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Abstract

Background: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally
in a wide range of biological processes. The zebra finch (Taeniopygia guttata), an oscine songbird with characteristic
learned vocal behavior, provides biologists a unique model system for studying vocal behavior, sexually dimorphic
brain development and functions, and comparative genomics.

Results: We deep sequenced small RNA libraries made from the brain, heart, liver, and muscle tissues of adult male and
female zebra finches. By mapping the sequence reads to the zebra finch genome and to known miRNAs in miRBase, we
annotated a total of 193 miRNAs. Among them, 29 (15%) are avian specific, including three novel zebra finch specific
miRNAs. Many of the miRNAs exhibit sequence heterogeneity including length variations, untemplated terminal
nucleotide additions, and internal substitution events occurring at the uridine nucleotide within a GGU motif. We also
identified seven Z chromosome-encoded miRNAs. Among them, miR-2954, an avian specific miRNA, is expressed at
significantly higher levels in males than in females in all tissues examined. Target prediction analysis reveals that
miR-2954, but not other Z-linked miRNAs, preferentially targets Z chromosome-encoded genes, including several
genes known to be expressed in a sexually dimorphic manner in the zebra finch brain.

Conclusions: Our genome-wide systematic analysis of mature sequences, genomic locations, evolutionary sequence
conservation, and tissue expression profiles of the zebra finch miRNA repertoire provides a valuable resource to
the research community. Our analysis also reveals a miRNA-mediated mechanism that potentially regulates
sex-biased gene expression in avian species.
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Background
MicroRNAs (miRNAs) are short non-coding RNA mole-
cules that regulate gene expression post-transcriptionally
[1]. miRNAs are transcribed by RNA polymerase II. Pri-
mary transcripts of miRNAs are cleaved in the nucleus by
the nuclease Drosha to generate precursor miRNAs (pre-
miRNAs) with a characteristic hairpin-like secondary
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reproduction in any medium, provided the or
structure [2-4]. The pre-miRNAs are then exported to
the cytoplasm and further cleaved by the RNase III en-
zyme Dicer to release a 21–23 nt small RNA duplex
from the stem region of the hairpins [2,5-7]. In most
cases, only one strand of the small RNA duplex is
retained as mature miRNA, and the other strand,
termed miRNA star (miRNA*), is degraded [8]. In some
cases, however, both strands from the same hairpin are
retained as functional miRNAs, which are annotated as
miRNA-5p and miRNA-3p, respectively, depending on
which arm of the hairpin they are derived [9]. Sequence
variations, such as nucleotide deletion, insertion, untem-
plated terminal extension, and editing, have been observed
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for some miRNAs [10-13]. The majority of animal
miRNAs function by binding to the 3

0
-untranslated

regions (UTRs) of target mRNAs via sequence com-
plementarity to induce mRNA degradation or repress
protein translation [14-16]. miRNAs have been found
in most eukaryotes and many of them are conserved
through evolution. The recent application of deep se-
quencing technology has also revealed an increasing
number of species-specific miRNAs [10,17-21]. It is
estimated that over 60% of human protein-coding
genes might be regulated by miRNAs [22]. By fine-
tuning gene expression, miRNAs regulate many bio-
logical processes ranging from cell proliferation, cell
fate specification, cell differentiation, apoptosis, ani-
mal development, metabolism, to various disease
conditions [1,16,23].
The zebra finch (Taeniopygia guttata), an oscine song-

bird, provides a unique animal model for neurobiological
research with its characteristic learned vocal behavior [24].
Zebra finches use a discrete set of interconnected brain nu-
clei and pathways, commonly referred to as the song sys-
tem, to control song behavior [25]. Song behavior in zebra
finches is sexually dimorphic: only male birds sing, and the
song system is highly developed in males [26,27]. For dec-
ades, zebra finches have been widely used to study vocal
learning, neuronal replacement, and sexually dimorphic
development of male and female brains [24,28]. In recent
years, large efforts have been devoted to developing gen-
omic resources and extending research in zebra finches to
molecular and genomics levels [29-35]. As part of this ef-
fort, we have systematically characterized miRNA expres-
sion in various tissues of adult female and male zebra
finches using the Illumina high throughput sequencing
platform. Taking advantage of the large sequence dataset
now available, we analyzed features of these miRNAs, in-
cluding miRNA sequence conservation through evolution,
miRNA clusters, tissue-enriched expression, and sequence
variations. Previously, using the 454 sequencing platform,
we detected a Z chromosome encoded miRNA, miR-
2954, in the male zebra finch brain [32]. This miRNA
has recently been shown to be expressed in the auditory
forebrain of zebra finches, and its expression is regulated
by song exposure [35]. We have further explored the ex-
pression of miR-2954 and other Z chromosome encoded
miRNAs in male and female tissues and have found that
miR-2954 is predominantly expressed in all male tissues
examined. Our target prediction analysis revealed that
miR-2954, but not other Z chromosome encoded miRNAs,
preferentially targets Z chromosome encoded genes.

Results
General features of zebra finch miRNAs
We prepared eight small RNA libraries from four tissues –
brain, heart, liver, and muscle – of adult female and male
zebra finches. These libraries were sequenced using the
Illumina Genome Analyzer II high throughput sequencing
platform. We obtained a total of 23,366,676 raw sequence
reads from all libraries combined. After adaptor trimming
and removal of low quality reads and orphan sequences
(single reads), 19,424,182 high quality sequence reads
were retained for subsequent analysis (Additional file 1).
Of these reads, 60% mapped perfectly to the zebra finch
genome assembly (release 1.0). We extracted flanking
sequences around mapped reads and used mFold [36] to
search for hairpin-like secondary structures. A total of
169 mature miRNAs were identified, which exhibited
good hairpin-like precursor structures and matched
known miRNAs recorded in miRBase (version 17.0)
with high sequence homology (identical or with one
mismatch). Considering that the current zebra finch
genome assembly is relatively new and may contain
gaps [32], we compared the unmapped sequence reads
to known miRNA sequences in miRBase, and identi-
fied 21 additional miRNAs with high sequence hom-
ology (identical or with one mismatch) to known
miRNAs in other species. Following the general criteria
for miRNA annotation [37], we identified three novel
zebra finch specific miRNA candidates, which are sup-
ported by good hairpin-like precursor structures, pres-
ence of corresponding star sequences, and relatively
high expression (Figure 1A). Taken together, we identi-
fied 193 distinct zebra finch miRNAs. The sequences,
genomic locations, and relative expression levels of
these miRNAs are summarized in Additional file 2.
miRNAs and their variants accounted for ~64% of

all high quality reads. The remaining sequence reads
were classified as rRNA/tRNA fragments, repeat-
associated small RNAs, degradation products of
mRNAs, and undefined small RNAs (Figure 1B). The
expression levels of individual miRNAs spanned a
wide range, from a few copies to thousands of copies
(Additional file 2). For example, tgu-miR-1, which was
highly expressed in both heart and muscle, was repre-
sented by 2,541,528 reads, accounting for 25% of the
total miRNA reads (Figure 1C), whereas the three novel
zebra finch miRNAs were expressed at relatively low
levels, represented by 304, 66, and 73 reads respectively
(Figure 1A). (Note, these numbers represent combined
totals from four tissues and two sexes. For read counts
in individual tissues and sexes, see Additional file 2).
All of the top 20 most abundantly expressed miRNAs
were conserved in vertebrates, and they comprised 76%
of the total miRNA sequence reads (Figure 1C).

Potential avian specific miRNAs
By comparing to mature miRNA sequences in miRBase,
33 of the 193 zebra finch miRNAs did not have homo-
logs (identical or with one mismatch) outside of avian
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Figure 1 miRNA annotation and expression analysis in zebra finch. (A) Mature sequences, expression counts, and precursor sequences with
predicted hairpin-like secondary structures of three novel miRNAs identified in the zebra finch. Nucleotides labeled in red and blue in the
precursor sequences represent mature miRNAs and their star sequences, respectively. The read numbers are combined from four tissues and two
sexes. (B) Relative percentages of small RNA populations among the total sequence reads. Calculations were based on the total reads of the eight
libraries combined. (C) The 20 most abundantly expressed miRNAs.
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species. To investigate whether these 33 miRNAs had
unidentified homologs in other genomes, we searched for
homologous sequences in the genomes of 9 animal species
including C. elegans, drosophila (D. melanogaster), zebra-
fish (Danio rerio), X. tropicalis (Xenopus tropicalis), lizard
(Anolis carolinensis), platypus (Ornithorhynchus anatinus),
chicken (Gallus gallus), mouse (Mus musculus), and
human (Homo sapiens). Sequence homologs of 4 miRNAs
(miR-2978, miR-2983, miR-2984, and miR-2987) were
found in at least one non-avian vertebrate, and these
were subsequently excluded from the list of avian-
specific miRNAs. Thus, 29 miRNAs were classified as
avian-specific miRNAs, of which 19 were zebra finch
specific (Figure 2). By extending this analysis to all
the 193 zebra finch miRNAs, we found that 37 miRNAs
were conserved from C. elegans through humans, 103 were
conserved in vertebrates, and 24 were only conserved be-
tween avian and mammals (Additional file 3).
miRNA clusters
Using a distance of 10 kb between any two miRNA
genes as a cutoff, 87 miRNA genes were grouped into
36 genomic clusters. We named these miRNA gene
clusters according to the name of the first member of
each cluster followed by the number of miRNA genes
within the cluster in parenthesis, e.g., cluster tgu-mir-24
(3) contains tgu-mir-24, tgu-mir-27b, and tgu-mir-23b
(Additional file 4). Among these clusters, 3 appeared to
be formed by tandem duplications of a single miRNA
gene, e.g., the tgu-mir-2989(2) cluster on chromosome 8
contains 2 copies of the tgu-mir-2989 gene (Additional
file 4). A majority of clusters were conserved in verte-
brates (having more than 2 miRNA genes in the same
cluster in other species); one cluster (tgu-let-7a-2(3)) was
also conserved in D. melanogaster, but none was con-
served in C. elegans. One cluster (tgu-mir-2989(2))
appeared to be zebra finch specific.
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Figure 2 Conservation status of avian-specific miRNAs in nine animal species. The orange color indicates miRNA sequence homologs with
predicted hairpin-like structures were found in a genome by our analysis. Black dots indicate homolog miRNAs are already recorded in miRBase as
known miRNAs. Green color indicates mature miRNA sequences, but not precursor sequences, were found in a genome, and they were not
counted as having homologs in other genomes. Blue is the background. Note, sequence homologs for miR-2978, miR-2983, miR-2984, miR-2987,
and miR-2956 were found in the chicken genome, but they were not recorded in miRBase, so they didn0t get a black dot. We reported zebra finch
specific miRNAs (miR-2955 through miR-2997) previously [32], and they are already in miRBase, so they were not considered to be novel miRNAs.
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miRNA*
We found 150 miRNA* sequences for 131 mature
miRNAs (Additional file 5). For miRNAs encoded by
multiple genomic loci, a single mature sequence can
have more than one star sequence, presumably originat-
ing from different precursors. For example, three differ-
ent star sequences were detected for tgu-miR-7, which
has three genomic loci. These three tgu-miR-7*
sequences had different read counts, indicating that the
three tgu-miR-7 genes were transcribed with different
promoter activities and/or different efficacies of precur-
sor processing (Additional file 6). Most of the star
sequences were detected at considerably lower levels
compared to their respective dominant strands. Yet, for
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16 miRNAs, both strands were detected at comparable
levels (< 10 fold differences, Additional file 7), suggest-
ing that both strands may function as mature miRNAs.
The relative read counts for the two strands of these
miRNAs were similar across the four tissues examined
(Additional file 5), indicating that the mechanisms
retaining both strands were tissue independent. Inter-
estingly, for several miRNAs (e.g., tgu-miR-142, tgu-
miR-214, and tgu-miR-455), both strands have been
detected at similar levels in mice and chickens as well
[12,38], suggesting a functional conservation of these
star sequences in vertebrates.

miRNAs generated by atypical biogenesis pathways
Mirtrons are a special group of miRNAs that are derived
from short intronic sequences by splicing machinery ra-
ther than by Drosha cleavage [39-41]. Recently, Glazov
and colleagues reported the identification of 12 mirtrons
in chickens [38]. We did not, however, find sequence
homologs of any of the chicken mirtrons in our miRNA
set, nor did we find any miRNAs mapping to either
boundaries of a short intron. This discrepancy might be
partly explained by the fact that the chicken mirtrons
were detected in embryos and exhibited low copy num-
bers [38], whereas our miRNAs were from adult tissues.
Alternatively, it may simply be a consequence of the in-
complete annotation of intronic regions in the zebra
finch genome.
miR-451 is a vertebrate miRNA whose maturation

depends on Ago2 cleavage rather than the common
Dicer pathway [42,43]. We found that tgu-miR-451 was
located on chromosome 19, about 100 nt downstream
from miR-144, and the mature and precursor sequences
of tgu-miR-451 were highly conserved with those in
chickens, mice, and humans. Similar to its mammalian
counterparts, the 50-end of tgu-miR-451 was well
defined, whereas its 30-end was highly variable, extending
into the loop region of the hairpin structure, presumably
reflecting imprecise cleavage by Ago2 (Additional file 8).

miRNA expression patterns in tissues
We next examined the expression patterns of zebra
finch miRNAs in brain, heart, liver, and muscle. Overall,
the brain displayed the most diverse miRNA expression
and had the largest number of tissue-enriched miRNAs
(Figure 3A). About 17% of all miRNAs (32 of 193)
showed enriched expression in a single tissue, and two
thirds of them (20 of 32) were highly enriched in brain
based on combined read counts from males and females
(Figure 3A and 3B). However, the two most abundantly
expressed miRNAs (miR-1 expressed in heart and
muscle and miR-499 in heart) showed little or no ex-
pression in brain. Since the sequences of many miRNAs
are conserved through evolution, we asked whether the
tissue-enriched miRNA expression patterns were also
conserved. To this end, we analyzed previously pub-
lished data from human, mouse, and sea slug (Aplysia)
[10,19]. Seven miRNAs (miR-9, miR-124, miR-137, mir-
153, miR129, mir-218, and miR-138b) showed brain-
enriched expression in both humans and zebra finches,
and miR-124, miR-137, miR-153, and miR-34b have also
been detected in the Aplysia nervous system (Table 1).
We validated the conservation of tissue expression pat-
terns of five miRNAs in human, mouse, and zebra finch
by Northern blot analysis (Figure 3C).
miRNAs within a genomic cluster tend to exhibit par-

allel relative expression patterns across tissues, probably
reflecting their shared promoter and tissue specific cis-
tronic transcriptional control. However, the expression
abundance of different members of a cluster in a given
tissue can be drastically different. For example, miR-
133a and miR-1 of the 133a(2) cluster were both
expressed in heart and muscle, but the expression of
miR-1 was about 10 times higher than that of miR-133a
in each of these tissues. This difference in expression
levels between members was characteristic of many gen-
omic clusters (Additional file 9), suggesting that a pre-
cursor specific event during the miRNA maturation
process might regulate the expression levels of individual
miRNAs in a genomic cluster.

Sequence variations
Taking advantage of the large sequence dataset, we
analyzed miRNA sequence variations. We classified
miRNA isoforms into three major groups: length varia-
tions, untemplated terminal nucleotide additions, and
internal substitutions (Figure 4A). The length variants
accounted for 25% of the total miRNA reads, a majority
of which (> 80%) were 3' variants (Figure 4A). This is in
good agreement with observations in other species, fur-
ther supporting the notion that precision at cleavage
events at the 5'-termini is necessary to protect the seed
sequence at positions 2–8 of the mature miRNA
[12,44,45]. Nonetheless, the read numbers of 5' offset
isoforms of several miRNAs were relatively high. For ex-
ample, miR-124, a brain enriched miRNA, had several 5'
offset isoforms, with the combined reads accounting for
15% of all reads (Figure 4B). Another prominent ex-
ample was miR-133a, which had two main 5'-isoforms,
miR-133a1 and miR-133a2, of which the 5' terminus of
miR-133a2 was shifted 1 nucleotide in the 3' direction.
These two isoforms were each represented by 77,642
and 98,840 reads, accounting for 32% and 41% of the
total reads. Interestingly, similar patterns of 5' hetero-
geneity are also observed in mouse miR-124 and miR-
133a [12,46], indicating that the alternative processing
mechanisms giving raise to these isoforms might be evo-
lutionarily conserved.
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Untemplated nucleotide additions to miRNA 3' ends
are observed for many miRNAs in worms, flies, and
mammals [10,12,44,45]. Similar to those observed in
other species, nucleotides most frequently added to
zebra finch miRNAs were U and A, with the U addi-
tions occurring more frequently than the A additions
(66 miRNAs had U additions and 35 miRNAs had A
additions, Additional file 10). For some miRNAs, the
extended isoforms outnumbered the canonical forms.
For example, miR-456 had 7 fold more extended reads
than non-extended reads, and miR-24 had 23,754
extended reads compared to 7,212 non-extended reads
(Additional file 10). We also observed that A addition
had a greater tendency to occur on 5p arms, occurring
26 times on 5p arms compared to 9 on 3p arms, while
U addition occurred slightly more often on 3p arms, oc-
curring 36 times on 3p arms compared to 30 on 5p arms.
Compared with previously published data, it appeared
that patterns of untemplated extension of some miRNAs
were conserved among multiple vertebrate species. For
example, the A extensions of miR-99 and miR-101 and
the U extensions of miR-15a, miR-24, miR-106, miR-124,
and miR-425-5p were observed in zebra finch, human,
and mouse [13,46].
In mammals, miRNA editing events in which adeno-

sine is converted to inosine by adenosine deaminases
(ADARs) are observed for several miRNAs; the resultant
inosine is detected in sequencing as an A-to-G conver-
sion [10,12,47-49]. Among our data, however, the A-to-G
change was found in just ~0.3% of total miRNA reads in



Table 1 Conservation analysis of brain enriched miRNAs
in three other species

miRNAs Total
reads

Reads in
brain

Conservation*

Human Mouse Aplysia

miR-9 357811 354947 √ √

miR-124 111628 111170 √ √ √

miR-137 28008 27599 √ √ √

miR-153 16599 16188 √ √

miR-212 8361 8168

miR-135a 7451 7053

miR-219 7228 7198

miR-132 6496 6172

miR-34b 6401 6322 √

miR-129 5909 5535 √

miR-551 4992 4949

miR-218 4221 4024 √ √

miR-383 3822 3743

miR-34c 3628 3593

miR-460b 1447 1402

miR-458 1013 958

miR-138b 386 358 √ √

miR-1805 306 297

miR-489 304 285

miR-1803 264 261

* √ indicates brain-enriched expression in the examined species.
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the brain library and in all 8 libraries combined. This fre-
quency does not differ significantly from the sequencing
error rate observed among our synthetic internal control
sequences spiked into library preparations (<0.5%). We
also searched for A-to-I editing events at specific sites in
individual miRNAs. Using a criterion of >5% mismatch
frequency, only tgu-miR-24 exhibited significant A-to-G
change at the 15th position of the mature sequence. This
change occurred in all tissues, but had the highest fre-
quency in brain (~9%, Additional file 11). We next exam-
ined all miRNAs that had any internal nucleotide change.
Thirty-two miRNAs displayed internal nucleotide
changes with a frequency >5%. Nucleotide changes at the
U position within a GGU motif were the most frequent
substitution (25 out of the 32), and it appeared that sub-
stitution with any of the other three nucleotides was per-
missible (Figure 4C). For several miRNAs in this group,
the GGU motifs occurred within the seed sequence
(Table 2); thus, substitution of the U nucleotide could
potentially alter miRNA targeting specificity (Table 2).

Male-biased expression and targeting of miR-2954
miR-2954 is a recently identified avian miRNA, which has
a single genomic locus on the zebra finch Z chromosome
[32,35]. We did not detect it in the chicken genome assem-
bly (version galGal3) or in the genomes of other animal
species (Figure 2). However, we found the mature miR-
2954 sequence among chicken ESTs, and its expression in
chicken embryo is detected by Northern blot analysis [50].
Tgu-miR-2954 was expressed in a sex-biased manner in
all four examined tissues; and its expression was signifi-
cantly higher in male tissues than in female tissues
(Additional file 2). We validated this expression pattern
by Northern blot analysis and quantitative real-time PCR
(qRT-PCR) (Figure 5A, B, and C). Our original sequen-
cing samples did not include ovary and testis; however,
using qRT-PCR, we found that the expression of miR-
2954 was 3-fold higher in testis than in ovary
(Figure 5C). In addition to miR-2954, six other miRNAs
(miR-23b, miR-24, miR-27b, miR-122, miR-2973, and
miR-2992) were encoded solely by the Z chromosome,
and most of them showed slightly higher expression in
male tissues than in female tissues (Figure 5D). The one
exception was miR-122, which was expressed at a higher
level in heart in females than in males. Several miRNAs
(miR-7, miR-9, miR-101, and miR-204) that are encoded
by both the Z and the A chromosomes did not exhibit
consistent sex-biased expression (Additional file 12).
We next performed target prediction analysis using the

TargetScan software package [51]. Target analysis predicted
approximately 100 putative tgu-miR-2954 target genes,
with a strong bias towards Z chromosome-encoded genes
(27 of 100, P < 1e-15, Fisher0s exact test) (Figure 6A). A
similar pattern was also observed for chicken miR-2954,
for which 70 of the 403 putative targets were Z chromo-
some encoded (17.4%, P < 2.2e-16, Fisher0s exact test)
(Figure 6B), suggesting that the functional preference of
miR-2954 for Z-linked genes is conserved among avians. A
significantly larger number of miR-2954 target genes were
predicted in chickens (WASHUC2) than in zebra
finches, probably reflecting the incomplete annotation of
the 3'-UTR sequences in the current zebra finch genome
assembly (taeGut3.2.4). In contrast, no enrichment of Z
chromosome-encoded target genes was found for other
zebra finch Z chromosome-encoded miRNAs such as
miR-27b and miR-122 (Figure 6C). Among the putative
tgu-miR-2954 targets were several Z-linked genes encod-
ing proteins with particular functions in the nervous sys-
tem, including Ca2+/calmodulin-dependent protein kinase
IV (CaMKIV), SCAMP1, and SMARCA2. Genes encoding
proteins in the guanine nucleotide exchange signaling
pathways (e.g., RICTOR, DelGEF-interacting protein 1,
Brefeldin A-inhibited guanine nucleotide-exchange pro-
tein 3, RAB40C, developmentally-regulated GTP-binding
protein 2, and MCF2) were prominently represented
as well. In addition, many putative miR-2954 targets
were key regulators of transcription, including TLE4,
GPBP1, PSIP1, SMARCA2, HMGB1, TNIP3, ZCCHC4,
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Figure 4 miRNA sequence variants. (A) Distribution of sequence variation types among all miRNA reads. (B) Sequence variants in miR-124. The
nucleotides differing from the template genome are highlighted in red. Blue bars to the right indicate frequencies of these variants. (C) Motifs
identified among internal substitution sites. The overall height of a stack indicates sequence conservation at that position: the higher the stack,
the more the position is conserved. The heights of nucleotides within a stack indicate the relative frequency for each nucleotide at that position.
We analyzed 6-nucleotide sequences containing an internal substitution site having a substitution rate > 5%, and found that a GGU motif was
preferentially present among all sequences. The numbers (1–6) below the X axis indicate nucleotide positions in the motifs.
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EAPP, RQCD1, MLF1, STAT3, ATF6, EZH1, and
DEDD (Additional file 13).

Discussion
Here we report a comprehensive annotation and analysis
of 193 zebra finch miRNAs expressed in four different
tissues of both sexes. While the majority of the 193
identified miRNAs are evolutionarily conserved, rela-
tively large fractions of them are zebra finch-specific
(10%) or avian-specific (15%). The list of zebra finch spe-
cific miRNAs may be even longer, as approximately 40%
of the total sequence reads obtained from our small
RNA libraries failed to map to the genome, probably due
to gaps in the current genome assembly. Conversely,
genomes of other species that we searched may have
gaps as well, thus we cannot rule out the possibility that
some avian and/or zebra finch specific miRNAs
described here may have undiscovered homologs in
other species. Several zebra finch specific miRNAs
showed tissue specific expression. For example, miR-
2963 was detected in the brain, miR-2997 in liver, and
the novel miRNA 3 in heart (Additional file 14). How-
ever, most of the zebra finch specific miRNAs were
expressed at low levels, indicating that their expression
is restricted to specific cell types or that they have not
yet been widely incorporated into gene regulation net-
works. Further investigation will be needed to determine
if these avian or zebra finch specific miRNAs play roles
in zebra finch specific features.
Recently, Gunaratne et al. reported the annotation of

155 miRNAs expressed in the auditory forebrain region
of zebra finches [35]. Among these miRNAs, 140 are



Table 2 miRNAs having substitutions at the GGU motif

miRNAs Canonical sequence* Modified reads Percentage

tgu-let-7a UGAGGUAGUAGGUUGUAUAGUU 11500 5.5%

tgu-let-7b UGAGGUAGUAGGUUGUGUGGUU 1629 6.7%

tgu-let-7c UGAGGUAGUAGGUUGUAUGGUU 1556 5.2%

tgu-let-7d AGAGGUAGUAGGUUGCAUAGUU 395 5.5%

tgu-let-7e UGAGGUAGUAGAUUGAAUAGUU 3864 5.2%

tgu-let-7f UGAGGUAGUAGAUUGUAUAGUU 12490 5.1%

tgu-let-7i UGAGGUAGUAGUUUGUGCUGUU 3792 8.2%

tgu-miR-122 UGGAGUGUGACAAUGGUGUUUG 6211 14.0%

tgu-miR-133b UUGGUCCCCUUCAACCAGCUAU 18 5.1%

tgu-miR-140 ACCACAGGGUAGAACCACGGAC 674 5.0%

tgu-miR-15a UAGCAGCACAUAAUGGUUUGU 382 5.4%

tgu-miR-15c UAGCAGCACAUCAUGGUUUGU 187 5.4%

tgu-miR-181b AACAUUCAUUGCUGUCGGUGGGU 254 6.2%

tgu-miR-183 UAUGGCACUGGUAGAAUUCACU 5 5.1%

tgu-miR-18a UAAGGUGCAUCUAGUGCAGAUA 228 12.5%

tgu-miR-18b UAAGGUGCAUCUAGUGCAGUU 7 5.0%

tgu-miR-196 UAGGUAGUUUCAUGUUGUUGGG 8 10.0%

tgu-miR-221 AGCUACAUUGUCUGCUGGGUUUC 2636 6.4%

tgu-miR-222 AGCUACAUCUGGCUACUGGGUCUC 1413 6.5%

tgu-miR-2970 GACAGUCAGCAGUUGGUCUGG 219 11.7%

tgu-miR-363 AAUUGCACGGUAUCCAUCUGU 83 6.8%

tgu-miR-383 CAGAUCAGAAGGUGAUUGUGGC 101 7.3%

tgu-miR-456 CAGGCUGGUUAGAUGGUUGUC 34 7.8%

tgu-miR-458 AUAGCUCUUGGAAUGGUUCUGC 31 5.1%

tgu-miR-551 GCGACCCAUACUUGGUUUCAG 69 5.0%

*The seed regions (2–8th nucleotides) are underlined. The GGU motifs are marked in boldface.
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present in our set of miRNAs. Our dataset contains an
additional 53 miRNAs, many of which show tissue spe-
cific expression in heart, liver, and muscle (Additional
files 2 and 15). This is not unexpected as we sequenced
four tissues, whereas only auditory forebrain was
sequenced by Gunaratne et al. Although the source
materials used in the two studies were different and the
criteria for miRNA annotation were slightly different,
the large overlap between the two datasets provides add-
itional confidence with respect to the identification of
these miRNAs. Combining the two sets of data brings
the total number of zebra finch miRNAs to 208. Many
of these miRNAs show enriched expression in the brain,
including several (miR-25, miR-192, miR-124, miR-129,
and miR-92) that are regulated in the auditory forebrain
by song exposure [35], indicating that miRNAs may play
important roles in song behavior and neural plasticity.

miRNA sequence heterogeneity
We did not observe significant A-to-I editing in mature
zebra finch miRNAs except for miR-24. Notably, several
mammalian miRNAs with well-characterized A-to-I
editing sites (e.g., miR-376a, miR-376c, miR-379, miR-
381, miR-411, miR-421, and miR-589, [12,48,49]) do
not appear to have homologs in zebra finches, hinting
that A-to-I editing might be more restricted to mam-
mals. Instead, we observed internal nucleotide changes
at the uridine of a GGU motif occurring at a relative
high frequency. Our average base call sequencing error
rate was <0.5% (calculated based on spiked-in synthetic
internal controls), comparable to sequencing error rates
observed by others [49]. The rate of observed nucleo-
tide changes at the GGU motif was as high as 14% (in
miR-22). Thus it is unlikely that these changes were due
to sequencing errors. We also examined each genomic
locus for miRNAs known to have multiple genomic loci,
and ruled out the possibility that they were due to gen-
etic variations. We cannot rule out the possibility that
these changes were due to single nucleotide polymorph-
isms (SNPs), as we currently know very little about SNPs
in zebra finches. However, we would expect that the rate
of nucleotide changes generated by SNPs would be much
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higher than we observed. To our knowledge, internal nu-
cleotide changes at the uridine of a GGU motif has not
been reported previously. Some of the GGU motifs are
within seed sequences of mature miRNAs (e.g., members
of the let-7 family). Nucleotide changes at these sites can
change miRNA binding specificity, and subsequently, im-
pact gene expression and related cellular processes. Fur-
ther analysis will bring better understandings of
biosynthesis mechanisms and potential biological func-
tions of this type of internal nucleotide change.
Other types of sequence heterogeneity including

untemplated 3' terminal extensions and length variations
are far more prevalent than internal nucleotide changes.
miRNA isoforms with 3' untemplated extensions ac-
count for ~15% of all miRNA reads. miRNA 3' untem-
plated A or U extensions have been widely reported by
others in multiple animal species [12,13,52-56]. These
events seem to be miRNA specific, as some miRNAs are
more frequently extended than others. Interestingly, many
of the zebra finch miRNAs showing high frequencies of 3'
untemplated extensions are also frequently extended in
other species (Additional file 10, [11,57,58]), hinting that
mechanisms governing the extension events and their po-
tential functions are likely to be conserved. Although in-
vestigation of 3' untemplated extension is still at an early
stage, 3' extension appears to be biologically regulated [11]
and to affect biological function. Emerging evidence sug-
gests that 3' untemplated extensions provide a post-
transcriptional mechanism to regulate miRNA stability and
efficiency of target repression [57-59].

miR-2954 as a sex specific gene regulator in avian species
Despite extensive searching, we did not find sequence
homologs of miR-2954 outside of the avian taxon. An
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extensive search among transcripts of crocodile and 11
bird species conducted by Gunaratne et al. found miR-
2954 in several bird species but not in crocodile [35].
Given that the genomes and transcriptomes searched in
these studies are not complete, we cannot rule out the
possibility that miR-2954 has as yet unidentified homo-
logs in other species. However, its expression in chickens
and zebra finches is now supported by three independent
studies including ours [32,35,50]. The male-biased ex-
pression of miR-2954 in chicken embryos [50] and in
various zebra finch tissues suggests that it plays a role in
sexually dimorphic animal development and function in
avian species.
Animals adapt different dosage compensation mechan-

isms to balance the expression of sex chromosome genes
between the two sexes and to balance the expression
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between sex chromosomal genes and autosomal genes
[26,60]. In avian species, females are heterogametic with
one Z and one W chromosome, and males are homo-
gametic with two Z chromosomes. Both the chicken and
zebra finch lack a chromosome-wide dosage compensa-
tion mechanism, and many Z chromosome genes exhibit
higher expression in males than in females [61-67].
While the male to female (M:F) expression ratios of
most Z-linked miRNAs are close to 2, reflecting the
copy number relationship, miR-2954 exhibits M:F ex-
pression ratios ranging from 6 to 20 (based on read
counts) or 6 to 40 (based on qRT-PCR) in various tis-
sues, which cannot be explained by the 2:1 difference in
gene copy numbers. Clearly, additional male-biased fac-
tors contribute to the regulation of miR-2954 expression
in various tissues.
In both chickens and zebra finches, dosage compensa-

tion can occur locally in a gene-specific manner [65-67].
In chickens, this is exemplified by dosage compensation
mediated by the MHM (male hypermethylated) locus
on nearby genes on the Z chromosome [26,68,69].
However, the zebra finch genome does not appear to
contain the MHM locus [66], suggesting the existence
of other sex specific dosage compensation mechanisms.
The male-biased expression of miR-2954 and its prefer-
ential targeting of Z-chromosome genes may provide a
novel dosage compensation mechanism at the post-
transcriptional level. A miRNA-mediated gene-specific
mechanism for sex chromosome gene regulation would
offer flexibility in response to specific developmental
and functional needs.
Both song behavior and the underlying neural circuit

are highly sexually dimorphic in zebra finches. The song
system nuclei HVC [70] and the robust nucleus of the
arcopallium (RA), which control motor patterns of song,
are considerably larger in males than in females, and
Area-X, a forebrain nucleus required for song learning,
is a large nucleus in adult males but is almost invisible
in adult females [27,71]. The gene regulation network
underlying this structural and functional sexual di-
morphism is not clear. Among the putative targets of
miR-2954, SCAMP1, a Z chromosome encoded synaptic
vesicle associated protein gene, is known to be expressed
at higher levels in HVC and RA in male zebra finches
than in females [72]. Recently, Gunaratne et al. reported
that miR-2954 is regulated by hearing songs in the audi-
tory forebrain of zebra finches [35], suggesting that in
the context of song behavior this miRNA plays import-
ant roles in relaying physiological changes to changes in
gene expression. Further analysis of miR-2954 expres-
sion in the song control circuits, and validation of its
target genes will provide a better understanding of its
roles in the sexually dimorphic structural and functional
development of the zebra finch brain.
Conclusions
Our results provide a comprehensive miRNA expression
atlas of brain, heart, liver, and muscle tissues of both
male and female zebra finches. These data significantly
enlarge the zebra finch miRNA repertoire, and will serve
as a valuable resource for comparative and functional
studies for the scientific community. In addition, we re-
port a GGU motif as a potential site for miRNA internal
substitution. We also describe male-biased expression of
tgu-miR-2954, as well as its Z chromosome biased target
relationship, which may point to a novel avian specific
dosage compensation mechanism.

Methods
Library preparation and sequencing
Four tissues (heart, liver, muscle, and whole brain) from
adult male and female zebra finches were collected, and
total RNA was isolated using the Trizol method. The
RNAs were used for library construction. Briefly, in a
total reaction volume of 20 μl, 2 μg total RNA was ligated
to 100 pmol adenylated 30 adapter containing a unique
pentamer barcode (App-(Barcode)TCGTATGCCGTCT
TCTGCTTGT), 1 μg Rnl2(1–249)K227Q (plasmid for
expression of recombinant ligase is available at www.
addgene.org) in 50 mM Tris–HCl, pH 7.6; 10 mM
MgCl2; 10 mM 2-mercaptoethanol; 0.1 mg/ml acetylated
BSA (Sigma, St. Louis, MO), and 15% DMSO for 16 hours
on ice. Following 30 adapter ligation, 20 bar-coded sam-
ples were pooled and products were purified on a 15%
denaturing polyacrylamide gel. Small RNAs, measuring
45–50 nt in length, were excised from the gel, eluted, and
ligated to 100 pmol 50 oligoribonucleotide adapter
(GUUCAGAGUUCUACAGUCCGACGAUC) in a 20 μl
reaction volume using 1 μg Rnl1 RNA Ligase in 50 mM
Tris–HCl, pH 7.6; 10 mM MgCl2; 10 mM 2-
mercaptoethanol; 0.2 mg/ml acetylated BSA; 0.2 mM
ATP, and 15% DMSO for 1 h at 37°C. Ligated small
RNAs were purified on a 12% polyacrylamide gel, reverse
transcribed using SuperScript III Reverse Transcriptase
(Invitrogen, Carlsbad, CA), and amplified by PCR using
appropriate primers (forward primer: AATGATACGGC
GACCACCGACAGGTTCAGAGTTCTACAGTCCGA;
RT and reverse primer: CAAGCAGAAGACGGCATA
CGA). A total of eight libraries were barcoded and
sequenced in one lane using Illumina GAII.

Sequence analysis and miRNA identification
After adapter trimming and removal of orphan reads,
reads of 18–32 nt in length were kept for further ana-
lysis. For miRNA annotations, we compared sequences
to known miRNAs (miRBase 17.0, 04/2011), and identical
sequences were identified as homology miRNAs. Sequences
were mapped to the zebra finch genome (Ensembl, tae-
Gut3.2.4) permitting no mismatches. Sequences with more

http://www.addgene.org
http://www.addgene.org
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than 100 genomic loci were excluded from further analysis.
Sequences homologous (with at most one mismatch) to
known tRNA/rRNA/ncRNA sequences collected from the
NCBI GenBank database were classified as tRNAs/rRNAs/
ncRNAs. Small RNAs derived from repeat region/transpos-
able elements were identified by screening the zebra finch
genome using the RepeatMasker software. The remaining
sequences were used for new miRNA candidate predic-
tion. Flanking genomic sequences of various lengths (60,
80, 100, and 120 nt) of each small RNA mapping locus
were extracted and subjected to analysis by the mFold
program (http://mfold.rna.albany.edu/) [36] to predict
secondary structures. miRNA candidates were identified
using the following criteria: (1) presence of hairpin-
shaped precursor structures, (2) presence of >10 sequence
reads, (3) presence of star sequences originated from the
opposite stem of the hairpin structure, and (4) precise 5’
ends among all sequence variants. In addition, sequences
homologous to known miRNAs in miRBase, without the
star sequence were also accepted. Because the incomplete-
ness of the current genome precluded unambiguous ana-
lysis, 16 miRNAs which did not meet criterion 1 but were
homologous to known miRNAs were also accepted.

Sequence conservation analysis
We searched miRBase for known miRNA homologs in
9 species: chicken (galGal3), human (hg18), mouse
(mm9), platypus (ornAna1), lizard (anoCar2), X. tropica-
lis (xenTro3), zebrafish (danRer7), drosophila (dm3), and
C. elegans (ce10). We also compared zebra finch miRNA
sequences to the genomes and ESTs (downloaded from
the UCSC genome resources) of the same 9 species to
search for homologs with at most 1 mismatch to the
query sequence and presence of a hairpin shaped precur-
sor structure. Qualified matches were identified as candi-
date miRNA homologs in the tested species. According
to results based on these criteria, zebra finch miRNAs
were classified into groups of zebra finch specific, avian
specific, conserved in avian, human, and mouse, con-
served in vertebrates, and conserved in all tested species.

Tissue specificity
We normalized the read counts of individual miRNA
species to the total miRNA read number in each tissue
to obtain an RPM measurement, ″Reads Per Million
reads″. RPM values for each miRNA in all tested tissues
were compared. We defined a miRNA as ″highly
enriched in one tissue″ if it had a minimum of 100 reads
in all tissues, and its expression in one tissue accounted
for ≥ 90% of all reads in all tissues combined.

miRNA sequence variant identification
All sequences passing the qualification filter were used for
miRNA variant analysis. Length variants were selected
among sequences matched perfectly to the zebra finch gen-
ome by comparing their lengths with the canonical miRNA
sequences. For variants containing terminal modifications
and internal substitutions, the NCBI Blastn program was
used to compare all qualified sequence reads with identified
miRNAs. Sequences matching multiple miRNAs were
excluded to avoid ambiguity. The criteria used for accepting
an internal nucleotide change variant included i) a require-
ment that the total number of sequence reads of a miRNA
including its variants was > 100, ii) the number of reads
with internal changes represented more than 5% of total
reads, and iii) the mismatch occurred at positions at least 2
nucleotides from the 5’ and 3’ termini. A plot of the motif
analysis (Figure 4C) was generated with the WebLogo pro-
gram (http://weblogo.berkeley.edu/ [73]).

Target gene prediction
For target gene prediction, the 3’ UTR sequences of all
zebra finch and chicken genes were extracted from the
Ensemble database (taeGut3.2.4 and WASHUC2) using
the BioMart tool (www.ensembl.org/biomart/martview).
Genes with 3’ UTR of less than 10 nt or without 3’ UTR
were excluded. Since TargetScan (version 6.0, [51]) does
not support zebra finch sequences, we made minor
modifications to adapt it for target analysis in the zebra
finch. Genes containing target sequences within the 3’
UTRs that match perfectly to the 2–8 nt of a miRNA se-
quence were accepted as putative targets. Enrichment of
miRNA targets on the Z chromosome was evaluated by
Fisher0s exact test.

Northern blot and qRT-PCR
Total RNAs were extracted from relevant tissues of adult
male and female zebra finches with Trizol reagent (Invitro-
gen). Total RNAs of chicken, human, and mouse were pur-
chased from Ambion. For Northern blot analysis, 20 μg
RNA from each tissue was separated on 20% denaturing
gel, transferred to a nitrocellulose membrane, and hybri-
dized to relevant miRNA probes labeled with 32P-dCTP at
65°C overnight. Hybridization signals were detected using
a phosphorimager. For qRT-PCR, reverse transcription was
performed using a custom-designed miR-2954 specific pri-
mer and the TaqMan microRNA reverse transcription kit
(Applied Biosystems). qRT-PCR was performed in a 20 μL
reaction volume containing 1.33 μL cDNA, 1 μL 20× cus-
tom designed miR-2954 Taqman probe, and the Taqman
universal PCR master mix (Applied Biosystems) using con-
ditions of 10 min at 95°C, followed by 40 cycles of 15 sec at
90°C, 1 min at 60°C. Relative miR-2954 expression was cal-
culated by the Δ Δ Ct method as described [74]. GAPDH
was used as an internal control for normalizing miR-2954
expression, as no sex-based differential expression of
GAPDH has been detected in zebra finches [65]. All qRT-
PCR reactions were run in triplicate.

http://mfold.rna.albany.edu/
http://weblogo.berkeley.edu/
http://www.ensembl.org/biomart/martview
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Additional file 1: A summary of small RNA sequences in 8 libraries.

Additional file 2: Sequences, genomic loci, and expression
information of all identified miRNAs. miRNAs without genomic loci
were indicated separately.

Additional file 3: Conservation status of all identified miRNAs and
their expression reads.

Additional file 4: Genomic clusters of zebra finch miRNAs and their
conservation status in other species.

Additional file 5: miRNA* sequences and their expression
information.

Additional file 6: Sequences and expression of 3 miR-7*s. Mature
miRNAs and corresponding miRNA*s are highlighted by red and blue,
respectively.

Additional file 7: miRNA precursors with both 5p and 3p arms
producing high abundant mature miRNAs.

Additional file 8: Sequence reads of tgu-miR-451 and precursor
structures of the atypically generated miR-451 in zebra finch,
mouse, and human.

Additional file 9: Expression patterns of miRNA clusters in the four
tissues. (A) A heatmap was plotted according to the log2 transformed
normalized reads in each tissue. (B) The relative expression of three
miRNA clusters in 4 tissues.

Additional file 10: miRNA variants with untemplated 30 terminal
modifications.

Additional file 11: Summary of internal nucleotide changes
observed among miRNA variants. (A) The total sequence reads of each
nucleotide change type detected in all tissues. (B) The relative ratio of
each nucleotide change type in each tissue sample.

Additional file 12: Expression information of Z chromosome-
encoded miRNAs.

Additional file 13: Predicted target genes of tgu-miR-2954.

Additional file 14: Expression information of zebra finch specific
miRNAs.

Additional file 15: Comparison with the miRNA set from the
Gunaratne et al. study. Fifty-three miRNAs unique in this study are
listed in the box.
Additional information
The three novel zebra finch miRNAs have been assigned miRBase IDs as tgu-
miR-7643 (novel 1), tgu-miR-7644 (novel 2), and tgu-miR-7645 (novel 3).
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