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Abstract

Background: microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs
that can degrade their target mRNAs or block their translation. Recent research showed that copy number
alterations of miRNAs and their target genes are highly prevalent in cancers; however, the evolutionary and
biological functions of naturally existing copy number variable miRNAs (CNV-miRNAs) among individuals have not
been studied extensively throughout the genome.

Results: In this study, we comprehensively analyzed the properties of genes regulated by CNV-miRNAs, and found
that CNV-miRNAs tend to target a higher average number of genes and prefer to synergistically regulate the same
genes; further, the targets of CNV-miRNAs tend to have higher variability of expression within and between
populations. Finally, we found the targets of CNV-miRNAs are more likely to be differentially expressed among
tissues and developmental stages, and participate in a wide range of cellular responses.

Conclusions: Our analyses of CNV-miRNAs provide new insights into the impact of copy number variations on
miRNA-mediated post-transcriptional networks. The deeper interpretation of patterns of gene expression variation
and the functional characterization of CNV-miRNAs will help to broaden the current understanding of the molecular
basis of human phenotypic diversity.
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Background
miRNAs are a class of small non-coding RNAs, which act
through binding in a sequence-specific manner to the
30UTR of target genes [1]. Each miRNA can potentially
regulate many transcripts and at least one-third of human
genes are estimated to be miRNA targets. miRNAs partici-
pate in posttranscriptional gene regulation by repressing
the expression of their target genes through inhibition of
translation or cleavage of mRNAs [2-6]. miRNAs also con-
tribute to genetic buffering of the gene expression vari-
ation, and play an important role in maintaining the
identity of mature tissues through a feed-forward loop
regulatory architecture [7,8], such as the relationship
between miR-9a and E(spl) in Drosophila [9,10] and the
regulation of E2F1 by miR-17 in human [11].
A primary goal in medical and evolutionary genomics

is to understand the genetic mechanisms of natural
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reproduction in any medium, provided the or
variation in gene expression [12-16]. The structure of
the human genome is highly variable and the copy num-
ber variations (CNVs) refer to alterations of genomic
segments of more than 1,000 nucleotides that are
present at significant frequencies within a population
[17-19]. Many studies showed that CNVs can expand
dosage variation of the associated genes, leading to the
under-representation of dosage-sensitive protein-coding
functional units such as transcription factors and mem-
bers of protein complexes [20,21]. CNVs can be discov-
ered by cytogenetic techniques, such as fluorescent in
situ hybridization, comparative genomic hybridization,
array comparative genomic hybridization, and next-
generation sequencing [22-24]. In humans, more than
30,000 genomic regions with segmental duplications
have been recognized by systematic comparative gen-
omic hybridizations on the DNA of healthy human sub-
jects; however, the CNVs of other animals were far less
studied (see http://projects.tcag.ca/variation). For ex-
ample, only about 2,000 CNVs have been identified in
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Pan troglodytes [25] and about 4,000 CNVs in inbred
Mus musculus [26,27].
Recent studies revealed a high frequency in copy num-

ber abnormality of miRNA processing genes, such as
Dicer1 and Argonature2, in breast and ovarian cancers
[28,29]. Although copy number alterations of miRNAs
and their regulatory genes were frequently investigated
in oncogenesis [28-30], the evolutionary and functional
impact of CNV-miRNAs on the human genome has not
been studied extensively. Based on the human genomic
structure variations, Marcinkowska et al. recently
detected about 30% miRNAs located in the human
CNV-regions, indicating that non-coding RNAs also
have potential functional variants [31].
In this study, we comprehensively analyzed the proper-

ties of genes regulated by CNV-miRNAs and explored
the potential involvement of CNV-miRNAs in the
expression variability of their targets within and between
populations. Our analysis revealed significant functional
differences between the targets of CNV-miRNAs and
the targets of non-CNV-miRNAs. The involvement of
CNV-miRNAs in a wide range of cellular responses
provided us with valuable information of the impact of
CNVs on the post-transcriptional network.

Results
Characterization of the regulation of CNV-miRNAs from
the view of their target genes
We first compiled the genes regulated by CNV-miRNAs
using the targets from TargetScan5.1 [32], which pre-
dicts miRNA targets based on sequence complementari-
ties, sequence context information and binding energy.
Because of its high confidence, TargetScan5.1 has been
widely used in a variety of “omics” studies (see Methods)
[32-34]. From among the miRNA-Target associations
that were obtained, the representative miRNA for each
family with the lowest total context score was presented,
but all other miRNAs from the same family were consid-
ered to target the same gene at the same target sites
[34]. To study the non-redundant miRNA binding sites
directly, we replaced the miRNAs by their miRNA-
family ID. Finally, 63,428 regulatory relationships were
constructed comprising 541 miRNA-families and 9,174
targets (see Additional file 1).
According to the study by Marcinkowska et al. [31], a

total of 209 miRNAs were found to locate in the human
CNV-regions. These miRNAs belong to 172 families (see
Additional file 2); the remaining 369 miRNA-families
had no members in the CNV-regions. In the following
analysis, these two types were referred to as CNV-
miRNAs and non-CNV-miRNAs, respectively.
We investigated target genes of the non-CNV-

miRNAs and CNV-miRNAs and classified them into
three groups (see Additional file 3). The first group
contains a total of 1,134 target genes that are regulated ex-
clusively by CNV-miRNAs, 823 of the genes are regulated
by one CNV-miRNA, 211 by two CNV-miRNAs, 67 by
three CNV-miRNAs, 22 by four CNV-miRNAs, and 11
by ≥ 5 CNV-miRNAs. The second group contains a total
of 5,710 target genes that are regulated by non-CNV-
miRNAs and at least one CNV-miRNA. The third group
consists of 2,330 target genes that are regulated exclusively
by non-CNV-miRNAs, 1,408 of the genes are regulated by
one non-CNV-miRNA, 515 by two non-CNV-miRNAs,
207 by three non-CNV-miRNAs, 95 by four non-CNV-
miRNAs and 105 by ≥ 5 non-CNV-miRNAs.
To explore the target-recognition preference of CNV-

miRNAs and non-CNV-miRNAs, we devised a sampling
method to investigate whether the observed number of
target genes for each regulatory type could be expected
from random sampling. The simulation analysis involved
two steps: (a) 172 miRNAs were selected randomly from
the 541 miRNAs, and assumed to be pseudo-CNV-
miRNAs; (b) in the miRNA-target regulatory network
(see Additional file 1), the edges connecting genes
and pseudo-CNV-miRNAs, and the edges connecting
genes and pseudo-non-CNV-miRNAs were marked,
respectively; the number of target genes (k) was
recorded for each type. The steps (a) and (b) were
repeated 1,000 times, and resulted in normal distri-
butions of target genes for each type of miRNA regu-
lation. The Z-scores and their transformed p-values
(calculated by NORMDIST function in Microsoft Excel)
were then used to assess the statistical significance of
whether the observed number deviated significantly from
random expectation. The simulations provide clues to the
regulatory patterns of CNV-miRNAs. As shown in Table 1,
the number of genes regulated exclusively by one CNV-
miRNA (823 genes were regulated by 137 CNV-miRNAs,
approximately 6 target genes per CNV-miRNA) was sig-
nificantly higher than the number expected from random
simulations (p~0.05). In contrast, the number of genes
regulated exclusively by one non-CNV-miRNA (1,408
genes were regulated by 280 non-CNV-miRNAs, approxi-
mately 5 target genes per non-CNV-miRNA) was signifi-
cantly lower than the number expected from random
simulations (p~0.05). Thus CNV-miRNAs tend to target
a higher average number of genes compared with non-
CNV-miRNAs. Besides, two and more CNV-miRNAs
tend to synergistically regulate the same genes; that is,
these genes are preferentially targeted by a combination
of CNV-miRNAs in which directional selection may be
involved in increasing the frequency of CNV-miRNAs in
the human genome [35-37]. Obviously, the copy number
variation of miRNAs is not independent of copy number
variation of the other miRNAs if their binding sites are
co-located in the same untranslated regions (UTRs) and
regulate the same genes. As shown in Figure 1A for this



Table 1 Simulation analysis to explore the target-recognition preference of CNV-miRNAs and non-CNV-miRNAs

The numberof regulatory
miRNAs

Mean of 1,000
simulations

Std. dev of 1,000
simulations

Observed
number

p-values

Genes regulated exclusively
by CNV miRNAs

1 CNV-miRNA 716.479 67.633 823 0.0576

2 CNV-miRNAs 134.428 22.810 211 0.000392

3 CNV-miRNAs 28.597 8.115 67 0.000001

4 CNV-miRNAs 7.119 3.421 22 0.000006

≥5 CNV-miRNAs 2.809 1.846 11 0.0000004

Genes regulated exclusively
by non-CNV miRNAs

1 non-CNV-miRNA 1514.503 67.633 1,408 0.0576

2 non-CNV-miRNAs 609.760 45.420 515 0.0184

3 non-CNV-miRNAs 277.837 31.374 207 0.0119

4 non-CNV-miRNAs 145.793 22.981 95 0.0135

≥5 non-CNV-miRNAs 185.483 42.717 105 0.0297

The p-values were obtained from the Z-score, which was calculated as (observed number – mean number of 1000 simulations) / standard deviation of
1000 simulations.
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type of co-regulation, miRNA-α<−>miRNA-β, the copy
number alteration of miRNA-α could influence copy num-
ber alteration of miRNA-β, or vice versa. Theoretically, it is
required that dosage of miRNA-α and miRNA-β should be
balanced in synergistically regulating the same genes,
which may promote the simultaneous retention of concur-
rent CNV-miRNAs and finally increase reciprocally the
number of genes regulated by CNV-miRNAs. To verify
this speculation, we analyzed 211 target genes that were
regulated exclusively by two CNV-miRNAs, this dataset
contained 422 interactions among 211 genes and 113
CNV-miRNAs (see Additional file 3). If CNV-miRNAs
were retained or occurred independently, the number of
target genes should follow a normal distribution of N
(134,22) (see Table 1 and Figure 1B). Therefore, the num-
ber of genes affected by non-independent CNV-miRNAs
can be estimated as 211-N(134,22) = N(77,22) (see
Figure 1C). To investigate how many of the CNV-miRNAs
were caused by the dosage-balance in co-regulation of the
same genes, we (a) removed the information of CNV-
miRNAs and then drew a number (m) from a normal
distribution N(77, 22), (b) randomly assigned m genes to
the miRNA-target regulatory network (see Additional file
1), miRNAs which targeted the selected genes were
marked, and their number (f) was recorded. The two steps,
(a) and (b), were repeated 1,000 times. f followed a normal
distribution as N(74, 14) and was then divided by 2 to give
N(37, 7). Thus, the miRNA-target recognition retained
about 37 CNV- miRNAs with the standard error of 7 (see
Figure 1D); at least one-third (calculated by 37/113) of the
CNV-miRNAs were attributable to the requirement of
dosage-balance for synergistic regulation.

Target genes of CNV-miRNAs tend to be differentially
expressed among individuals within a population
Intuitively, CNVs of miRNA genes can dramatically
change their dosage, and this would then affect the
expression levels of the target genes in the corre-
sponding individuals [5,15]. Recently, a series of
genome-wide gene expression profiles have been mea-
sured in four HapMap ethnic populations, CEU (U.S.
residents with Northern and Western European an-
cestry), YRI (Yoruba people of Ibadan, Nigeria), CHB
(Chinese Han in Beijing) and JPT (Japanese from
Tokyo). We calculated the coefficient of variation (CV)
for each protein-coding gene across individuals in the
four populations to quantify the within-population ex-
pression variability of each of the genes (see Methods).
Briefly, the CV is the ratio of the standard deviation of
gene’s expression to its mean intensity, which is consid-
ered to be an unbiased and comprehensive metric to
measure the regulation diversity at the expression level
among individuals [38] (see Additional file 4).
As shown in Figure 2A for the YRI population, the

mean CV was 0.0251 for target genes regulated exclu-
sively by non-CNV-miRNAs and increased to 0.0258 for
target genes regulated by both CNV-miRNAs and non-
CNV-miRNAs (p=0.0110, Mann–Whitney U, two-tail
test), the mean CV was further increased to 0.0274 for
target genes regulated exclusively by CNV-miRNAs
(p=0.0072, Mann–Whitney U, two-tail test). Using the
CVs calculated in CEU (Figure 2B), CHB (Figure 2C) and
JPT (Figure 2D) populations, we obtained similar results.
The associated sequence variants, such as causative

bi-allelic SNPs, could also lead to the different expres-
sion variability [12-14,39], we explored whether the
minor allele frequencies (MAFs) of SNPs in the target
genes of the CNV-miRNAs were significantly different
from target genes of non-CNV-miRNAs. The 50UTR and
30UTR sequences of human Ensembl genes were down-
loaded using BioMart [40], and then the HapMap Phase
III SNPs (retrieved from http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/database/) [41] were mapped onto
the sequences (see Methods and Additional file 5). As

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/


Figure 1 Synergistic regulation of CNV-miRNAs. (A) Schematic representation of five genes regulated by both CNV-miRNA-α and CNV-miRNA-
β. (B) Distribution of genes affected by two pseudo-CNV-miRNAs in 1000 simulations. The arrow on the right hand side represents the observed
number of targets of two CNV-miRNAs. (C) Distribution of genes targeted by the two non-independent CNV-miRNAs in 1,000 random
simulations. (D) Distribution of CNV-miRNAs as a result of dosage-balance from synergistic regulation.
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shown in Figure 3, genes regulated exclusively by ei-
ther non-CNV-miRNAs or CNV-miRNAs have simi-
lar proportions of genes that have SNPs in 50UTRs
and 30UTRs; furthermore, the SNPs in the 50UTRs
and 30UTRs have similar MAFs in each of four Hap-
Map populations (p-values range from 0.13 to 0.97,
two-tailed t-test). Because genome-wide association
and regression analyses have mainly used the MAFs
to infer statistical correlations of SNPs with a trait;
similar MAFs often indicate that the corresponding
SNPs have similar probability to be detected. There-
fore, the cis-elements of 50UTRs and 30UTRs may
contain less information than trans-elements in
explaining gene expression variations, it is possible
that the regulation of some CNV-miRNAs adds a more
diversifying control and promotes the differential
expression of their target genes among individuals.

Target genes of CNV-miRNAs are more likely to be
differentially expressed between populations
A good study has demonstrated that the within-
population expression variability of genes can influence
the propensity of their differential expression levels be-
tween populations [42]. Here, some CNV-miRNAs may
live in different populations; thus, the genes targeted by
these CNV-miRNAs are likely to be differentially



Figure 2 Expression variability of target genes within four human populations. This figure shows the comparison of the coefficient of
variation calculated from the gene expression profiles in (A) YRI, (B) CEU, (C) CHB, and (D) JPT populations.
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expressed among individuals within a population and
also between different populations.
To verify this prediction, we identified the genes that

were differentially expressed between any two of the
four populations. Taking the CEU and YRI populations
as example, we first (a) regress average gene expression
intensity, Myri, in YRI and Mceu, in CEU reciprocally;
(b) using Myri as the explanatory variable, a liner model
was derived by minimizing the square errors between
the observed Myri and the predicted values (^Myri);
(c) the residues, r = Myri - ^Myri, were transformed
by a quartile normalization and studentized to ^r, the
outliers were detected according to their ^r away
from the calculated 95% confidence intervals of the
t-distribution (see details in lm and rstudent func-
tions of stats R package http://www.r-project.org/);
(d) using Mceu, as the explanatory variable, the two
steps (b) and (c) were repeated. As shown in Figure 4A,
the mean expression intensities of the genes in the CEU
and YRI populations were compared; the red dots in the
plot of Myri and Mceu represent genes showing CEU- and
YRI-specific variation of expression intensity.
Using the method described above, we identified genes

that were differentially expressed in at least one of the
four ethnic populations (see Additional file 6). As shown
in Figure 4B, a similar number of genes were differen-
tially expressed among six population pairs selected from
the four ethnic populations. We then investigated
whether genes targeted by CNV-miRNAs were over-
represented in these differentially expressed genes. As
shown in Figure 4C, the proportion of differentially
expressed genes was 15.7% for targets regulated exclu-
sively by non-CNV-miRNAs, 17.4% for targets regulated
by both CNV-miRNAs and non-CNV-miRNAs (p=0.060,

http://www.r-project.org/


Figure 3 MAFs of SNPs in UTRs of target genes regulated exclusively by CNV-miRNAs or non-CNV-miRNAs. This figure shows the
comparison of MAFs of SNPs in (A) YRI, (B) CEU, (C) CHB, and (D) JPT populations. In each sub-figure, the left panel shows the comparison of
MAFs in the 50UTRs, the right panel shows the comparison of MAFs in the 30UTRs.

Figure 4 Expression variability of target genes between four human populations. (A) The plot of expression intensities of the genes in the
YRI and CEU population, the red dots represent the genes that show CEU- and YRI-specific significantly differential expression intensities.
(B) Number distribution of the differentially expressed genes in six population pairs selected from four ethnic populations. (C) Comparison of
proportion of genes differentially expressed in the genes that are regulated exclusively by either non-CNV-miRNAs, non-CNV-miRNAs and CNV-
miRNAs, or CNV-miRNAs, respectively.
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Chi-square, two-tail test), the proportion increased
further to 21.7% for targets regulated exclusively by
CNV-miRNAs (p=0.001, Chi-square, two-tail test).

Target genes of CNV-miRNAs tend to be differentially
expressed across tissues and developmental stages
For miRNAs that are specifically expressed in a particu-
lar tissue or at a particular developmental stage, the copy
number duplication or deletion of miRNAs may lead to
either weaker or stronger expression of their target
genes in the corresponding tissue and developmental
stage. For each human gene, we obtained its Differential
Expression Ratio (DER) from the FitSNPs [43]. This
DER value was a measure of the frequency of differential
expression of the gene in multiple microarray studies
across thousands of samples (see Methods). Because the
DER is derived from all available human microarray
datasets deposited in NCBI’s GEO database (http://www.
ncbi.nlm.nih.gov/geo/), it provides a comprehensive
metric to measure the regulation diversity of genes at
the expression level [44]. As shown in Figure 5, the
mean DER was 0.506 for 9,784 genes that are not regu-
lated by miRNAs, 0.514 for 2,249 target genes regulated
exclusively by non-CNV-miRNAs (p=1.81E-7, Mann–
Whitney U, two-tail test), and increased further to 0.535
for 6,730 target genes of CNV-miRNAs (p=2.36E-36,
Mann–Whitney U, two-tail test), which include 5,626 tar-
gets regulated by non-CNV-miRNAs and CNV-miRNAs,
and 1,104 targets regulated exclusively by CNV-miRNAs
Figure 5 Comparison of the differential expression ratios of human g
subset-versus-subset comparisons.
(see Additional file 7). Therefore, CNV-miRNAs indeed
add a more diversifying and complex regulation control
to their targets and contribute to an increased likelihood
of differential expression among different tissues, cell
types, developmental and disease stages.

Functional differences between target genes regulated
exclusively by CNV-miRNAs and target genes regulated
exclusively by non-CNV-miRNAs
The Gene Ontology annotation system [45] contained
190,525 associations among 14,117 human genes and 412
GO terms. This data was downloaded and intersected with
the 9,174 miRNA target genes that were identified using
TargetScan5.1. We obtained GO terms for 6,952 miRNA
targets and sought to determine whether the genes that
were regulated exclusively by CNV-miRNAs encode pro-
teins that have specific molecular functions or that are
involved in particular biological processes (see Methods).
As shown in Figure 6B and 6D, targets regulated
exclusively by non-CNV-miRNAs were significantly
enriched for fundamental biological processes such as
maintenance of chromatin, organelle and biogenesis,
chromosome segregation, extracellular transport and
nucleic acid metabolic process. These processes are
known to be essential and dosage-sensitive and their
radical fluctuation usually reduces an organism’s fit-
ness. In contrast, targets regulated exclusively by
CNV-miRNAs are enriched for processes responsible
for stimulus response, immune response, amino acid
enes. Expression variation was measured across 4,877

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Figure 6 Functional differences based on GO terms between the genes regulated exclusively by CNV-miRNAs and the genes regulated
exclusively by non-CNV-miRNAs. (A) Biological process groups that show a significantly higher percent of genes regulated exclusively by CNV-
miRNAs. (B) Biological process groups that show a significantly higher percent of genes regulated exclusively by non-CNV-miRNAs. (C) Molecular
function groups that show a significantly higher percent of genes regulated exclusively by CNV-miRNAs (D) Molecular function groups that show
a significantly higher percent of genes regulated exclusively by non-CNV-miRNAs. N1 represents the number of genes with GO-annotation in
genes exclusively regulated by CNV-miRNAs, N2 represents the number of genes with GO-annotation in genes exclusively regulated by non-CNV-
miRNAs. P-values were calculated by Fisher’s exact two tailed test.
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glycosylation and the MAPKKK cascade (Figure 6A and
6C). These processes were environment-oriented and
transduce a large variety of external signals, leading to a
wide range of cellular responses such as growth, differenti-
ation, inflammation and apoptosis. The flexible regulation
for these processes is required and generally provides posi-
tive selectiveness to an organism’s survival.

Discussion
It is interesting to know whether or not the orthologs
of human CNV-miRNAs were also located in CNV-
regions of other animals. We compiled the available
CNVs of Pan troglodytes [25] and Mus musculus
[26,27], and then intersected the location of their
miRNAs with the coordinates of the CNVs. The
results showed that only 21 and eight miRNA-families
have members located in CNV-regions in Pan troglo-
dytes and inbred Mus musculus, respectively (see
Additional file 8). Hence, the human genome con-
tained the highest proportion of CNV-miRNAs, mak-
ing it the best model to detect the mechanisms and
function of CNV-miRNAs.
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Animal genomes have the characteristics of dynamics
and plasticity, giving them the ability to adapt to chan-
ging environmental conditions. Mobile and evolving ele-
ments such as telomeres, transposons, and copy number
variants have been studied in investigations into the po-
tential effect of environment on genomes. For example,
Haasl and Payseur designed a mathematical model to
study microsatellite variations, such as the expected dis-
tribution of repeat sizes, and the expected squared dif-
ference in repeat size among samples; their simulations
revealed that microsatellites, especially triplet repeats,
provided adaptation facilitators for beneficial evolution
of genomes [46]. miRNAs are relatively newly discovered
genomic elements, but their post-transcriptional regula-
tion is present early on in metazoan evolution [47]. The
number of miRNAs in a genome correlates with the
morphological complexity of the animal, indicating that
they play roles in evolutionary changes of body structure
[48]. It is now widely accepted that an increase in the
complexity of gene regulatory mechanisms, at both the
genomic and transcriptomic level, drives the appearance
of more complex organisms. Two distinct mechanisms
of increasing complexity of gene expression, namely, the
co-evolution between CNVs and miRNAs, have been
recently recognized and studied. Marcinkowska et al.
compared the fractions of miRNA loci and the fraction
of genome covered by CNVs, and reported that the
CNV purification effect was insignificant [31]. Felekkis
et al. demonstrated that the number of distinct miRNA
types and the average number of miRNA binding sites in
genes in CNV regions were significantly higher than
genes in non-CNV regions [37]. In this study, we pro-
posed the miRNA-target recognition may play important
roles in escape from purification of the CNV-miRNAs
that target the same genes. Further analysis revealed that
“targeting by CNV-miRNAs” seems to be favored and
that the target genes participate in a wide-range of cellu-
lar responses to environmental factors. For target genes
regulated by one miRNA, CNV-miRNAs tend to target a
higher average number of genes than non-CNV-miRNAs.
From an evolutionary viewpoint, if the CNV-miRNAs
were deleterious and only remained in the genome
because they were difficult to remove, then we might
expect them to have a tendency to target, on average, a
lesser number of genes than non-CNV-miRNAs; further-
more, if the CNV-miRNAs were neutral and their reten-
tion attributed to random genetic drift, the CNV-
miRNAs and non-CNV-miRNAs should target a similar
average number of genes. Therefore, some CNV-
miRNAs seems to be beneficial to the organism and “tar-
geting by CNV-miRNAs” may provide positive selective
pressure to their target genes.
From a biological view, four paradigms could be used

to explain the co-evolutionary relationship between
CNVs and miRNAs. In the first paradigm, a simple re-
pression motif is involved where miRNA reduces the ex-
pression of its target (T), and the increased dosage due
to CNV-duplication of the target (T) is balanced by the
corresponding CNV-duplication of miRNA (Figure 7A).
In the second paradigm, a miRNA and its target (T) mu-
tually buffer each other’s expression from perturbation
in a negative feedback loop, the increased dosage due to
CNV-duplication of the target (T) is buffered by the ex-
pression variation of the miRNA [49] (Figure 7B). In the
third paradigm, the CNV-duplication of some miRNAs
can compensate for the CNV-deletion of other miRNAs
in balancing the dosage variation of their common target
(T) (Figure 7C). In the final paradigm, the common
target (T) of two miRNAs is up-regulated in the cellular
response to environmental factors, the intrinsic dosage-
sensitivity of the target (T) makes the CNV-duplication
of both the miRNAs favorable (Figure 7D). Obviously,
CNVs and miRNAs must have co-evolved complementa-
rily in a tradeoff between maintaining the balance of the
dosage-sensitive genes and the increasing diversity of
dosage-non-sensitive genes [50]. With genomic plasticity
being controlled, CNV-miRNAs provide the possibility
of increasing regulatory complexity and the evolvability
of genomes.
Our analyses revealed pervasive impacts of CNV on

the miRNA-mediated post-transcription regulatory net-
work. Previous studies demonstrated that miRNAs pre-
ferentially regulated the hubs of protein interaction [51]
and metabolic networks [52]. We here propose that the
CNV of miRNAs may fluctuate the dosage balance of
signal transduction pathways, metabolic flux or protein
complexes [53,54], leading eventually to individuals of
the same population or different populations having
different susceptibility to diseases [55]. Although it is
difficult to identify these CNV-miRNAs without a com-
prehensive investigation of health risks among human
populations, recent experimental studies have discovered
CNV-causing dysregulation of miRNAs that confirmed
their roles in disease occurrence. In one study, next-
generation sequencing technology was used to explore
CNV as a potential mechanism of miRNA mis-expres-
sion, the affected miRNA loci were consistently found to
be either lost or gained, and their candidate mRNA tar-
gets were coordinately dysregulated; the authors demon-
strated the structure variation of the miRNA loci clearly
characterized the pre-invasive stage of breast cancer
[56]. In another study, genetic networks were inferred
from miRNA expression in normal and cancer tissues,
and cancer networks built from disjointed sub-networks
were found to accompany miRNA copy number altera-
tions, such as the amplification of the hsa-miR-17/92
family, the deletion of the hsa-miR-143/145 cluster, and
the physical alteration of the hsa-miR-204/30 at the



Figure 7 Schematic representation of the four paradigms used to explain co-evolution between CNVs and miRNAs. (A) A simple
repression motif is involved where a miRNA reduces the expression of its target (T), the increased dosage due to CNV-duplication of the target (T)
is balanced by the corresponding CNV-duplication of miRNA. (B) miRNA and its target (T) mutually buffer each other’s expression from
perturbation in a negative feedback loop, the increased dosage due to CNV-duplication of the target (T) is buffered by the expression variation of
the miRNA. (C) The CNV-duplication of some miRNAs compensate for the CNV-deletion of other miRNAs in balancing the dosage of their
common target (T). (D) The common target (T) of two miRNAs is up-regulated in the cellular response to environmental factors; the intrinsic
dosage-sensitivity of the target (T) makes the CNV-duplication of both the miRNA1 and miRNA2 become favorable. miRNA1 and miRNA2
represent two different miRNAs.
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DNA copy number level [57]. The results of these stud-
ies clearly demonstrate the feasibility of using the dysre-
gulation of CNV-miRNAs as biological markers for
disease screening; indicating that CNV-miRNAs and
their targets should be given more attention in studies of
human health.

Conclusions
To the best of our knowledge, this is the first genome-
wide integrative analysis among human CNVs, miRNAs,
their targets and expression variations. Our results will
pave the way for future studies for the functional
characterization of CNV-miRNAs. This study reveals
more clear roles of CNV-miRNAs and is valuable for
studying the impact of CNVs on human health.

Methods
Compilation of human miRNA target genes
The miRNAs and their predicted targets were taken from
TargetScan (http://www.targetscan.org version 5.1)
[32,33]. Targets with a total context score of −0.3 or
lower were ignored, where the score quantitatively meas-
ure the overall target efficacy [58]. A total of 9,174 targets
with at least one conserved 7-mer or 8-mer were selected
as reliable miRNA targets [59] (see Additional file 1).

Analysis of human gene expression data
The microarray-based gene expression profiles were
derived from lymphoblastic cell lines of 270 HapMap
individuals (http://www.sanger.ac.uk/humgen/genevar,
GSE6536), including 90 samples of YRI (Yoruba people
of Ibadan, Nigeria), 90 samples of CEU (U.S. residents
with northern and western European ancestry), 45 sam-
ples of CHB (Chinese Han in Beijing) and 45 samples of
JPT (Japanese from Tokyo) [60,61]. The annotation table
was retrieved from http://www.ncbi.nlm.nih.gov/projects/
geo/query/acc.cgi?acc=GPL2507. The RefSeq identifiers
were transformed to Ensembl Gene ID through BioMart
[40]. Finally, the expression profiles of 16,686 human genes
(including 8,636 miRNA targets) across four HapMap
populations were complied.
The following formulas were adopted to calculate the

coefficient of variation (CV) of gene i in each ethnic
population.

The mean intensity Mi calculated by Mi ¼

Xn
j¼1

Sij

n

The standard deviation σi calculated by σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sij�Mið Þ2
n�1

r
,

The coefficient of variation CVi calculated by CVi ¼ σ i
Mi

Where j=1 to n, n represents the number of samples
in a population, Sij represents the expression signal of
gene i in sample j. Greater CV implies higher expression
variability of a gene across individuals within the corre-
sponding population (see Additional file 4).

Calculation of MAFs of SNPs in UTRs of human genes
Minor allele frequency (MAF) refers to the frequency at
which the less common allele occurs in a given popula-
tion. SNPs with a minor allele frequency of 5% or greater
were targeted by the HapMap project and have been
widely employed in Genome Wide Association Studies
for complex traits (GWAS) [62,63].
For a SNP A/a, the minor allele frequency was calcu-

lated by the following formula

MAF ¼ min 2NAA þ NAa; 2Naa þ NAað Þ
2NAA þ 2Naa þ NAað Þ

Where Naa represents the count of individuals who
are homozygous for allele1, NAa represents the count of
individuals who are heterozygous, Naa represents the
count of individuals who are homozygous for allele2.

http://www.targetscan.org
http://www.sanger.ac.uk/humgen/genevar
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GPL2507
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GPL2507
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Compilation of DERs of human genes
The differential expression ratios (DER) of human genes
were obtained from the study by Chen et al. (FitSNPs,
http://fitsnps.stanford.edu/download.php) [43]. Briefly,
the authors downloaded 476 human GEO datasets from
the NCBI Gene Expression Omnibus and categorized
each GEO dataset into 24 types of comparisons, such as
disease state, cell type, metabolism and so on. A total of
4,877 subset-versus-subset comparisons were performed
to identify differentially expressed genes with a cutoff of
q value ≤ 0.05 by SAM package [44]. For each human
gene, the count of GEO datasets in which it was differ-
entially expressed was divided by the count of its mea-
sured GEO.
The gene symbols and EntrezGene IDs were trans-

formed to their Ensembl gene IDs using the BioMart
program [40].The Ensembl genes with available DERs
were then intersected with the genes that were used for
TargetScan5.1 prediction. Finally, the DER values of
9,784 genes that are not regulated by miRNAs and 8,979
target genes of miRNAs were obtained.

Functional analysis of human genes based on gene
ontology
The Gene Ontology (GO) has developed three struc-
tured controlled vocabularies to describe gene products
in terms of their associated biological processes, cellular
components and molecular functions [45]. The human
gene association file was downloaded from http://www.
geneontology.org/gene-associations/. For each GO term,
the proportion of annotated genes was compared between
the genes regulated exclusively by CNV-miRNAs and the
genes regulated exclusively by non-CNV-miRNAs. The
p-value was estimated by Fisher’s exact two-tailed test,
and a cutoff of p ≤ 0.05 was used to identify the over-
represented or under-represented GO terms among the
genes that are regulated exclusively by CNV-miRNAs.

Computational environment
The project was started and completed in Dalian In-
stitute of chemical Physics. Computations were per-
formed on a Linux cluster with 50 nodes (Intel 5130,
2.0 GHz CPU, 4G memory, Laboratory of Molecular
Modeling and Design, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences). Perl (http://perl.org) and R
(http://www.r-project.org/ ) scripts were used for analysis,
and can be obtained on request.

Additional files

Additional file 1: The 63,428 regulatory relationships among 541
miRNA families and 9,174 target genes.

Additional file 2: The 172 human CNV-miRNA-families and their
encoding members.
Additional file 3: List of targets genes with three regulatory patterns
of miRNAs. The numbers in parenthesis represent the total number of
regulatory miRNAs and the number of CNV-miRNAs, respectively.

Additional file 4: Coefficient of variation (CV) of human protein-
coding genes in four HapMap ethnic populations.

Additional file 5: Minor allele frequencies (MAFs) of 50UTR- and
30UTR-SNPs in four HapMap ethnic populations.

Additional file 6: List of 2,624 differentially expressed genes
among six population pairs comparisons selected from four
HapMap ethnic populations.

Additional file 7: The differential expression ratios (DERs) of 1,8763
human genes that were used for TargetScan5.1 prediction.

Additional file 8: The 21 and eight CNV-miRNA-families of Pan
troglodytes and Mus musculus, respectively. As there are no miRNA
targets from the TargetScan prediction for Pan troglodyte, the miRNA-
family IDs were represented by Rfam identifiers (http://rfam.sanger.ac.uk/).
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