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C57Bl/6 N mice on a western diet display
reduced intestinal and hepatic cholesterol levels
despite a plasma hypercholesterolemia
Charles Desmarchelier1*, Christoph Dahlhoff1,2, Sylvia Keller3, Manuela Sailer1, Gerhard Jahreis3 and
Hannelore Daniel1

Abstract

Background: Small intestine and liver greatly contribute to whole body lipid, cholesterol and phospholipid
metabolism but to which extent cholesterol and phospholipid handling in these tissues is affected by high fat
Western-style obesogenic diets remains to be determined.

Methods: We therefore measured cholesterol and phospholipid concentration in intestine and liver and quantified
fecal neutral sterol and bile acid excretion in C57Bl/6 N mice fed for 12 weeks either a cholesterol-free high
carbohydrate control diet or a high fat Western diet containing 0.03% (w/w) cholesterol. To identify the underlying
mechanisms of dietary adaptations in intestine and liver, changes in gene expression were assessed by microarray
and qPCR profiling, respectively.

Results: Mice on Western diet showed increased plasma cholesterol levels, associated with the higher dietary
cholesterol supply, yet, significantly reduced cholesterol levels were found in intestine and liver. Transcript profiling
revealed evidence that expression of numerous genes involved in cholesterol synthesis and uptake via LDL, but
also in phospholipid metabolism, underwent compensatory regulations in both tissues. Alterations in
glycerophospholipid metabolism were confirmed at the metabolite level by phospolipid profiling via mass
spectrometry.

Conclusions: Our findings suggest that intestine and liver react to a high dietary fat intake by an activation of de
novo cholesterol synthesis and other cholesterol-saving mechanisms, as well as with major changes in
phospholipid metabolism, to accommodate to the fat load.

Background
Obesity is an underlying risk factor in the development of
cardiovascular diseases and is frequently associated with
hypercholesterolemia and dyslipidemia [1-3]. Dyslipide-
mia is characterized by elevated plasma levels of triacyl-
glycerides (TG), very low-density lipoprotein (VLDL),
low-density lipoprotein (LDL), total cholesterol and
decreased levels of high-density lipoprotein (HDL) [4].
Whereas liver, endothelium and adipose tissue have

been extensively studied in the context of hypercholes-
terolemia, dyslipidemia and cardiovascular diseases, the

small intestine has long been neglected. A high dietary
intake of fat via a Western-style diet requires the epithe-
lium of the upper small intestine to digest and absorb
large quantities of dietary TG, sterols and phospholipids
(PL) [5]. Uptake of lipid constituents such as free fatty
acids and monoacylglycerols is carried out by transport
proteins like the fatty acid transporter FAT/CD36 [6],
possibly the fatty acid transport protein 4 (FATP-4)
[7,8] and in addition via fatty acid flip-flop mechanisms.
TG are then re-synthesized in enterocytes and
assembled into chylomicrons (CM) which, together with
other lipophilic compounds, including the sterols, are
released via lymph vessels into the blood circulation [9].
Uptake of dietary cholesterol into epithelial cells
involves the Niemann-Pick C1 Like Protein 1 (NPC1L1),
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the target of the cholesterol-lowering drug ezetimibe
[10-12], and possibly the scavenger receptor class B1
(SR-B1) and CD36 [13]. Cholesterol, like other dietary
sterols, can also be exported back from the enterocyte
into the lumen by the ATP-binding cassette sub-family
G member 5 and 8 proteins (ABCG5 and -8) [14]. How-
ever, cholesterol is also synthesized de novo in epithelial
cells [15] and then exported together with TG via CM.
Bile acids, released from the gallbladder after meal
intake, are mainly absorbed in the terminal ileum via a
specialized Na+-dependent transporter [16], while PL,
released together with bile acids, may undergo complete
hydrolysis in more proximal regions and follow the
absorption of the other dietary lipids [17].
As hypercaloric diets usually provide large quantities

of fat [18], the intestine is forced to adapt to the lipid
overload by increasing its absorption capacity [19]
through an increase in its absorptive surface area and an
upregulation of genes encoding for proteins involved in
lipid uptake and processing [20,21]. The capacity for
postprandial intestinal lipoprotein secretion has been
found to be increased upon high fat intake [22] and this
effect was observed as early as after 7 days of feeding
[23]. The rise in circulating CM is thought to contribute
to atherogenesis and is considered as a risk factor for
cardiovascular diseases, emphasizing the prominent role
of the intestine in disease initiation and progression
[24]. Moreover, the epithelial cells in the small intestine
appear to adapt to high fat diets also by increasing fatty
acid oxidation through an upregulation of genes encod-
ing for enzymes involved in b-and ωoxidation [21,25].
Increased lipoprotein secretion and increased fatty acid
degradation may be taken as defense mechanisms to
counteract the lipotoxic effect of high fat diets on intest-
inal cells [26], characterized by increased apoptosis rates,
as found in rats receiving a high fat diet [27].
Since cholesterol and phospholipids are essential com-

ponents of chylomicron assembly and since intestinal
lipoprotein secretion is increased upon high fat feeding,
more cholesterol and phospholipids are needed for the
epithelial processing of fat, which may cause metabolic
adaptations on mRNA levels of genes involved in these
pathways. Although the effects of a high fat diet on cho-
lesterol transporter gene expression in mice have already
been described in a previous study [28], the diet used
did not contain any cholesterol. Since a typical Wes-
tern-style diet delivers fat mainly from animal sources,
and thus also cholesterol, we aimed at assessing its
effects on intestinal and hepatic cholesterol and phos-
pholipid metabolism. For this, C57Bl/6 N mice were fed
for 12 weeks either a cholesterol-free high carbohydrate
control diet (C), comprising 4.2% fat (w/w), or a Wes-
tern diet (W), with 34% fat (w/w) and 0.03% (w/w) cho-
lesterol. We analyzed clinical chemistry parameters,

assessed sterol balance and determined changes in gene
expression profiles in intestine and liver. Despite a
greatly elevated dietary cholesterol intake and cholester-
olemia, small intestine and liver of mice fed the Western
diet showed decreased levels of cholesterol, with
changes in gene expression suggesting an increased cho-
lesterol synthesis and an enhanced retrograde uptake. In
addition, changes in the quantity and spectrum of differ-
ent phosphatidylcholine (PC) species indicate that phos-
pholipid metabolism is altered as well, most likely also
to meet the increased demand for intestinal CM and
hepatic VLDL secretion.

Methods
Ethics statement
All procedures applied throughout this study were con-
ducted according to the German guidelines for animal
care and approved by the Bavarian state ethics commit-
tee (Regierung von Oberbayern) according to §8 Abs.1
Tierschutzgesetz under the reference number 209.1/211-
2531-41/03.

Animals and sample collection
Conventionally raised eight-week-old male C57Bl/
6NCrl mice (Charles River Laboratories) were housed
individually in a light- and temperature-controlled
facility (lights on 7 a.m. -7 p.m., 22°C) and had free
access to water and food. They were fed a standard
laboratory chow (Ssniff GmbH, cat. no. V1534) for two
weeks and thereafter divided into two groups with
similar mean body weights (n = 12). Mice were then
fed group-specific pellet diets (control; Western) (Ssniff
GmbH, cat. no. E15000-04 and E15741-34, respec-
tively). The composition of the experimental diets is
shown in Table 1. Throughout the feeding trial, body
weight, food and water consumption were recorded
once per week. Energy intake was corrected for spilled
food, collected under metal grids placed below the
food containers.
From days 4 to 11, 46 to 53 and 74 to 81, feces pro-

duced by five mice of each group were collected, dried
at 50°C to constant weight and ground. Gross energy
was determined using an isoperibol bomb calorimeter
(model number 6300, Parr Instrument GmbH), with
benzoic acid used as a standard.
After 12 weeks, mice in a non-fasting state were

anesthetized using isoflurane and blood was collected
from the retro-orbital sinus. Mice were then killed by
cervical dislocation. Tissues were harvested at the same
time of the light period (between 9 and 12 a.m.) for
both groups to avoid diurnal variability. The small intes-
tine was divided into two equal parts along the longitu-
dinal axis (proximal and distal), mucosa was scraped off,
snap-frozen in liquid nitrogen and stored at -80°C until
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further processing. Liver was collected, weighed and
snap-frozen in liquid nitrogen.

Glucose tolerance test
After 9 weeks of feeding, mice were subjected to a glu-
cose tolerance test. After 14 hours of food deprivation,
mice were injected with a 20% glucose solution (B.
Braun Melsungen AG) intraperitoneally (10 ml/kg of
body weight) and blood glucose was measured from the
tail vein 0, 15, 30, 60 and 120 minutes after the injection
using an Accu-Check blood glucose meter (Roche
Diagnostics).

Serum and tissue analysis
Serum cholesterol, glucose, HDL cholesterol and TG
were determined using Piccolo® Lipid Panel Plus Reagent
Discs and a Piccolo Blood Chemistry Analyzer (Hitado
Diagnostic Systems). Serum insulin was determined
using an Ultra Sensitive Mouse Insulin ELISA kit (Crystal
Chem Inc.), according to the manufacturer’s instructions.
Inter- and intra-assay CV were generally ≤ 10%.
For determination of hepatic and intestinal TG and PL

concentration, tissues were ground in liquid nitrogen
and dissolved in 0.9% NaCl. Samples were centrifuged
for 10 min at 10 000 g and PL concentration was deter-
mined using a commercial enzymatic colorimetric kit,

following the manufacturer’s instructions (Phospholipids
C, Wako Chemicals GmbH). TG were extracted from
the samples as follows: after centrifugation (10 min, 10
000 g), supernatants were incubated in alcoholic KOH
(30 min, 70°C), 0.15 mol/l magnesium sulfate was added
to the solution and after centrifugation (10 min, 10 000
g), TG concentration was determined using a commer-
cial enzymatic colorimetric kit, following the manufac-
turer’s instructions (Triglycerides liquicolormono, Human
GmbH). Hepatic and intestinal cholesterol concentration
was determined using a commercial enzymatic colori-
metric kit, following the manufacturer’s instructions
(Cholesterol/Cholesteryl Ester Quantitation Kit, Biocat
GmbH).
For determination of hepatic and intestinal acylcarni-

tine, phosphatidylcholine (PC) and sphingolipid concen-
tration, tissues were ground in liquid nitrogen and
analytes were extracted using 60 μl MeOH per 10 mg
homogenized tissue. Samples were vortexed, centrifuged
and the assay was performed in 10 μl of the supernatant
using the AbsoluteIDQ kit (Biocrates Life Sciences AG),
as previously described [29]. Briefly, acylcarnitines, PC
and sphingolipids were detected with LC-MS/MS
(3200QTrap-LC/MS/MS, Applied Biosystems) using
Multi Reaction Monitoring pairs. Samples were deliv-
ered to the mass spectrometer by flow injection analysis
method. The analytical process was performed using the
MetIQ software package, an integral part of the Abso-
luteIDQ kit.

Fecal neutral sterol and bile acids determination
Sterol analysis in fecal samples was performed as pre-
viously described [30]. Coprostanol and cholesterol were
summarized as total sterols. Epicoprostanol and copros-
tanone were below the limit of detection. Bile acids in
fecal samples were determined as previously described
[31] with minor modifications for murine feces samples.
After extraction of bile acids, an internal standard was
added (23nor-cholic acid, 30 μg) and after methylation,
silylation and drying under a nitrogen stream, the resi-
due was re-dissolved in 200 μl decane. The standard
substances of deoxycholic acid (DCA) and cholic acid
(CA) were purchased from Sigma but 12keto-DCA,
23nor-CA and alpha/omega-muricholic acid (alpha-
MCA, omega-MCA) were purchased from Steraloids
Inc.. The mass spectrometric detection was realized in
multi ion current (23nor-CA: m/z = 253.20 amu; DCA:
m/z = 255.30 amu; alpha-MCA: m/z = 403.00 amu, CA:
m/z = 343.15 amu; 12keto-DCA: m/z = 231.25 amu;
omega-MCA: m/z = 195.05 amu).

RNA isolation
Total RNA from the upper and lower small intestine
and from the liver was isolated using Trizol reagent

Table 1 Diet compositiona

Control Western diet

GE (MJ/kg) 18.0 25.2

ME (MJ/kg) 15.2 21.4

% protein 23 19

% fat 11 60

% carbohydrates 66 21

Casein 240 276.9

Corn starch mod. 498 -

Maltodextrin - 158

Glucose 100 -

Sucrose - 80

Cellulose 50 60

Vitamin premix 10 12

Mineral/trace elements 60 61

L-Cystine - 3.5

Choline chloride 2 2.5

Salt (NaCl) - 1

Butylhydroxytoluol - 0.1

Beef tallow (premier jus) - 310

Soybean oil 40 30

Cholesterol 0 290
a Nutrient composition is expressed in g/kg except cholesterol which is
provided as mg/kg. Abbreviations: GE gross energy; ME metabolizable energy
calculated with the Atwater factors.
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(Invitrogen) until the ethanol precipitation step and
further purified using the QIAGEN RNeasy Mini Kit
spin columns (QIAGEN GmbH). RNA concentration
and purity were measured on a NanoDrop ND-1000
UV-vis spectrophotometer (NanoDrop Technologies).

Gene Chip expression array hybridization
Total RNA was reverse-transcribed and the correspond-
ing cRNA was biotinylated and fragmented following
the original protocol of Affymetrix (Affymetrix Inc.). For
each experimental group, 6 biological replicates were
hybridized overnight on The Gene Chip® 3’ Expression
Arrays (Affymetrix), customized for NuGO (The Eur-
opean Nutrigenomics Organization). A more detailed
description of the platform can be found on the Gene
Expression Omnibus, accession number GPL7441. The
arrays were then washed and scanned following the
instructions of the provider. A total of 24 arrays were
hybridized. Detailed methods for the labeling and subse-
quent hybridizations to the arrays are provided in the
eukaryotic section of the GeneChip Expression Analysis
Technical Manual from Affymetrix.

Transcriptome data analysis and statistics
The quality of the data was analyzed by a Bioconductor
[32] and R based method in the Nutrigenomics Organisa-
tion NuGO Array Pipeline [33]. Expression levels of probe
sets were normalized by GCRMA [34], using M-estimators
for summarization. Differentially expressed probe sets
were identified using Limma [35]. Custom CDF version 14
was used for annotation. Comparisons were made between
the 2 groups and probe sets that showed a q-value ≤ 0.05
were considered significantly regulated. Array data have
been submitted to the Gene Expression Omnibus under
the accession number GSE29748.
Overrepresentation of gene ontology (GO) Biological

Process subsets was made using an ErmineJ overrepresen-
tation analysis [36]. Only genes with a p-value below
0.0025 and GO subsets containing between 8 and 125
genes were included in the analysis. GO subsets with a
false discovery rate ≤ 0.05 were considered significantly
regulated.
Heat map diagrams displaying standard scores of signal

intensities of selected genes were made using the Genesis
software [37] by applying hierarchical clustering. Only
genes belonging to GO Biological Process subsets with a
false discovery rate ≤ 0.05 following overrepresentation
analysis with ErmineJ were included in the analysis.

cDNA synthesis and real-time quantitative PCR
For each liver sample, 10 ng of isolated total RNA were
used for real-time quantitative PCR (qPCR) using the
QuantiTect® SYBR Green RT-PCR kit (Qiagen GmbH)
on a Mastercycler ep realplex apparatus (Eppendorf),

following the suppliers’ protocols. Gene sequences were
retrieved from the database Ensembl http://www.
ensembl.org/ and designed primers were tested for spe-
cificity using BLAST analysis http://blast.ncbi.nlm.nih.
gov/Blast.cgi, melting curve analysis following qPCR and
visualization on a 2% agarose gel. Primer sequences are
shown in Additional file 1: Table S1. The following ther-
mal cycling conditions were used: 1 cycle at 50°C for 30
min (cDNA synthesis), 1 cycle at 95°C for 15 min (RT
enzyme inactivation), 40 cycles at 95°C for 15 s, 61°C
for 30 s and 72°C for 30 s, followed by melting curve
analysis (1.75°C/min). Cq-values were retrieved from the
realplex 2.0 software (Eppendorf) and analyzed by the 2-
ΔΔCq method using the geometric mean of the house-
keeping genes glyceraldehyde-3-phosphate dehydrogenase
(Gapdh), b-Actin and hypoxanthine guanine phosphori-
bosyl transferase (Hprt) to normalize the data [38,39].

Statistical analysis
For all groups, data were expressed as mean ± SEM.
Statistical analyses were performed using the Prism 4
software (GraphPad Software). Prior to Student’s t-test,
data were tested for normal distribution and equality of
variances. In the case of inhomogeneous variances,
Welch’s correction was applied to Student’s t-test. Dif-
ferences in weight gain, food and water intake, digested
energy, fecal neutral sterol and bile acids output and
daily sterol balance over the feeding period were tested
by using the MIXED procedure in SAS (Version 9.2;
SAS Institute Inc.) with time as a repeated factor [40].
The variables studied were subjected to 7 covariance
structures: unstructured covariance, compound symme-
try, autoregressive order one (AR(1)), autoregressive
moving average order one (ARMA(1,1)), heterogeneous
compound symmetry (CSH), heterogeneous autoregres-
sive order one (ARH(1)) and Toeplitz. The goodness of
fit of the models was compared using the Bayesian
information criterion. Tukey’s test was used as post-hoc
test. Differences in hepatic and intestinal acylcarnitine,
PC and sphingolipid levels were tested by Student’s t-
test with the Benjamini-Hochberg correction, using the
R version 2.9.2 (R Foundation of Statistical Computing).
For all tests, the bilateral alpha risk was a = 0.05.

Results
Western diet feeding led to obesity, hyperglycemia,
hyperinsulinemia and elevated blood cholesterol levels
After 12 weeks on a Western diet, mice presented the
expected hallmarks of obesity. Data on final body weight,
as well as cumulative food, energy, water and macronutri-
ent intake is provided in Additional file 2: Table S2.
Digested energy was calculated as [energy intake] - [energy
remaining in feces]. Body weight development is given in
Additional file 3: Figure S1. A glucose tolerance test
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carried out at week 9 of the feeding trial revealed a delayed
blood glucose clearance in the obese mice as compared to
the control mice (Additional file 4: Figure S2A and S2B).
Blood collected in the non-fasting state right before sacri-
fice revealed a hyperglycemia, a 6-fold increase in mean
serum insulin concentration, a 2-fold increase in mean
serum cholesterol concentration and a 70% increase in
plasma HDL-cholesterol levels in the mice on the Western
diet (Additional file 5: Table S3).

Mice on Western diet displayed increased fecal neutral
sterol content
Feces from five mice per group were collected from days
4 to 11, 46 to 53 and 74 to 81 and analyzed for neutral
sterol and bile acids content. Mice receiving the Western
diet exhibited an increase in fecal neutral sterol output
(Figure 1A). Fecal bile acid losses were also increased in
the mice fed the Western diet (Figure 1B) but according
to Tukey’s test, this did not reach significance. We also
calculated a daily sterol balance in each group by sub-
tracting the amount of neutral sterol and bile acids lost
in the feces to the dietary cholesterol intake.
This balance did not include beta muricholic acid and

steroid hormones derivatives. Interestingly, mice fed the
Western diet displayed a negative sterol balance, losing
between 0.50 to 0.75 μmol of cholesterol per day. Mice
fed the control diet showed an even more pronounced
negative sterol balance, excreting between 1.45 to 1.65
μmol of cholesterol per day, although this was only sig-
nificantly different from mice fed the Western diet
between days 46 and 53 (Figure 1C).

Obese mice displayed decreased intestinal and hepatic
cholesterol levels
Despite a much greater dietary cholesterol intake (Addi-
tional file 2: Table S2), mice fed the Western diet dis-
played a 35% reduction (p = 0.035) in intestinal
cholesterol concentration and a 29% reduction (p =
0.019) in hepatic cholesterol concentration (Figure 2A
and 2B). In addition, the obese mice presented a massive
accumulation of intra-intestinal and intrahepatic TG
with a 4.4- and a 5.3-fold increase respectively, as com-
pared to control mice (Figure 2C and 2D). We also
observed a marginally increased PL concentration in
intestinal samples from obese mice (p = 0.114) (Figure
2E), whereas in liver samples a 23% decrease (p = 0.004)
in PL content was detected (Figure 2F).

Cholesterol transporter genes showed reduced expression
levels while cholesterol synthesis genes showed increased
expression levels in the small intestine of obese mice
Expression levels of genes encoding proteins directly
involved in cholesterol transport or metabolism in the
small intestine, obtained from microarray analysis, are

shown in Table 2 and visualized in Figure 3A. These
genes were much more affected by dietary treatment in
the upper than in the lower part of the small intestine
and therefore, only the changes observed in the duode-
num and the proximal jejunum are presented. A com-
plete list of all genes analyzed and their associated fold

A 

 

B 

 

C 

 

Figure 1 Sterol balance data obtained from mice fed the
different diets for 12 weeks. Feces were collected at three time
points during the feeding trial and neutral sterol and bile acids
content was measured by gas chromatography-mass spectrometry
A: Daily fecal neutral sterol output. B: Daily fecal bile acids output.
C: Daily sterol balance measured by subtracting fecal neutral sterol
and bile acids output from cholesterol intake. Symbols: black
diamonds, control diet; grey squares, Western diet. Data are
presented as mean ± SEM (n = 5). ** p < 0.01; *** p < 0.001, NS:
not significant.
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Figure 2 Cholesterol, TG and PL content in intestine and liver of mice fed the different diets for 12 weeks. A: Cholesterol concentration
in the upper small intestine (n = 5). B: Cholesterol concentration in the liver (n = 12). C: TG concentration in the upper small intestine (n = 5-6).
D: TG concentration in the liver (n = 11-12). E: PL concentration in the upper small intestine (n = 5-6). F: PL concentration in the liver (n = 11-
12). Control diet: black bar; Western diet: grey bar. Data are presented as mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001.
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changes and q-values in the upper and lower small
intestine are given in Additional file 6: Table S4 and
Additional file 7: Table S5 respectively. Overrepresenta-
tion analysis of GO Biological Processes revealed as well
several gene subsets involved in cholesterol transport or
metabolism (Additional file 8: Table S6). The cholesterol

efflux transporters Abcg5 and -8 and the cholesterol
absorption transporter Npc1l1 showed reduced mRNA
levels in mice on Western diet as compared to control
mice. Abca1, a cholesterol efflux transporter located at
the basolateral side of the enterocyte, was not affected
by the dietary treatment. In mice fed the Western diet,

Table 2 Effect of a chronic Western diet on the expression of genes related to cholesterol and lipid metabolism in the
small intestine a

Symbol Gene name FC q-value

Abca1 ATP-binding cassette, sub-family A, 1 -1.13 0.466

Abcg5 ATP-binding cassette, sub-family G, 5 -1.48 0.006

Abcg8 ATP-binding cassette, sub-family G, 8 -2.35 0.002

Acaa2 acetyl-Coenzyme A acyltransferase 2 1.67 0.010

Apoa2 Apolipoprotein A-II 3.15 0.001

Apoc2 Apolipoprotein C-II 1.36 0.006

Cav1 Caveolin 1 1.6 0.006

CD36 CD36 antigen 2.11 0.020

Ces1d Carboxylesterase 1D -6.13 < 0.001

Ces1g Carboxylesterase 1G -5.46 < 0.001

Cpt1a Carnitine palmitoyltransferase 1a, liver 1.55 0.044

Cyp27a1 Cytochrome P450, family 27, subfamily a, polypeptide 1 -2.57 0.004

Cyp51 Cytochrome P450, family 51 2.03 0.001

Dhcr7 7-dehydrocholesterol reductase 1.48 0.011

Hmgcl 3-hydroxy-3-methylglutaryl-Coenzyme A lyase 1.57 0.024

Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1.02 0.748

Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 8.07 < 0.001

Hsd17b7 Hydroxysteroid (17-beta) dehydrogenase 7 1.32 0.045

Idh1 Isocitrate dehydrogenase 1 (NADP+), soluble 1.31 0.010

LDLr LDL receptor 4.29 < 0.001

LXRa Liver × receptor alpha 1.77 0.003

LXRb Liver × receptor beta -1.06 0.646

Me1 Malic enzyme 1, NADP(+)-dependent, cytosolic 3.13 < 0.001

Mttp Microsomal triglyceride transfer protein 1.18 0.016

Mvd Mevalonate decarboxylase 1.33 0.012

Mvk Mevalonate kinase 1.22 0.017

Npc1l1 Niemann-Pick C1-like protein 1 -2.02 < 0.001

Nsdhl NAD(P) dependent steroid dehydrogenase-like 1.45 0.004

Pcsk9 Proprotein convertase subtilisin/kexin type 9 1.65 0.007

Pmvk Phosphomevalonate kinase 2.46 < 0.001

Scarb1 Scavenger receptor class B, member 1 1.4 0.447

Scd1 Stearoyl-Coenzyme A desaturase 1 90.7 < 0.001

Scd2 Stearoyl-Coenzyme A desaturase 2 6.50 < 0.001

Slc25a1 Solute carrier family 25 (mitochondrial carrier, citrate transporter), member 1 2.04 < 0.001

Slc27a4 solute carrier family 27 (fatty acid transporter), member 4 -1.12 0.209

Sqle Squalene epoxidase 2.11 0.011

Srebp-2 Sterol regulatory element binding factor 2 1.59 0.004

Tm7sf2 Transmembrane 7 superfamily member 2 1.52 0.003
a Abbreviations: FC fold change (Western diet vs. control).
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A 

 

B 

Figure 3 Heat map diagrams of differentially expressed genes in the small intestine upon Western diet feeding. A: Standard scores of
differentially expressed genes related to cholesterol metabolism (GO Biological Processes: cholesterol metabolic process, cholesterol biosynthetic
process, cholesterol transport, cholesterol homeostasis, positive regulation of cholesterol efflux, regulation of cholesterol efflux, cholesterol efflux,
regulation of cholesterol metabolic process, regulation of cholesterol storage, regulation of cholesterol biosynthetic process, reverse cholesterol
transport). B: Standard scores of differentially expressed genes related to PL metabolism (GO Biological Processes: PL metabolic process, PL
biosynthetic process, PL catabolic process, PL efflux, PL transport). Capital letters indicate: C, control; W, Western diet. Differentially expressed
genes with a q-value ≤ 0.05 were included in the analysis. Green and red indicate down- and up-regulation of gene expression, respectively.
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several genes relevant for the biosynthesis of cholesterol
(Pmvk, Mvk, Mvd, Sqle, Cyp51, Nsdhl, Tm7sf2, Dhcr7,
Hsd17b7) were found consistently upregulated in the
intestinal tissue. However, we did not observe any regu-
lation for Hmgcr, the gene encoding the rate-limiting
enzyme in the cholesterol biosynthesis pathway. Srebp-2,
a nuclear factor regulating the expression of genes
involved in cholesterol synthesis, was significantly upre-
gulated in the intestine of obese mice. We also observed
increased mRNA levels for Apoa2, Apoc2 and the micro-
somal triglyceride transfer protein, Mttp, all involved in
chylomicron assembly. A strong downregulation of
Cyp27a1, which could translate into a reduced conver-
sion of cholesterol to 27-hydroxycholesterol was also
observed. Nonetheless, LXRa, a nuclear factor activated
by 27-hydroxycholesterol, was also upregulated as well
as the LDL-receptor. Moreover, mRNA levels of several
genes encoding proteins involved in fatty acid b-and ω-
oxidation were increased. The most impressive regula-
tion was found for Scd1, the stearoyl-coenzyme A desa-
turase 1, a lipogenic enzyme catalyzing the formation of
monounsaturated fatty acids (MUFA), which serve as
components of membrane PL, TG and cholesterol
esters. In addition, Ces1d and Ces1g, two genes encoding
for carboxylesterases, displayed a strong downregulation.
To assess whether these changes were restricted to

intestinal tissue or similarly occur in the liver, we used
qPCR to determine transcript levels of the preselected tar-
get genes involved in cholesterol metabolism (Table 3). In
the liver, the gene encoding for Hmgcr as well as Srebp-2,
Cyp51 and Dhcr7 were significantly upregulated in mice
on the Western diet when compared to the control group.

Liver and small intestine exhibited changes in
phospholipid status and metabolism
Significant changes in expression levels of genes encod-
ing proteins directly involved in PL processing in the

small intestine are shown in Table 4 and visualized in
Figure 3B. Whereas CDP-diacylglycerol synthase 2 and
CDP-diacylglycerol-inositol 3-phosphatidyltransferase, as
well as lysophosphatidylcholine acyltransferase 1 and 3
showed only modestly altered mRNA levels, lysopho-
sphatidylglycerol acyltransferase 1 mRNA level was
increased 1.52 fold and, most prominently, phosphatidic
acid phosphatase type 2B exhibited a 2.51-fold upregula-
tion, while scramblase 2 showed a 7.8-fold and scram-
blase 4 even a 24-fold increased mRNA level.
Based on LC-MS/MS analysis, a variety of changes in

intestinal and hepatic phospholipids were identified. The
fold changes of significantly regulated phosphatidylcho-
line (PC) species in tissue samples of mice fed the Wes-
tern diet compared to mice fed the control diet are
displayed in Figure 4. A complete list of all metabolites
analyzed, including acylcarnitines and sphingolipids, and
their respective concentrations in the small intestine
and liver samples is given in Additional file 9: Table S7.
Among the 84 PC species analyzed, 17 showed signifi-
cantly increased concentrations in the small intestine
and 15 (up to four-fold) in the liver of mice fed the
Western diet compared to the control group.

Discussion
The main finding of this study is that obese mice fed a
Western-style high fat diet containing cholesterol dis-
played reduced cholesterol levels in intestine and liver,
despite a plasma hypercholesterolemia, when compared
to mice given a cholesterol-free high carbohydrate diet.
Not only did the mice on the Western diet exhibit
phenotypic changes towards a metabolic syndrome,
such as impaired glucose clearance, but also major
adaptive changes in cholesterol and phospholipid
metabolism.
Proper fat digestion and absorption in the small intes-

tine requires luminal bile acids and PL for formation of
micelles. Incorporation of TG into CM after reassembly
in the enterocytes also requires large quantities of PL
and cholesterol. Chronic high fat feeding consequently
increases the needs of the small intestine for additional
cholesterol, PL and bile acids for processing and secre-
tion of the fat into circulation. Although Western diets
based on animal lipid sources provide extra cholesterol,
this did not seem to be sufficient to meet the increased
demands of the intestine. Based on the microarray data,
we provide evidence that the subsequent fall in tissue
cholesterol levels may initiate changes in gene expres-
sion that can be interpreted as an increase in de novo
cholesterol synthesis, a decreased cholesterol efflux into
the intestinal lumen and an increased cholesterol uptake
from circulation into the epithelium via LDL and the
LDL-receptor. These changes are summarized schemati-
cally in Figure 5.

Table 3 Effect of a chronic Western diet on the
expression of genes related to cholesterol metabolism in
the livera

Symbol Gene name FC p-
value

Cyp51 Cytochrome P450, family 51 1.80 ±
0.28

0.056

Dhcr7 7-dehydrocholesterol reductase 1.72 ±
0.23

0.025

Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A
reductase

2.23 ±
0.48

0.033

Pmvk Phosphomevalonate kinase 1.22 ±
0.16

0.378

Srebp-
2

Sterol regulatory element binding factor 2 1.37 ±
0.08

0.009

a Abbreviations: FC fold change (Western diet vs. control)
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Evidence for an increased de novo synthesis of choles-
terol in the intestine is derived from increased mRNA
levels of the mevalonate kinase (Mvk), the phosphomeva-
lonate kinase (Pmvk), the mevalonate decarboxylase
(Mvd), the squalene epoxidase (Sqle), the cytochrome
P450, family 51 (Cyp51), the 7-dehydrocholesterol reduc-
tase (Dhcr7), the hydroxysteroid (17-beta) dehydrogenase
7 (Hsd17b7), the NAD(P) dependent steroid dehydrogen-
ase-like (Nsdhl) and the transmembrane 7 superfamily
member 2 (Tm7sf2) genes. Nsdhl encodes a sterol dehy-
drogenase while Tm7sf2 encodes a sterol reductase,
both involved in post-squalene cholesterol biosynthesis
[41-43]. Although 3-hydroxy-3-methylglutaryl-coenzyme
A reductase (Hmgcr), the rate-controlling enzyme in
cholesterol synthesis, did not exhibit any significant
changes in mRNA levels upon Western diet feeding, it
is known to also be extensively regulated at the post-
transcriptional level [28]. The precursor for cholesterol
synthesis is acetyl-CoA, either provided from pyruvate
via glycolysis, or derived from fatty acid oxidation in
mitochondria and shuttled into the cytosol as citrate
with the concomitant release of acetyl-CoA via the
ATP-citrate lyase. Amongst the genes needed for fatty
acid import into mitochondria and ß-oxidation,
increased mRNA levels of the carnitinepalmitoyltrans-
ferase (Cpt1a), and the 3-hydroxy-3-methylglutaryl-coen-
zyme A synthase 2 (Hmgcs2), with an 8-fold increase in
mRNA levels, were identified. In addition, 3-hydroxy-
3methylglutaryl-coenzyme A lyase (Hmgcl) and acetyl-
coenzyme A acyltransferase 2 (Acaa2) were found to be
upregulated, indicative also for an increase in fatty acid
oxidation. Increased mRNA levels of the isocitrate dehy-
drogenase 1 (Idh1) and the citrate exporter in the inner
mitochondrial membrane (Slc25a1) may indicate a
simultaneous increase in citric acid cycle activity and
enhanced delivery of acetyl-CoA for cytosolic cholesterol
synthesis. The increased demand of NADPH for the
reductive cholesterol biosynthesis may be met by an

increase in the expression of cytosolic malic enzyme
(Me1) that showed a 3-fold elevation in mRNA levels.
Very similar findings, with corresponding changes in
catalytic activities of malic enzyme, carnitine-palmitoyl-
transferase and ß-oxidation in obesity-prone C57Bl/6 J
mice, were reported by Kondo et al. (24). Moreover,
Mttp, Apoa2 and Apoc2, three genes involved in CM
assembly, displayed elevated mRNA levels, indicative of
an increase in CM formation upon high fat feeding. We
also observed a 2-fold upregulation of Cd36 in mice fed
the Western diet. Interestingly, it has recently been sug-
gested that CD36 might act as a lipid sensor optimizing
the formation of large CM in the small intestine [44].
Genes involved in the cholesterol biosynthesis path-

way are primarily under the control of the membrane-
bound transcription factor sterol regulatory element-
binding protein 2 (Srebp-2) [45]. When the demand for
intracellular cholesterol rises, the Srebp-2 pathway is
activated and causes increased transcription of specific
target genes [46]. We observed elevated levels of Srebp-
2 in the intestine of the mice fed the Western diet,
suggesting an adaptive increase in cholesterol synthesis.
The mRNA levels of the LDL-receptor, another Srebp-2
target gene, were 4-fold higher in mice on the Western
diet. This suggests an increased re-uptake from circu-
lating LDL to meet the elevated cholesterol demand of
the tissue [47]. The downregulation of Abcg5 and
Abcg8, both in the upper and lower small intestine,
which act as cholesterol efflux transporters in the api-
cal membrane of enterocytes, may as well be inter-
preted as such a compensatory mechanism to prevent
cholesterol losses. These transporters have recently
been associated with trans-intestinal cholesterol excre-
tion (TICE) which appears to significantly contribute
to fecal neutral sterol loss in mice [48]. Although diet-
ary modifications were shown to alter cholesterol
secretion in the intestine, a high cholesterol diet failed
to affect TICE [49]. Our data on the downregulation of

Table 4 Effect of a chronic Western diet on the expression of genes related to phospholipid metabolism (based on GO
classification) in the small intestinea

Symbol Gene name FC q-value

Cdipt CDP-diacylglycerol–inositol 3-phosphatidyltransferase (phosphatidylinositol synthase) -1.29 0.015

Cds2 CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 2 -1.29 0.020

Cept1 Choline/ethanolaminephosphotransferase 1 1.26 0.030

Chka Choline kinase alpha 1.90 0.027

Lpcat3 Lysophosphatidylcholine acyltransferase 3 1.39 0.005

Lpgat1 Lysophosphatidylglycerol acyltransferase 1 1.52 < 0.001

Plscr2 Phospholipid scramblase 2 7.83 < 0.001

Plscr4 Phospholipid scramblase 4 24.31 < 0.001

Ppap2b Phosphatidic acid phosphatase type 2B 2.51 0.022
a Abbreviations: FC fold change (Western diet vs. control)
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Figure 4 Effect of a chronic Western diet on the level of phosphatidylcholine species. Hepatic and intestinal PC levels were detected
using LC-MS/MS. A: Significantly regulated PC in the small intestine (n = 6). B: Significantly regulated PC in the liver (n = 6). Data are presented
as fold change (Western diet versus control) ± SEM. Abbreviations: PC.aa.: phosphatidylcholine diacyl; PC.ae.: phosphatidylcholine acyl-alkyl;
lysoPC.a.: lysophosphatidylcholine acyl.
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Abcg5/8 confirm similar findings in a diet-induced obe-
sity mouse model with a high fat but cholesterol-free
diet [21]. This may suggest that high fat or Western-
style diets do regulate these cholesterol efflux transpor-
ters more or less independently of dietary cholesterol.
This could translate into a reduced TICE which would
contribute to the observed decrease in net cholesterol
excretion (Figure 1C) and the elevated circulating cho-
lesterol level (Additional file 5: Table S3) in the mice
fed the Western diet. Surprisingly, the gene encoding
for Npc1l1 exhibited a 2-fold downregulation in the
present study. This protein is believed to be the prime
import transporter mediating cholesterol absorption.
However, it has been shown in mice that a cholesterol-
rich diet reduces Npc1l1 expression [11] and a choles-
terol-free high fat diet similarly decreases Npc1l1
expression as well as cholesterol absorption when com-
pared to mice fed a cholesterol-free but low fat diet
[28]. Amongst the enzymes that mediate cholesterol
degradation, Cyp27a1 plays a prominent role and its

gene was found to be downregulated, around 3-fold, in
the Western diet fed mice, suggesting an additional
inhibition of cholesterol breakdown. The most promi-
nent regulation in gene expression was found for the
stearoyl-coenzyme A desaturase 1 (Scd1), encoding for
the rate-limiting enzyme in MUFA synthesis, whose
expression levels were 90 times higher in the Western
diet fed mice. MUFA are a key component to the for-
mation of TG, cholesterol esters and PL [50] and it has
been shown that the synthesis of cholesterol ester is
actually dependent on MUFA produced by Scd1 [51].
Since esterified cholesterol is required for CM assem-
bly, the huge increase in Scd1 expression may reflect
the increased need of cholesteryl ester for CM secre-
tion. Scd2, which encodes the same functional protein,
was found to be strongly upregulated as well. Interest-
ingly, Ces1d and Ces1g, two genes encoding carboxyles-
terases, were found to be strongly downregulated, -6.13
and -5.46 times respectively, suggesting an inhibition of
the hydrolysis of cholesteryl ester to cholesterol [52].
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Figure 5 Effect of a chronic Western diet on the expression of genes related to cholesterol metabolism in the small intestine. Fold
changes are displayed next to differentially expressed genes with color code provided. Red squares indicate upregulated genes; green squares
indicate downregulated genes. Cholesterol concentration was found to be decreased whereas TG concentration was found to be increased in
mice receiving the Western diet. Abbreviations and fold changes are listed in Table 2.
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Taken together, the changes in mRNA levels observed
in the mice receiving a cholesterol-containing Western
diet may be interpreted as an adaptive response to meet
an increased cholesterol demand of the intestine for
proper handling of large quantities of fat and for CM
formation. The changes suggest a reduced luminal efflux
of cholesterol, an increased LDL-receptor mediated
reverse uptake, a reduced breakdown and an enhanced
de novo synthesis. These findings confirm data reported
by de Vogel-van den Bosch et al. [28] on changes in
gene expression of intestinal cholesterol metabolism in
mice fed a cholesterol-free high fat diet for 8 weeks. We
here extent this observation by showing that even in the
presence of cholesterol in the Western diet, tissue
demands cannot be met and supply may simultaneously
be increased via uptake of LDL particles and de novo
synthesis, with increased fatty acid ß-oxidation providing
the building blocks. Most of these effects are likely to be
mediated through Srebp-2. We also observed similar
changes in mRNA levels of selected genes such as
Srebp-2, Hmgcr, Cyp51 and Dhcr7 in liver samples of
the mice fed the Western diet, suggesting that hepatic
cholesterol synthesis is increased as well. Under condi-
tions of a high dietary fat intake, the liver also has an
increased cholesterol demand for VLDL secretion and
bile production and secretion. The observed steatohepa-
tosis, a hallmark in rodent models of obesity, may
demonstrate the restricted capacity for lipid export from
the liver via VLDL. It should be noted that the Western
diet provided around 3 energy% of fructose which may
as well have contributed to the development of the stea-
tohepatosis observed [53].
Lipid and cholesterol handling, both in the intestinal

lumen and for transport via CM and other lipoproteins,
requires PL. Numerous genes involved in PL homeostasis
exhibited altered expression levels in the small intestine
of the obese mice. For example, genes encoding phospho-
lipid scramblases 2 and 4 were upregulated 7.8- and 24.3-
fold respectively in mice fed the Western diet. Phospholi-
pid scramblases represent a group of homologous ATP-
independent bidirectional lipid translocators, involved in
generation and maintenance of lipid asymmetry in the
plasma membrane and are conserved in all eukaryotes
[54,55]. Fat processing in intestinal cells causes, at least
transiently, a rearrangement of plasma cell membranes,
increases membrane synthesis and vesicular trafficking,
with a need for a remodeling of all cellular membrane
compartments [56,57]. Although the biological functions
of the phospholipid scramblases 2 and 4 need to be
determined, these changes may be taken as a signature of
major alterations in PL metabolism in the intestinal
epithelium, induced by Western diet feeding.
Analysis of total PL content in liver revealed signifi-

cantly reduced levels in mice fed the Western diet,

whereas changes in the small intestine did not reach sig-
nificance. However, as demonstrated by Hicks et al., dif-
ferent tissues present unique PL signatures [58]. Hence,
we analyzed the PL spectrum in intestinal and liver sam-
ples via LC-MS/MS. Phosphatidylcholine (PC) and phos-
phatidylethanolamine (PE) are the two prominent
phospholipid classes [59] and amongst all PC species
analyzed, 17 displayed markedly increased levels in the
small intestine and 15 as well in the liver, although
those mostly did not belong to the species with the
highest concentrations. Despite unchanged (intestine) or
reduced (liver) total PL content, major alterations in the
spectrum of glycerophospholipids could be detected,
particularly in PC species with carbon chain length of
C32 and C34.
Furthermore, liver also exhibited alterations in PC

species with longer carbon chains (C38 and C40). In
essentially all mammalian cells, PC is synthesized almost
exclusively through the CDP-choline pathway [59].
However, hepatocytes uniquely express a PE methyl-
transferase, which methylates PE to PC via three
sequential steps [60]. Interestingly, DeLong et al. showed
that PC derived from the PE methylation pathway were
comprised of significantly more long chain, polyunsatu-
rated fatty acids [61]. Thus, the higher levels of PC spe-
cies with longer carbon chains found in the liver could
originate most likely from an increased activity of the
PE methylation pathway in hepatocytes. We also
observed increased concentrations of PC diacyl 34:1
(PC.aa.34:1) in small intestine and increased concentra-
tions of the analogue etherphospholipid PC acyl-alkyl
34:1 (PC.ae.34:1) in both small intestine and liver of
mice fed the Western diet. Recently, Chakravarthy et al.
demonstrated that PC.aa (16:0/18:1) is a natural ligand
of the nuclear receptor peroxisome proliferator-activated
receptor alpha (PPAR-a), which promotes fatty acid oxi-
dation, lipid transport and ketogenesis in liver and intes-
tine [62]. The increased levels of PC.aa.34:1 suggest that
a PPAR-a dependent activation by this agonist could
contribute as well to some of the changes observed in
the small intestine of the mice on Western diet [63].
The role of the etherphospholipid PC.ae.34:1 in PPAR-a
activation remains yet to be determined. Gene expres-
sion analysis in intestinal samples also revealed evidence
for significant changes in PL metabolism. Whereas cho-
line kinase alpha (Chka) as well as choline/ethanolami-
nephosphotransferase 1 (Cept1), 2 genes involved in the
CDP-choline pathway, showed increased mRNA levels,
CDP-diacylglycerol synthase and phosphatidylinositol
synthase displayed reduced levels. Lysophosphatidylcho-
line acyltransferase 3 (Lpcat3), a gene involved in the
conversion of lysoPC to PC and essential for membrane
asymmetry and diversity [64], was also found to be
upregulated in the Western diet group. Yet,
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lysophosphatidylcholine acyl C17:0 (lysoPC.a.17.0) con-
centrations were markedly increased in intestine and
liver, suggesting an imbalance of phospholipase- and
Lpcat3-mediated cleavage and re-esterification. The
phosphatidic acid phosphatase type 2B showed a 2.51-
fold increased mRNA level, which could lead to
increased concentrations of diacylglycerol, which,
together with the increase in Cept1 mRNA levels, sug-
gests an increased synthesis of PC and PE, while the
synthesis of phosphatidylinositol may be reduced.
Although phospholipases were not found to change in
expression levels, increased mRNA levels of lysopho-
sphatidylcholine acyltransferases 1 and 3 suggest an
increased overall turnover of the different PC species in
the tissues.

Conclusions
In summary, in addition to obesity, impaired glucose
tolerance and hepatic steatosis, a Western-style high fat
diet, which usually contains larger quantities of choles-
terol, also causes changes in enterohepatic cholesterol
and PL status in C57Bl/6 N mice. Despite a higher diet-
ary intake of cholesterol and increased serum cholesterol
levels, tissue cholesterol levels in small intestine and
liver were reduced when compared to lean mice fed a
cholesterol-free high carbohydrate diet. Changes in gene
expression suggest that the increased cholesterol
demand of tissues for fat absorption and transport may
be met by a) an increased export of acetyl-CoA from
mitochondria and increased cytosolic cholesterol synth-
esis, b) a reduced breakdown of cholesterol, c) an
increased reverse uptake of cholesterol via LDL and d) a
reduced back-flux of cholesterol into the intestinal
lumen. In addition, we demonstrate that intestine and
liver show major changes in gene expression and in the
levels of selected PC species, indicative for a) an
increased PC synthesis via the CDPcholine pathway, b)
an increased PE methylation pathway activity in the
liver and c) alterations in membrane PL remodeling.
The observed cholesterol paradox and alterations in PL
metabolism call for more studies to identify the underly-
ing molecular mechanisms by which Western-style high
fat diets cause these changes.
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