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Abstract

Background: New genes that originate from non-coding DNA rather than being duplicated from parent genes are
called de novo genes. Their short evolution time and lack of parent genes provide a chance to study the evolution
of cis-requlatory elements in the initial stage of gene emergence. Although a few reports have discussed
cis-regulatory elements in new genes, knowledge of the characteristics of these elements in de novo genes is
lacking. Here, we conducted a comprehensive investigation to depict the emergence and establishment of
cis-regulatory elements in de novo yeast genes.

Results: In a genome-wide investigation, we found that the number of transcription factor binding sites (TFBSs) in
de novo genes of S. cerevisiae increased rapidly and quickly became comparable to the number of TFBSs in

established genes. This phenomenon might have resulted from certain characteristics of de novo genes; namely, a
relatively frequent gain of TFBSs, an unexpectedly high number of preexisting TFBSs, or lower selection pressure in

they might be related to reproduction.

the promoter regions of the de novo genes. Furthermore, we identified differences in the promoter architecture
between de novo genes and duplicated new genes, suggesting that distinct regulatory strategies might be
employed by genes of different origin. Finally, our functional analyses of the yeast de novo genes revealed that

Conclusions: Our observations showed that de novo genes and duplicated new genes possess mutually distinct
regulatory characteristics, implying that these two types of genes might have different roles in evolution.

Keywords: De novo gene, Regulatory evolution, TFBS turnover, Promoter architecture

Background

New genes arise through various mechanisms, including
gene duplication, exon shuffling, gene fusion, retroposi-
tion, mobile elements, lateral gene transfer, and de novo
origination [1-3]. Although new genes are considered to
be fairly dispensable [4], their role in adaptive evolution-
ary innovation has been investigated. Most of the studies
have focused on the cellular, physiological, morpho-
logical, behavioral, and reproductive phenotypic traits
associated with new genes [1,5-7]. A recent study found
that 30% of the new genes in Drosophila quickly evolved
essential functions that allowed them to participate in
development [8]. Using pre-existing genes as the raw
material, duplicate genes rapidly developed essential

* Correspondence: hktsai@iis.sinica.edu.tw; dywang@gate.sinica.edu.tw
?Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
“Research Center for Information Technology Innovation, Academia Sinica,
Taipei, 115, Taiwan

Full list of author information is available at the end of the article

( BioMed Central

functions that were not present in the pre-duplication
gene through the processes of neofunctionalization [8]
or subfunctionalization [9]. In addition, neofunctionali-
zation and subfunctionalization of transcription factor
binding sites (TFBSs) can explain the novelty that occurs
in the regulatory region of duplicated new genes [10-12].
The de novo origin of genes, genes that arise from
previous nonfunctional genomic sequences, is a rare
and intriguing process [13,14]. It is believed that the
new coding region could emerge by mutations that re-
move disruptions of a proto-open reading frames [1].
Positive selection in the coding sequences has been
reported, suggesting that adaptive protein evolution had
occurred [15].

De novo gene evolution was first investigated in
Drosophila melanogaster in 2006. Five novel genes were
identified experimentally as derived from ancestral non-
coding sequences and evolved as the result of a selec-
tion process associated with male reproduction [16]. In
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Saccharomyces cerevisiae, the first identified de novo
gene was BSC4. Population genetic analysis suggested
that BSC4 was under strong negative selection at the
nonsynonymous sites [3]. A de novo transcript in Mus
musculus was found to have emerged in an intergenic
region because of indel mutations in the 5 regulatory
region; the transcript was fixed by a selective sweep in
M. musculus populations [17]. Other de novo genes
have been identified in various species; for example,
CLLUI and FLJ33706 in Homo sapiens [18,19], MDFI
in S. cerevisiae [20], DRIO in Oryza sativa [21], and
Noble in D. melanogaster [22]. In addition, several
genome-wide analysis studies have identified numerous
de novo genes in various species, and the importance
of such genes in adaptive evolution has been discussed
[23-28]. For example, in D. melanogaster, a study
based on expressed sequence tags identified eleven pu-
tative de novo genes, and de novo origination was esti-
mated to be responsible for 11.9% of the new genes
[24]. In H. sapiens, 60 protein-coding genes were iden-
tified as de novo genes that were highly expressed in
the cerebral cortex [27]. These findings indicate the
importance of de novo genes in phenotypic diversity
and evolutionary adaptation. Nevertheless, the regula-
tory evolution of de novo genes is not yet fully under-
stood. A prevalent view is that de novo genes do not
possess complicated regulatory control and, therefore,
only a functional transcription start site would be
required for transcription initiation [29]. However, be-
cause de novo genes might play important roles in de-
velopment [8], the view that only a simple regulatory
control mechanism is used remains open to
speculation.

Several genome-wide studies have attempted to de-
scribe the characteristics of regulatory evolution [30,31].
Frequent gain or loss events of TFBSs (TFBS turnover)
have been identified as an important feature of regula-
tory evolution, and have been found to exhibit lineage
specificity in transcriptional regulation [32-34]. A previ-
ous study showed that duplicated new genes inherit
more than a third of the regulatory interactions from
their ancestral genes [35]. Moreover, the expression of
duplicated genes often benefits from the preexisting
regulatory mechanism [36]. After gene duplication, posi-
tive selection on cis-regulatory motifs leading to dramat-
ically accelerated rates of cis-regulation compared with
the orthologs has been observed [37]. In S. cerevisiae,
it has been shown that the number of shared TEBSs
in duplicate genes decreased with evolution time whereas
the total number remained unchanged, suggesting that
there is a balance between gain in functionally novel
TEBSs and either the loss of preexisting TFBSs or the
modification of preexisting TFBSs to new functions [12].
Nonetheless, de novo genes evolve from non-coding
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sequences based on the cryptic presence of functional
sites, including a transcriptional start site and upstream
regulatory elements [29]. The question of how de novo
genes that have no parent gene obtain regulatory ele-
ments and further establish complex regulatory mechan-
isms has yet to be determined.

We conducted a genome-wide investigation of de novo
genes in S. cerevisiae to investigate regulatory evolution
in the initial stages of gene emergence. One of the
challenges is that the conventional methods that are
used for de novo gene identification are known to
overestimate their numbers because of the high num-
ber of false positives that are generated [27]. Recently,
Capra et al. developed a computational pipeline to
identify de novo genes in yeast and to understand the
evolution of protein interaction networks involving
the novel genes [38]. They identified 227 de novo
genes that originated after whole-genome duplication
(WGD), and found that initially the de novo genes
had fewer interactions, but subsequently gained inter-
actions more rapidly than duplicated new genes. Here,
we modified their pipeline to identify S. cerevisiae-
specific de novo genes that emerged after divergence
from S. paradoxus, instead of after WGD. The strin-
gent criteria that we used to identify de novo genes
would aid our observation of cis-regulatory element
evolution during the initial stage of a gene emergence.
Using our modified method, we identified 34 de novo
genes that were specific to S. cerevisiae (i.e., without
either paralogous genes or orthologous genes in any
other species). To analyze the cis-regulatory evolution
of genes that had emerged from different origins and
had different ages, we identified duplicated new genes
(new genes with paralogous genes) and orthologous
genes (well-conserved genes with orthologous genes in
all seven yeast species) and compared the characteris-
tics of cis-regulation in each. We found a higher num-
ber of TEBS gain events and higher evolution rates in
the promoters of new genes (both de novo and dupli-
cated new genes) compared with in old (orthologous)
genes. Our findings suggested that the promoters of
new genes might experience adaptive evolution as their
functions become established. Furthermore, we investi-
gated the nucleosome architecture in the promoter
regions, which might be associated with transcriptional
regulation and the evolution of eukaryotic genes [39-46].
Our results revealed significant lower occupancy of
proximal nucleosomes and lower enrichment of the
TATA box in promoters of de novo genes compared
with in duplicated new and orthologous genes, suggest-
ing that de novo genes might employ different regula-
tory strategies from duplicated genes. Finally, functional
analyses revealed that de novo genes might play roles
in reproduction-related functions.
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Methods

Identification of de novo genes in S. cerevisiae

The S. cerevisiae genome assembly sequence (SacCer_
Apr2011/sacCer3) and genome annotation from the Sac-
charomyces Genome Database (SGD) [47] were used.
The protein sequences of 6,384 S. cerevisiae genes were
downloaded from UniProt [48]. These sequences were
compared against the NCBI non-redundant protein se-
quence database (NR) using BLASTP with an e-value
cut-off of 10™°. We identified 1,008 UniProt sequences
with no BLASTP hits to proteins in other species and at
least one hit in S. cerevisiae. We selected 987 genes that
had expression evidence in a high-resolution transcrip-
tome map [49] from the 1,008 genes. To ensure that the
987 genes had no known homologous genes, we queried
two additional databases, Yeast Gene Order Browser
(YGOB version 6) [50] and OrthoMCL-DB (version 5)
[51]. YGOB curates homology information by gene syn-
teny with the manual reconstruction of the duplication
history in the recent evolution of the S. sensu stricto and
S. sensu lato yeasts [50]. OrthoMCL-DB houses ortholog
group predictions for 150 species (version 5), and
querying this database would avoid the possibility of in-
cluding horizontal transfer genes in our study [51].
After removing the genes with homologs that were
found in YGOB or OrthoMCL-DB, the 874 genes that
remained were identified as S. cerevisiae-specific new
genes, which had no annotated homologous genes in
other species. We would like to have a conservative ap-
proach, so we further filtered out potential orthologous
genes with high nucleotide sequence identity (>70%) to
any one of the six closely related yeast species (S. para-
doxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castelli
and S. kluyveri). Sequence identity was calculated from
the UCSC multiz alignment of seven yeast species (mul-
tiz7way) [52]. After applying this approach, 102 new can-
didate S. cerevisiae-specific genes that had emerged in
S. cerevisiae after its divergence from S. paradoxus
were identified. Next, we classified the 102 new genes
according to their origins into 56 de novo genes and
46 duplicated new genes; new genes with paralogous
genes in S. cerevisiae (based on a list of 1,048 independ-
ent duplicate pairs [39]) were defined as duplicated new
genes, and new genes without paralogous genes were
defined as de novo genes. To minimize potential biases,
we also removed three types of genes based on the char-
acteristics of the promoter regions, which were defined
as the intergenic regions (<1000 bp) upstream of the
transcriptional start sites (TSSs). The three types of genes
that were excluded from the subsequent analyses were as
follows: (a) genes with promoters shorter than 100 bp
were removed because such promoters were not long
enough for us to be able to analyze nucleosome occu-
pancy in TSS-distal region; (b) head-to-head genes
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that shared core promoters (250 bp upstream of the
TSS) were removed because the promoter of one of
the genes in a head-to-head pair may already contain the
TFBSs of the other gene, thereby biasing the estimation
of preexisting TFBSs (Only genes that shared core pro-
moters were removed based on the assumption that core
promoters contain most of the functional TFBSs); (c)
genes with promoters that were poorly aligned against
the S. paradoxus orthologous sequences (a gap rate
greater than 50%) were removed because the poor align-
ments may have biased our estimation of the evolution
rate. After applying these filtering criteria, 34 de novo
genes and 13 duplicated new genes remained and were
used in the subsequent analyses (Figure 1). Additionally,
we identified orthologous relationships in the six closely
related yeast species for each gene in S. cerevisiae
according to synteny and sequence similarity under the
same criteria as above. The genes that have orthologs in
all the six yeast species were selected as orthologous
genes. All the genes in the three gene categories were
listed in Additional file 1: Table S1.

Identification of transcription factor binding sites

We retrieved 481 position frequency matrices from the
MYBS database which integrates ChIP-chip data and
phylogenetic footprinting data in yeast [53]. To remove
redundant motifs, we integrated all the recorded motifs
for each transcription factor (TF) using the STAMP web
server which calculates the similarity of various motifs
and integrates them into a familial binding profile [54].
A total of 175 familial binding profiles were generated
and converted into position weight matrices (PWMs) by
the PATSER software using the default settings [55]. Pu-
tative TFBSs were obtained by scanning PWMs with a
threshold p-value of <0.001 [56] (TFBSs identified under
different thresholds were also investigated to examine
the robustness of our study in the Additional file 2: Sup-
plementary Document). Next, putative TEBSs that were
not documented in the curated YEASTRACT database,
which documents 48,333 regulatory associations be-
tween TFs and their target genes [57], were excluded.
We then characterized TFBSs based on whether they
were newly gained (i.e., did not exist before gene origin-
ation) or were preexisting TFBSs (i.e., already existed be-
fore gene origination). The characterization entailed
scanning the corresponding regions of S. paradoxus and
S. mikatae, the two yeast species most closely related to
S. cerevisiae, for each of the TFBSs that were identified
in S. cerevisiae. The corresponding regions, defined as
the regions that extended 25 bp upstream and down-
stream of the aligned region of a TFBS [53], were
retrieved from multiz7way [52]. A TFBS gain event was
defined as a TFBS in S. cerevisiae that did not possess an
occurrence of its motif within the corresponding regions
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Figure 1 The computational pipeline for identifying de novo genes and duplicated new genes in S. cerevisiae. All the S. cerevisiae genes
that have BLASTP hits only in S. cerevisiae were collected. Genes with possible homologs were excluded accordingly. The remaining genes were
further classified into de novo genes and duplicated new genes. Last, genes with short promoters, poor alignments in promoters, or share core
promoters were excluded. Finally, 34 de novo genes and 13 duplicated new genes were selected for subsequent analyses in this study. The
numbers on the left denotes the number of remaining genes in each step. The pie chart illustrates the proportion of genes used in our analysis.
The darker parts (34 and 13) are the number of genes retained, and the lighter parts (22 and 33) are the number of genes discarded.

in S. paradoxus and S. mikatae. A preexisting TFBS was
defined as possessing occurrences of its motif within the
corresponding regions in S. paradoxus, S. mikatae, or
both. TEBS losses of de novo genes were not investi-
gated because no ancient gene exists; that is, no func-
tional TFBS existed before the de novo gene emerged.

Investigation of nucleosome occupancy and promoter
architecture

In this study, we used a S. cerevisiae genome-wide refer-
ence map of nucleosome positions that integrated six
high-resolution genome-wide maps from multiple la-
boratories and detection platforms [58]. To exclude rela-
tively depleted nucleosomes, only nucleosomes with
>50% occupancy were considered [58]. Tirosh et al.
defined two gene categories according to different char-
acteristics of the promoter nucleosomes and found that
the two categories possessed different regulatory strat-
egies [45]. We modified the procedure proposed by
Tirosh et al, and identified two categories according
to the presence of nucleosomes in the TSS-proximal
region (from TSS up to -100) and the TSS-distal

region (from -300 to -400), as follows: (a) genes with a
nucleosome in the TSS-proximal region but with none in
the TSS-distal region, referred to as occupied proximal
nucleosome (OPN) genes; and (b) genes without a
nucleosome in the TSS-proximal region but with one in
the TSS-distal region, referred to as depleted proximal
nucleosome (DPN) genes.

Functional analysis

The Serial Pattern of Expression Levels Locator (SPELL)
database [59] was used to identify the potential func-
tions of the S. cerevisiae de novo genes. SPELL is a
query-driven search engine for large gene expression
microarray compendia containing more than 2,400 ex-
perimental conditions. It has been used to identify the
most informative expression data sets and to interpret
relevant genes for a given set of query genes. We queried
the SPELL database using the de novo genes and identi-
fied the top 100 relevant genes that were most similarly
expressed across all data sets. SPELL then assigned the
Gene Ontology (GO) terms from the identified genes to
the queried de novo genes. Significance was tested using
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the Bonferroni-corrected Fisher’s exact test with the
g-value set to <0.01 [59]. We also conducted TFBS en-
richment analysis to identify TFs that might be respon-
sible for the regulation of the de novo genes. The
identification was based on a binomial test, in which the
null hypothesis states that the probability of finding the
TEBSs in de novo genes is smaller or equal to that of all
the other genes in the S. cerevisiae genome.

Results

Evolutionary characteristics of TFBSs in de novo genes

To investigate whether a promoter was well established
before the emergence of a new coding gene or had
evolved rapidly after the origination, we analyzed the
number and evolutionary characteristics of TFBSs in the
promoters of the three gene groups. On average, a de
novo gene was regulated by 11.5 + 0.8 TFs, a duplicated
new gene was regulated by 11.7 + 0.6 TFs, and an ortho-
logous gene was regulated by 11.9 + 0.3 TFs. The aver-
age number of TFBSs identified in a promoter was
254 £ 1.9 for de novo genes, 24.4 + 1.6 for duplicated
new genes, and 24.3 + 0.6 for orthologous genes. The
average numbers of TFs regulating a gene and the aver-
age number of TFBSs in a promoter were similar in the
new genes (de novo or duplicated new) and old genes
(orthologous) (Figure 2).

To examine the origination of the TFBSs in de novo
and duplicated new genes, we classified TFBSs into
newly gained TFBSs, and preexisting TFBSs. Signifi-
cantly higher proportions of gained TFBSs were
observed for new genes (de novo and duplicated new)
compared with the orthologous genes (one-sided

Page 5 of 12

Wilcoxon test p = 7.3x10* and p = 2.7x107, respect-
ively) and all the other genes in the S. cerevisiae genome
(Figure 3). The difference between gained TFBSs in de
novo and duplicated new genes was not significant (two-
sided Wilcoxon test p = 0.06). On average, 53.2% and
41.9 % of the TFBSs were found to be preexisting TFBSs
in the promoters of de novo genes and duplicated new
genes, respectively; and 65.3% and 62.2% of the TFBSs
were preexisting in the promoters of orthologous genes
and all the other genes in the S. cerevisiae genome, re-
spectively. The proportions of preexisting TFBSs were
significantly smaller in both the de novo and duplicated
new genes compared with in the orthologous genes
(one-sided two-sample proportion test p = 3.5x10™** and
p = 2.2x107, respectively). No statistically significant
difference was found between the two types of new
genes (two-sided two-sample proportion test p = 0.043).
Because the new and old genes possessed similar num-
bers of regulatory elements (Figure 2), we inferred that
the cis-regulatory elements of new genes evolved rapidly
after the emergences of the genes. Although only dupli-
cated new genes originated from the copying of ancestral
functional sequences, both types of new genes shared
similar benefits from the preexisting TFBSs.

Lower selection pressure in promoter regions of de novo

genes

To investigate the differences in selection constraint
among de novo genes, duplicated new genes, and ortho-
logous genes, we determined the DNA substitution rate
as an evolution rate for the promoters of genes in each
group (Figure 4). The DNA substitution rate for each
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Figure 2 The numbers of TFs and TFBSs for de novo genes, duplicated new genes, and orthologous genes. Comparison of the average
number of TFs regulating a gene (A), and the average number of TFBSs in a gene (B) for de novo genes, duplicated new genes, and orthologous
genes. No significant differences were observed (two-sided Wilcoxon test).
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S. cerevisiae genome. Comparisons of the proportions of gained TFBSs in de novo genes, duplicated new genes, orthologous genes, and all the
other genes in the S. cerevisiae genome. The significance tests were conducted by one-sided Wilcoxon test (*: p-value < 0.01; **: p-value < 0.001
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The result of the comparison showed that the evolution
rates in the promoters of the three gene groups were
lower than in the neutral references, indicating that the
promoters were under selection pressure. However, the
promoters of de novo genes might experience lower se-
lection pressure than the promoters of orthologous
genes. Similar results were found for duplicated new
genes, and no significant difference was observed in pro-
moter evolution rates between the two groups of new
genes (two-sided Wilcoxon test p = 0.14).

Nucleosome occupancy and TATA box in promoters of
new genes

Previous studies have shown that nucleosomes may par-
ticipate in transcriptional regulation and that the
sequences occupied by nucleosomes are subjected to
various evolutionary constraints [39-43]. To investigate
the effect of nucleosome architecture on the regulatory
evolution of de novo genes, we analyzed the nucleosome
occupancy in the promoters of de novo versus dupli-
cated new and orthologous genes. The comparisons
were based on the findings of Tirosh et al. who sug-
gested that the presence of nucleosomes in the TSS-
proximal region might be related to high transcriptional
plasticity and might be associated with evolvability of a
gene [45,61]. Our results showed that DPN genes (genes
with nucleosome depleted in TSS-proximal regions)
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were significantly predominant in de novo genes (one-
sided two-sample proportion test p = 0.002), whereas
OPN genes (genes with nucleosome occupied in TSS-
proximal regions) predominated in duplicated new genes
and orthologous genes (one-sided two-sample propor-
tion test p = 3.5x10° and p = 2.8x10™% (Figure 5A).
Moreover, compared with all the other genes in the S.
cerevisiae genome, the proportion of DPN genes in the
de novo genes was also significantly higher (one-sided
two-sample proportion test p = 0.003). Conversely, the
proportion of DPN genes in duplicated new genes was
significantly lower than in all the other genes in the S.
cerevisiae genome (one-sided two-sample proportion
test p = 0.01).

Another crucial architectural motif in the promoter is
the TATA box. The expression of TATA-containing
genes is highly regulated, responsive to stress, sensitive
to chromatin regulators, and variable across different
species [62,63]. We found that the proportion of TATA-
containing genes (consensus TATA(A/T)A(A/T)(A/G)
within -50 to -200 [63]) was significantly lower in de
novo genes (12.1%) compared with the proportion
observed in the whole S. cerevisiae genome (23.3%)
(one-sided two-sample proportion test p = 0.0037). In
contrast, the proportion of TATA-containing genes in
the duplicated new genes (71.4%) and orthologous genes
(35.9%) was significantly higher than in the whole
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Figure 5 The nucleosome occupancy and TATA box of de novo genes, duplicated new genes, orthologous genes, and all the other
genes in the S. cerevisiae genome. Proportions of (A) DPN and OPN genes and (B) TATA box-containing genes in de novo genes, duplicated
new genes, orthologous genes, and all the other genes in the S. cerevisiae genome. The dashed line indicates the proportion of TATA box-
containing genes in the whole genome. The significance tests were conducted by one-sided two-sample proportion test (*: p-value < 0.01;
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S. cerevisiae genome (one-sided two-sample proportion
test p = 3.5x107 and 1.1x10°°, respectively) (Figure 5B).
Opverall, our findings indicated that de novo genes were
dominated by DPN genes but fewer TATA-containing
genes, whereas duplicated new genes were dominated by
OPN genes and TATA-containing genes. These results
suggested that the two types of new genes may possess
different regulatory strategies.

Functional analyses of de novo genes

To investigate the possible roles of de novo genes, we
conducted a number of analyses to infer their potential
functions. We used FunSpec [64], a web-based cluster
interpreter that identifies enriched function annotations
across numerous knowledge sources. As expected, be-
cause the de novo genes were lack of orthologous genes,
most de novo genes were functionally unknown. There-
fore, we used SPELL (Version 2.0.3) [59] to identify the
informative expression and potentially related GO terms
of the identified de novo genes. Twenty-two GO terms
with corrected g-values <0.01 were suggested as poten-
tial functional annotations for these genes (Table 1).
Most of the 22 GO terms are related with reproduction,
including formation of sporulation, spore, ascospore,
and cell differentiation. When we included the 22 de
novo genes that were excluded from the previous ana-
lyses because of short or poorly aligned promoters,
SPELL again predicted that the 56 unfiltered de novo
genes could have functions related to reproduction
(Table 2). The GO terms, meiosis and meiotic cell cycle,
are also enriched in the de novo genes. These analyses
suggested that de novo genes might play roles in
reproduction. We were curious about whether the TFs

Table 1 Predicted GO terms for 34 de novo genes by
SPELL [59]

GO term g-value
sexual sporulation 2.1%10°
sexual sporulation resulting in formation of a cellular spore 2.1%107
cellular process involved in reproduction 3.8x10°
reproductive process 38x107
spore wall biogenesis 43%10°
ascospore wall biogenesis 43%10°
ascospore wall assembly 43x10°
spore wall assembly 43%10°
fungal-type cell wall assembly 43%103
cell wall assembly 50x10°
cell differentiation 56x10°
sporulation resulting in formation of a cellular spore 7.8x10°
Reproduction 89x10°
Sporulation 9.2x107
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Table 2 Predicted GO terms for 56 de novo genes
(including 22 de novo genes with short promoters or
poor alignments in promoters) by SPELL [59]

GO term g-value
M phase of meiotic cell cycle 85x10™
Meiosis 85x10™
meiotic cell cycle 10x10°
cellular process involved in reproduction 1.0x107
reproductive process 1.0x10°
Reproduction 3.1x10°

that were enriched in the regulated de novo genes also
had functions related to reproduction. The TFBS enrich-
ment analysis indicated that three TFs, BAS1, GCN4
and GCR1, might be responsible for the regulation of de
novo genes (binomial test g-value <0.001). BAS1, GCNI,
and GCRI1 are known to play important roles in meiotic
recombination in reproduction processes [65-68], which
coincides with the functional annotation of the de novo
genes. The above results suggested that de novo genes
may be regulated by reproduction-related TFs and
involved in reproduction.

Discussion
We investigated the emergence of cis-regulatory ele-
ments in de novo genes. Specifically, 56 de novo genes
were identified as having emerged in S. cerevisiae since
separation from S. paradoxus approximately 5 million
years ago [69]. It has been shown that different
approaches for de novo gene identification may yield dif-
ferent results. For example, Capra et al. investigated all
the de novo genes since WGD. This strategy ensured
that the possibility of having orthologous genes in any
species before WGD was avoided, but genes in the
closely related species after WGD were allowed [38].
Wu et al, on the other hand, considered only the de
novo genes without any orthologous genes but with
highly similar orthologous regions and frame-shifts in
two closely related species [27]. In short, Capra et al. dis-
cuss the evolution of de novo genes in a relative large
time-scale while Wu et al. analyzed the characteristics of
de novo genes that originated immediately by one-step
mutations from closely related species. In this study, we
attempted to understand the evolution of regulatory ele-
ments which requires sufficient evolution time to accu-
mulate mutations. Therefore, we considered a time-scale
that fell between the time-scales of the above two stud-
ies. We did not focus on the de novo genes that immedi-
ately emerged one-step away from non-coding regions
as in Wu et al,, because the promoters of these genes
might not have experienced sufficient evolution time.
Our results showed that the promoters of new genes
(of both de novo and duplicated origin) possessed
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similar numbers of regulatory TFs and TFBSs compared
with those in orthologous genes. This finding suggested
that TFBSs might be established rapidly after the emer-
gence of a new gene and could be explained by the fre-
quent occurrence of TFBS turnover, a well-documented
phenomenon in eukaryote cis-regulation [34]. For ex-
ample, frequent TFBS gain events in duplicated genes
were found to play a critical role in the regulatory evolu-
tion of the yeast genome [12]. Papp et al. found that the
numbers of TFBSs in the promoters of duplicated genes
remained constant over evolutionary time, whereas the
numbers of shared motifs from a preexisting gene
decreased, perhaps because of a balance between the
gain of new TFBSs and the loss of TFBSs from parent
genes [12].

The promoters of de novo genes that evolved from
non-coding regions instead of duplicated from promo-
ters of parent genes might be expected to have a differ-
ent frequency of TEBS gain event than in duplicated
genes. However, our analyses showed that the de novo
and duplicated new genes exhibited similar numbers of
TEBS gain events. A simple explanation could be that
preexisting TFBSs in the promoters of the de novo genes
were more plentiful than previous expected. Indeed, our
results indicated that more than half of the TFBSs in the
promoters of de novo genes were preexisting TFBSs,
which supports this explanation. Together with the ob-
servation of high substitution rates in the promoters of
de novo genes, our results further suggested that the
promoters experienced adaptation evolution and fre-
quent gain events. Both these phenomena would rapidly
increase the number of TFBSs in de novo genes to a
level comparable with the number found in orthologous
genes. In addition, the higher substitution rates in the
promoters of de novo genes compared with those of
neutral sequences (i.e. the four-fold degenerate sites)
suggested that the new genes might experience positive
selection during the establishment of cis-regulatory
motifs. Our results agree with a previous protein inter-
action networks study which found that, although de
novo genes initially had fewer functions and protein
interactions than duplicated new genes, de novo genes
rapidly gained functions and protein interactions until
the numbers were comparable to duplicated new genes
[38].

Research has shown that duplicated genes often inherit
cis-regulatory elements from their parent genes, thereby
benefiting from preexisting regulatory mechanisms
[35,36]. However, because we found that de novo genes
had a similar proportion of preexisting TFBSs in their
promoters as duplicated new genes, we have proposed
three possible explanations for this observation. First,
studies have shown that non-functional TFBSs reside
throughout the intergenic regions in the genome; for
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example, it was reported that TFs can bind to substantial
numbers of non-functional TFBSs regardless of their
weak binding strength [70]. Second, although we
removed head-to-head genes that share core promoters,
there still might be cases in which the promoters are
shared. The promoter of the de novo genes may partially
overlap with the distal promoter of neighboring genes,
especially in yeast, which have relatively short intergenic
region. Moreover, while non-functional TFBSs determined
by documented regulatory associations in YEASTRACT
have been removed (i.e. the pair of head-to-head genes
would not have exactly the same set of TFBSs), some
TEBSs may still be shared. These shared TFBSs could ex-
plain the unexpectedly high proportion of preexisting
TEBSs in de novo genes. Third, there may be a number
of false positives in the computational identification of
the TEBSs [71]. Although we filtered out non-functional
TEBSs in S. cerevisiae according to the regulatory asso-
ciations documented in the YEASTRACT database [57],
similar information in the other yeast species is insuffi-
cient to eliminate all the potential false positives. Thus,
the numbers of TFBSs in other yeast species and conse-
quently the number of preexisting TFBSs might have
been overestimated.

The promoter architecture of new genes is an intri-
guing issue to explore because it has been associated
with the gene origination mechanisms [38]. We found
that duplicated new genes were enriched with OPN
genes and TATA-containing genes; whereas, most de
novo genes were TATA-less and enriched with DPN
genes. The association between DPN and TATA-less
promoters in de novo genes is consistent with the report
that TATA-less promoters usually have clearer nucleo-
some free regions than TATA-containing genes [45,72].
Additionally, TATA box and OPN enrichment has been
reported in the promoters of duplicated genes [44,73].
OPN and TATA-containing genes are relatively adapt-
able to environmental changes and are associated with
processes that require high expression variation, such as
transcriptional plasticity, sensitivity to chromatin regula-
tion and genetic perturbations, expression noise, and ex-
pression divergence. In addition, TATA-containing genes
are often highly regulated and are associated with indu-
cible responses to stress or biotic stimuli [45,62,63,74].
DPN and TATA-less genes, on the other hand, display
relatively low expression variation and constitutive ex-
pression, and TATA-less genes are lightly regulated by
chromatin regulators, unresponsive to stress, and related
to basic housekeeping functions in yeast and human
[62,63,75]. The functions of TATA-less genes are
enriched in basic processes such as cell growth and
maintenance, protein biosynthesis, large ribosomal sub-
unit, and mitochondrion [75], and these known func-
tions are consistent with the results of our functional
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analyses of de novo genes. Furthermore, the promoters
of the TATA-containing genes are TAF-independent and
dominated by the Spt-Ada-Gcen5 acetyltransferase com-
plex (SAGA), while the promoters of the TATA-less
genes are TFIID-dominated and highly TAF-dependent
despite there being a common set of TAFs that are
shared by SAGA and TFIID [76]. As a result, the differ-
ence in TATA enrichment and nucleosome occupancy
(OPN or DPN) between the two types of new genes
indicates that they employ distinct regulatory mechan-
isms. These findings agree with the suggestions by Capra
et al. that the function and fate of new genes are asso-
ciated with their origins [38]. Our functional analysis
using SPELL suggested that de novo genes might contrib-
ute to cellular processes that are involved in reproduction,
such as sporulation and formations of cellular spore and
cell wall. Differences in sporulation patterns and sporula-
tion efficiencies between S. cerevisiae and S. paradoxus
have been observed [77]. Also, germinating spores of
S. cerevisiae show a higher preference for own-species
mating than the spores of S. paradoxus [78]. In addition,
the enrichment of DPN genes and TATA-less genes that
we found in the de novo genes agrees with the observa-
tion that the genes involved in sporulation and division
are constitutively expressed [79].

We used SPELL to predict the functions of de novo
genes because of the lack of functional annotations in de
novo genes. However, SPELL has various limitations.
Given a set of query genes, SPELL identifies the expres-
sion microarray datasets that are most informative for
these genes. Then additional genes that have the most
similar expression profiles to the query genes are identi-
fied in the datasets. According to the functions of the
additional genes, SPELL generates hypothetical functions
for the query genes. However, the assignment of the
functions is for the most part limited to the microarray
datasets and GO annotation. Moreover, correlations of
the expression patterns among a set of co-functional
genes might not always be significantly high, because the
genes need not be co-expressed at all the experimental
time points. Because of these limitations, the functions
assigned by SPELL may reveal only partial, and some-
times inaccurate, roles of de novo genes.

In addition to the SPELL functional predictions,
we provided further support for the predicted de novo
gene function by examining the function of their TFs.
We identified BAS1, GCN4 and GCR1 as regulators of
de novo genes. Interestingly, studies suggests that all
three of these TFs are related to meiotic recombination,
a process in reproduction: mutations in BAS1 affect
the frequency of aberrant segregation of recombination
hotspot at the histone HIS4 locus, lessen the recom-
bination distance, and alter the frequency of meiosis-
specific double-strand DNA breaks [65,66]; deletion or
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constitutive expression of GCN4 affects the frequency of
gene conversion and crossing-over at the HIS4 locus
[67]; and removal of GCR1-binding sites reduces the
expression of REC102, a gene required for the initiation
of meiotic recombination [68]. Based on previous studies
and the findings in this study, we propose that de novo
genes may play an important role in reproduction.

Although the functions of most de novo genes have
not been well investigated, some of their specific roles
have been addressed [1,2,27]. For example, Wu et al. have
analyzed the transcriptome of numerous human tissues
and found that de novo genes are highly expressed in the
testes and cerebral cortex, which plays key roles in cog-
nitive abilities [27]. The authors suggested that the de
novo genes might contribute to phenotypic traits that are
unique to humans [27]. Our results also suggest that new
genes from different origins may play distinct roles in the
evolutionary process. While duplicated new genes have
been shown to be involved in environmental adaptation
[38], we hypothesized that de novo genes might contrib-
ute to evolutionary innovation in reproduction processes
like sporulation efficiency. Further studies are required to
examine this hypothesis; nevertheless, the computational
approaches that were used in this study shed some light
on the evolution of cis-regulation in de novo genes.

Conclusions

Our study showed that the number of TFBSs in de novo
genes increased rapidly after gene emergence and soon
resulted in that de novo genes having a comparable
number of TFBSs as the orthologous genes. We sug-
gested that frequent TFBS gain events, more numbers of
unexpected preexisting TFBSs, and the lower selection
pressure experienced in the promoters of de novo genes
compared to orthologous genes could be the major rea-
sons for this finding. Moreover, we found that new genes
from different origins (de novo or duplication) have dis-
tinct regulatory characteristics (de novo genes were
dominated by DPN and TATA-less genes; duplicated
new genes were dominated by OPN and TATA-
containing genes). Furthermore, we found that the pre-
dicted GO terms related to reproduction processes were
enriched in de novo genes. Taking all of our results to-
gether, we concluded that de novo genes and duplicated
new genes might play distinct roles in evolution.
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