 and 2138 SNPs for classes
1 and 2 respectively (Figure 5b). Note that our simula-
tions had similar settings as the real data analysis, and
they showed that iASeq was able to discover more than
two patterns if they are supported by the data. There-
fore our discovery of two correlation patterns here is likely
driven by the data, that is, the information in the data
is only sufficient for supporting robust discovery of two
patterns.
Figures 5b and 5c show the posterior mode of V k and

W k for the two non-background classes. It turned out that
these two classes corresponded to two global directions
of allele-specificity, SR and SN, respectively. Since the
assignment of reference or non-reference allele depends
on the reference genome, the assignment per se is not of
biological interest. However, recall that GM12878 is a sin-
gle person, therefore at each single SNP, the nucleotide
representing the reference or non-reference allele is the
same across all datasets analyzed here. Given this fact,
what these results essentially tell is that at each single
SNP, most TFs and HMs in our analysis were highly
correlated in terms of allele-specificity, and if they are
skewed, they tend to be skewed toward the same direc-
tion (i.e., the same allele). For instance, for SNPs in class 1,
both H3K4me3 (from the Broad Institute) and H3K27ac
(Broad) had high probability to be SR, with (vkd,wkd)
equal to (0.9337,0.0070) and (0.9730,0.0041) respectively
(Figure 5c). The probability that one is SR and the other

Figure 4 Estimated FDR against true FDR in simulations. (a)-(d) Results for four representative datasets in simulation 1. (e)-(h) Results for four
representative datasets in simulation 2. Results for all other datasets were similar.
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Figure 5 Correlation patterns of allele-specificity among different TFs and HMs in GM12878 cells discovered by iASeq. (a) The BIC values
for different class number K. The BIC achieves the minimum at K = 2. (b) The estimated V andW when K = 2. Each row corresponds to a class.
Each column represents a dataset. The color in the cell (k, d) represents the SR or SN probability in class k and dataset d. From white to dark, the
probability increases from 0 to 1. The bar plot and the numbers shown under π are the estimated number of SNPs in each class (i.e., π̂k∗ the total
number of SNPs). The bar plot and the numbers shown under ai are the number of SNPs identified for the corresponding class using the posterior
probability Pr(ai = k|X i ,N i ,π ,V ,W ) > 0.9 as cutoff. (c) A closer look at V andW in a number of representative datasets. The barplots show the
estimated SR and SN probabilities vkd and wkd in a number of selected datasets. Left: the skewing probabilities in class 1. Right: the skewing
probabilities in class 2. The height of each bar represents the SR or SN probability.

one is SN was small. Similarly, for SNPs in class 2, both
H3K4me3 and H3K27ac were highly likely to be SN
simultaneously ((vkd,wkd)=(0.0061,0.9835) for H3K4me3
(Broad) and (0.0040,0.9897) for H3K27ac (Broad)). While
the allelic imbalance of most TFs and HMs were highly
correlated, H3K27me3, a HM involved in gene repres-
sion, was an exception. In both non-background classes,
H3K27me3 had much lower skewing probabilities com-
pared to the other proteins (Figure 5c). Within each class,
the difference in the skewing probability between the two
alleles was also much weaker for H3K27me3 as compared
to the other proteins. For instance, in class 1, while most
other proteins showed strong preference to be skewed
toward the reference allele, H3K27me3 can be skewed to
the reference allele at some SNPs and skewed to the non-
reference allele at many other SNPs. Therefore, the allelic
imbalance in H3K27me3 is not strongly correlated with
the allelic imbalance of the other proteins analyzed here.
For the genomic DNA which was used as control here,
the skewing probabilities (vkd,wkd) in both classes were
fairly low as shown in Figure 5b-c. In both classes, the
probability for not being skewed in the genomic DNA (i.e.,
1−vkd −wkd) was bigger than 0.95. This indicates that the

high probability of skewing observed in the other datasets
was not an artifact.
The coordinated allelic imbalance of different proteins

toward the same allele has also been observed in a recent
study [38]. In that study, the authors analyzed AS of 24 TFs
and found that when multiple TFs bind to the same SNP,
they frequently bind to the same allele. Moreover, those
authors did not observe any pair of TFs that regularly bind
the same position on alternate alleles. Our observation
here therefore is consistent with their finding.

Increased power for detecting allele-specificity compared
with single dataset analysis
We ranked SNPs based on the posterior probabilities P̃id
in each dataset. The iASeq ranking was compared with the
rankings provided by the five single-dataset based meth-
ods described above. Since we do not know the truth,
we used two types of independent information as gold
standard to benchmark the ranking results.
First, we evaluated different methods by counting how

many of their top ranked SNPs were located in the non-
pseudoautosomal regions of chromosome X (chrX-npa)
(Figure 6). GM12878 is a female lymphoblastoid cell line.



Wei et al. BMC Genomics 2012, 13:681 Page 13 of 19
http://www.biomedcentral.com/1471-2164/13/681

Figure 6 The ROC curves with chrX-npa SNPs as gold standard in the GM12878 analysis.We plot the number of non-pseudoautosomal
region X chromosome SNPs, denoted by TPd(q), among the top q ranked SNPs in dataset d as a function of the rank cutoff q for each method.
(a)-(g) Results in 7 representative datasets. (h) In each dataset, we computed the area under the ROC curve (AUC) using the 2000 top ranked SNPs
for each method. dAUC, the proportion of improvement of AUC brought by iASeq over the best AUC from the single-dataset based methods, was
computed for each dataset. The distribution of dAUC in all 40 datasets is shown.

In GM12878, SNPs in chrX-npa are expected to be allele-
specific due to cells rapidly become clonal in culture
leading to a skewed X-inactivation [5,38,39]. Therefore,
given a fixed number of top SNPs, the more chrX-npa
SNPs one can find, the more powerful a method is.
Figure 6 shows that iASeq clearly increased the power
for detecting allele-specificity in each dataset compared to
the single-dataset based analysis. For example, Figure 6a
shows that in the H3K27ac dataset generated by the Broad
Institute, iASeq was able to identify 122 chrX-npa SNPs
among the top 500 SNPs. This represents 126% improve-
ment compared to singleEM, the best single-dataset based
ranking method in that dataset, which only identified 54
chrX-npa SNPs. Figures 6a-g show results in a few rep-
resentative datasets. Figure 6h shows the distribution of
dAUC (i.e., the proportion of improvement of AUC by
iASeq over the best single-dataset based ranking method
in each dataset) in all 40 datasets. These plots clearly show
that iASeq outperformed all single-dataset based meth-
ods in all datasets and the average improvement in AUC
was 354%.
Second, we evaluated different methods by using inde-

pendent RNA-seq data. From RNA-seq, one can identify
exonic ASE SNPs and use them as gold standard. We col-
lected two RNA-seq datasets in GM12878, one from the
California Institute of Technology (Caltech) and the other
from the Yale/Stanford University (Yale) (Additional file 2:
Table S1). From each dataset, we identified the top 400

exonic ASE SNPs using the naive Bayes statistics. Using
the other methods to identify the gold standard ASE SNPs
produced similar results which, for simplicity, will not be
shown here. Based on these exonic ASE SNPs, we defined
a SNP in our ChIP-seq analysis as truly allele-specific
if there was an exonic ASE SNP in its Xkb neighbor-
hood. Here we tried both X = 10kb and X = 1kb and
obtained similar results. Below we illustrate the results
using X = 10kb as an example. The corresponding
results for X =1kb are shown in Additional file 4: Figures
S3-S6. Among the 94,519 SNPs analyzed in the ChIP-seq
data, 20,526 had one or more exonic SNPs within its 10kb
neighborhood and therefore could potentially be linked
to an exonic ASE SNP. Figure 7 and Additional file 5:
Figure S1 compare rankings of these SNPs provided by dif-
ferent methods in terms of how many of the top ranked
SNPs are true positives (i.e., associated with ASE). iASeq
again outperformed all the other single-dataset based
ranking methods. For instance, based on the Caltech gold
standard, iASeq on average identified 144% more true
positive SNPs among the top 500 SNPs (Figure 7a-g).
According to the Yale gold standard, iASeq achieved an
average of 149% improvement in terms of the true posi-
tive rate among top 500 SNPs (Additional file 5: Figure S1).
The average improvement in terms of AUC (i.e., dAUC)
across all 40 datasets was 148% (Figure 7h) and 165%
(Additional file 5: Figure S1h) for the Caltech and Yale gold
standard respectively.
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Figure 7 The ROC curves in GM12878 data using Caltech RNA-seq ASE SNPs as gold standard.We plot TPd(q), the number of true allele-
specific SNPs among the top q ranked SNPs in dataset d, against the rank cutoff q for each method. The true allele-specific SNPs are defined as SNPs
that have ≥ 1 RNA-seq exonic ASE SNPs in their 10kb neighborhood. (a)-(g) Results in 7 representative datasets. (h) In each dataset, we computed
the area under the ROC curve (AUC) using the 2000 top ranked SNPs for each method. dAUC, the proportion of improvement of AUC brought by
iASeq over the best AUC from the single-dataset basedmethods, was computed for each dataset. The distribution of dAUC in all 40 datasets is shown.

To ensure that the increased statistical power was
not completely attributed to X chromosome SNPs, we
repeated the benchmark analysis based on RNA-seq using
only SNPs in autosomal chromosomes, and we obtained
similar results (Figure 8, Additional file 6: Figure S2). This
shows that the increased power is not only contributed by
chrX SNPs.

Comparisons with othermethods
Most existing studies on allele-specificity were conducted
using in-house data analysis pipelines. A tool developed
by Skelly et al. [33] and AlleleSeq [32] are two software
tools accessible to third-party users for AS analysis. The
method proposed by Skelly et al. [33] is designed for ana-
lyzing ASE in RNA-seq data. It first fits a background
model using genomic DNA and then feeds the estimated
parameters into a Bayesian model that combines infor-
mation from multiple SNPs within a gene to infer ASE.
When we applied this method to analyzing the GM12878
ChIP-seq data, two problems occurred. First, the method
uses Markov Chain Monte Carlo (MCMC) to fit the back-
ground model from the genomic DNA which, as alerted
by [33], is well-known for its slow speed and difficulties for
users tomonitor the convergence. Our genomic DNAdata
had 94,519 SNPs which covered 12,417 genes. Running
this algorithm on this data using the parameter settings
recommended by [33] on a machine with 2.7 GHz CPU
and 4 Gb RAM took more than 60 days. Second, after

feeding the background model parameters obtained from
the first step to the inference model in the second step,
the algorithm stopped execution after a few iterations.
This is because the original model was developed for
deeply sequenced RNA-seq rather than ChIP-seq, where
the average read count covering a heterozygote SNP in
a ChIP-seq dataset is only 0.64. As a result, the model
developed in [33] did not fit the real data in ChIP-seq
experiments. This lack-of-fit caused the program to stop
early, likely due to the abnormally fitted parameters caus-
ing various computation problems (e.g., overflow). For this
reason, although the method proposed by [33] represents
an advanced solution for analyzing RNA-seq ASE, it can-
not be directly used to analyze ASB in ChIP-seq data with-
out significantly redesigning the model and algorithm. For
this reason, it is not further compared here.
AlleleSeq [32] is another tool for AS analysis. It has

been used to analyze ASB of several TFs in GM12878
[32]. AlleleSeq is more focused on the preprocessing step.
Its pipeline first constructs a diploid personal genome
sequence according to family trio data and then maps
ChIP-seq reads to this personal genome. After remov-
ing various biases, the method then analyzes allele-
specificity in each individual ChIP-seq dataset separately.
[32] applied AlleleSeq to analyze 7 different TF datasets
in GM12878, among them 5 were also included in our
iASeq analysis. We compared iASeq and AlleleSeq using
these same 5 datasets. We first obtained the ASB SNPs
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Figure 8 The ROC curves in GM12878 data using Caltech RNA-seq autosomal ASE SNPs as gold standard.We plot TPd(q), the number of
true allele-specific SNPs among the top q ranked autosomal SNPs in dataset d, against the rank cutoff q for each method. The true allele-specific
SNPs are defined as autosomal SNPs that have ≥ 1 RNA-seq exonic ASE SNPs in their 10kb neighborhood. (a)-(g) Results in 7 representative
datasets. (h) In each dataset, we computed the area under the ROC curve (AUC) using the 2000 top ranked SNPs for each method. dAUC, the
proportion of improvement of AUC brought by iASeq over the best AUC from the single-dataset based methods, was computed for each dataset.
The distribution of dAUC in all 40 datasets is shown.

reported by AlleleSeq from [32]. Let Td denote the num-
ber of reported ASB SNPs for each TF dataset d. We next
obtained the top Td SNPs ranked by iASeq. We then com-
pared these two methods based on how many of their top
Td SNPs were in chrX-npa, and how many of them were
associated with exonic ASE SNPs determined by RNA-
seq. For the benchmark analysis based on RNA-seq, we
associated exonic ASE SNPs with ChIP-seq SNPs using
both 10kb and 1kb neighborhood. We also performed
the comparison after excluding the chromosome X SNPs.
Table 1, Additional file 7: Table S3, Additional file 4: Tables
S4-S5 and Additional file 8: Figure S7 show that iASeq
either outperformed or performed comparable to Alle-
leSeq in all datasets. Sometimes, the improvement was
substantial (e.g., YaleMYC in Table 1).

Discussion
Interpretation of the correlation patterns
When analyzing the real data in GM12878, iASeq found
two non-background AS patterns, representing two oppo-
site directions of allelic imbalance. Since the assignment
of reference and non-reference allele depends on the refer-
ence genome, whether a SNP is skewed toward reference
or non-reference allele per se does not have direct biolog-
ical meaning. What these two patterns essentially suggest
is that the allelic imbalances ofmultiple proteins at a single
SNP are correlated and have high preference to be skewed

toward the same allele. In other words, the two patterns
should be viewed as a pair and interpreted together.
In general, although one may view different allelic

imbalance patterns in iASeq as different clusters of SNPs,
these clusters only describe the similarities among SNPs
in terms of their skewness directions, rather than the simi-
larities in terms of their functions. The direction is defined
using the reference/non-reference allele. The reference or
non-reference allele for different SNPs can have different
meanings (e.g., for one SNP, the maternal allele may be
the reference allele, whereas for another SNP the pater-
nal allele may be the reference allele). Therefore within
each cluster, even though SNPs have similar skewness pat-
tern, they are not necessarily functionally related to each
other. One should not confuse the SNP clusters here with
the clusters obtained from the traditional gene expression
microarray data analysis, where co-expressed genes in a
cluster often have similar functions. In iASeq, the clusters
only serve as a tool to describe the correlation structure
among different datasets (i.e., proteins), rather than the
functional correlation among different SNPs. The correla-
tion patterns among datasets are used by iASeq to inform
one how to integrate information across datasets (i.e.,
which datasets are highly correlated and therefore can
borrow information from each other) to improve detec-
tion of AS events for each individual SNP and dataset. In
order to understand functions of the detected AS events,
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Table 1 Comparison of iASeq and AlleleSeq

Gold standard ChrX All Caltech ASE exonic SNPs Autosomal Caltech ASE exonic SNPs

TF Td AlleleSeq iASeq Td AlleleSeq iASeq Td AlleleSeq iASeq

YaleCFOS 41 3 4 9 5 3 9 5 3

YaleMYC 122 9 22 39 5 10 38 5 10

YaleJUND 289 13 31 24 4 8 23 4 7

YaleMAX 105 3 18 18 3 1 18 3 2

YalePolIII 25 2 2 0 0 0 0 0 0

Column 1: TF name. Column 2: Td is the number of AlleleSeq reported ASB SNPs. Columns 3-4: the number of non-pseudoautosomal region X chromosome SNPs
among the top Td allele-specific SNPs reported by AlleleSeq and iASeq. Column 5: Td is the number of AlleleSeq reported ASB SNPs that had an exonic SNP within their
10kb neighborhood. Columns 6-7 show among the top Td allele-specific SNPs reported by AlleleSeq and iASeq, howmany SNPs had ≥ 1 exonic ASE SNP in their 10kb
neighborhood according to the Caltech RNA-seq experiment. Column 8: Td is the number of AlleleSeq reported autosomal ASB SNPs that had an exonic SNP within
their 10kb neighborhood. Columns 9-10 show among the top Td autosomal allele-specific SNPs reported by AlleleSeq and iASeq, howmany SNPs had ≥ 1 exonic ASE
SNP in their 10kb neighborhood according to the Caltech RNA-seq experiment. Additional file 7: Table S3 contains similar results using Yale RNA-seq exonic ASE SNPs
as gold standard.

one needs to further correlate the iASeq results with other
information (e.g., one may determine the parent-of-origin
of each SNP first and then study various phenomena such
as imprinting).
Our observation that different proteins prefer to be

skewed in the same direction is consistent with a recent
observation reported in [38] that AS of 24 different TFs
are skewed toward the same allele. A number of factors
could contribute to the observed correlation. First, bio-
logically it is plausible that functionally related HMs and
TFs have correlated allele-specificity. For instance, both
H3K4me2 and H3K4me3 are markers for active transcrip-
tion. Therefore, for a specific SNP, if the reference allele
is associated with a gene with active transcription but the
non-reference allele is not, then it is very likely that both
H3K4me2 and H3K4me3 will be skewed toward the ref-
erence allele. For another SNP, if the non-reference allele
is transcribed but the reference allele is not, then both
H3K4me2 and H3K4me3 will have high probability to be
skewed toward the non-reference allele. In the genome,
H3K4me2 and H3K4me3 are skewed toward reference
allele for some SNPs, and skewed toward non-reference
allele for some other SNPs. Therefore the skewed SNPs
could naturally fall into two clusters, representing two
opposite AS directions. Second, as pointed out by [38], the
coordinated AS could also occur as a result of the differ-
ence in the chromatin landscape between the two alleles.
For instance, if the chromatin on one allele is more open
and accessible, it could increase the overall binding prob-
ability of multiple different proteins, leading to correlated
allelic skewing.
While our results show that most analyzed TFs/HMs

tend to be skewed toward the same direction, these
results do not imply that these proteins are perfectly
correlated in terms of allele-specificity at each and every
SNP. In iASeq, the correlation patterns V k and W k are
probabilistic patterns rather than 0-1 vectors. Each corre-
lation class k can generate all 3D AS configurations. For

instance, for a class with [V k ;W k]= [(0.9,0.9,0.9,0.1);
(0.1,0.1,0.1,0.1)], it is possible to have one SNP with con-
figuration [ SR, SR,NS,NS] and at the same time another
SNP with configuration [ SR,NS, SR,NS]. Therefore, SNPs
in the same class are not required to have the same AS
configuration, even though they tend to have similar AS
configurations. The probabilistic patterns are used here
to provide a parsimonious description of the complex
correlation structure in the data, so that one can cir-
cumvent the difficulty of handling 3D AS configurations
whose complexity increases exponentially. As a conse-
quence of using this parsimonious model, multiple weak
correlation patterns without strong enough data support
could be merged into a bigger class. For instance, consider
two AS patterns [V k ;W k]=[ (1, 1, 0, 0); (0, 0, 0, 0)] (i.e.,
[SR,SR,NS,NS]) and [V k ;W k]=[ (0, 0, 1, 1); (0, 0, 0, 0)]
(i.e., [NS,NS,SR,SR]). Suppose both patterns are equally
likely to occur in the data. If each pattern is only associ-
ated with a small number of SNPs, then a parsimonious
model will prefer merging them together into one single
class with [V k ;W k]=[ (0.5, 0.5, 0.5, 0.5); (0, 0, 0, 0)]. For
this reason, iASeq only discovers correlation patterns
that have sufficient data support so that they can be dis-
tinguished from other patterns. It will not report weak
patterns, which could be real but do not have enough data
support to allow them to be robustly recovered. For users,
this means that at the cluster level, they may not be able to
see weak but real AS correlation patterns if these patterns
are not associated with enough number of SNPs. On the
other hand, for the purpose of inferring whether or not
each SNP is allele-specific in each dataset, these parsimo-
nious correlation patterns are sufficient for describing the
correlation structure in the data and serving as a prior
to guide the information sharing across datasets. The
information sharing will lead the increased ASB detection
power, and the eventual AS configuration at each individ-
ual SNP will be determined by the posterior probabilities
of (bid , cid) (i.e., P̃id) rather than the cluster-level prior
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probabilities [V k ;W k]. Therefore, in the final AS calls,
the model still allows each SNP to have its own AS con-
figuration which may not necessarily be the same as the
AS configurations of other SNPs from the same cluster.
Consistent with [38], in the two non-background AS

patterns discovered here, proteins skewed toward the
same direction did not always correspond to known
protein-protein interactions. As pointed out by [38], this
could happen as a result of allelic imbalances of differ-
ent proteins being caused by a common underlying factor
such as allelic difference in chromatin landscape. It could
also reflect unknown protein-protein interactions. For
iASeq specifically, there is a third reason, that is, multiple
small patterns can be merged into a bigger probabilis-
tic class as described before. For example, because of the
use of probabilistic patterns, two patterns [SR,SR,NS,NS]
and [NS,NS,SR,SR] may be merged into a single SNP
class (e.g., [V k ;W k]=[ (0.5, 0.5, 0.5, 0.5); (0, 0, 0, 0)]). As
a result, only looking at the pattern represented by
[V k ;W k], one cannot tell the details of protein-protein
interactions, such as these interactions only exist between
datasets 1 and 2, or between 3 and 4, but not between
the other pairs of datasets. What one can tell from this
merged pattern is that, when the allelic imbalance occurs
in these four datasets, they will be skewed toward the
same direction, i.e., the reference allele in this example.
In summary, while the correlation patterns in iASeq

provide some insights on the correlation of allelic imbal-
ance among different datasets, one should not over-
interpret them. The primary goal of these patterns is
to describe the correlation structure in the data so that
information from different datasets can be shared in a
principled way to increase the power of statistical infer-
ence. This also points to an important difference between
this study and previous studies that reported coordinated
allele-specificity among multiple proteins. The previous
studies only reported the correlation as a biological find-
ing, but did not provide a statistical method to further
utilize the correlation structure to improve the statisti-
cal inference. In contrast, iASeq provides a general and
rigorous statistical method that utilizes the automatically
discovered correlation patterns to increase the statisti-
cal power of AS detection. As such, it represents a novel
development for the analysis of allele-specificity.

Model, algorithm, and possible extensions
Unlike tools such as AlleleSeq which mainly focus on the
preprocessing steps for the AS analysis (e.g., construc-
tion of diploid personal genome), iASeq is developed as a
general model working downstream of the preprocessing
pipelines. The input data for iASeq are the read counts in
the format shown in Figure 1a.With this design, iASeq can
be easily coupled with different data preprocessing proto-
cols. For instance, some investigators may map their reads

to a reference genome, while others may map their reads
to a diploid personal genome. Both types of investiga-
tors can use iASeq to integrate information from multiple
datasets once they obtained the allelic read counts.
In iASeq, we used an EM algorithm to find the posterior

mode of parameters and carried out statistical inference
accordingly. In principle, one may also use a full Bayesian
approach and Markov Chain Monte Carlo (MCMC) to
perform the posterior inference. However, since MCMC
usually takes much longer to run for a big dataset and it
is not easy for users to monitor convergence, we decided
to use the posterior mode and EM-based approach in our
implementation. For analyzing the GM12878 data with
94,519 SNPs, iASeq took 5 hours to run the EM algo-
rithm to fit a single model with K = 1 on a machine with
2.7 GHz CPU and 4Gb RAM. To fit a single model with
K = 10 on the same machine, the EM took 16 hours.
Running the EM for all 10 Ks between 1 and 10 on a sin-
gle core took 4.6 days. However, when we run these 10
jobs in parallel on 10 cluster nodes, we were able to select
the best model within 1 day. Therefore, running the algo-
rithm on a single machine is a little time-consuming, but
the computation time can be reduced by parallelization.
Also, our analysis of GM12878 data indicates that the opti-
mal K in that real data was 2. For a K not extremely large,
even if running the full BIC selection on a single machine
takes some time, it usually requires less than a week, which
is acceptable compared to the time devoted to preparing
samples and generating data.
In principle, the statistical model developed in iASeq

may also be applied to analyze other types of AS events,
such as ASE and ASM. In the future, we plan to improve
the model by incorporating information from the spatial
correlation among closely located SNPs. For example, for
the ASE analysis, one may jointly model SNPs from the
same gene, similar to [33].

Implications on future studies
The analysis of AS events using the high-throughput
sequencing data frequently faces the problem of low sta-
tistical power due to the limited amount of information
available at heterozygote SNPs. One way to increase the
power is to increase the sequencing depth for one data
type (e.g., MYC ChIP-seq). An alternative approach is to
spend the same amount of money to generate data for
multiple different but related data types (e.g., ChIP-seq
for MYC, H3K4me1, H3K4me3, etc.), each with a lower
coverage. One can then integrate the multiple datasets to
increase the statistical power of allele-specificity analysis.
The merit of the second approach is that one can col-
lect multiple different types of information which might
be useful for other purposes (e.g., in addition to study-
ing MYC binding using MYC ChIP-seq, one may couple
H3K4me1 ChIP-seq data with DNA motif information to
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locate active enhancers and predict binding sites of other
TFs in the genome). If the second approach is used in the
study design, then iASeq will offer a flexible, powerful and
scalable framework for better analyzing the AS events in
the data. As ChIP-seq data continue to grow rapidly, this
integrative approach will allow us to use the data more
efficiently to characterize the allele-specificity.

Conclusions
In summary, we have proposed a Bayesian hierarchi-
cal mixture model iASeq to integrate multiple ChIP-seq
datasets for analyzing allele-specificity. The primary goal
of iASeq is to increase the statistical power of AS detec-
tion, and it does so by taking the advantage of correlations
among datasets. Since the correlation structure may not
be known before the data analysis, iASeq learns it from the
data automatically. Application of iASeq to the ENCODE
GM12878 data shows that allelic imbalance of most ana-
lyzed TFs and HMs have strong preference to be skewed
toward the same direction. Analysis of both the simulated
and real data show the effectiveness of iASeq to improve
detection of allele-specificity compared to single-dataset
based methods.
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