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Abstract

resistance in the breeding population.

Background: Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks.
Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia
amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study
was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the
scion whose expression levels correlated with this response.

Results: Rootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-
grown apple trees, consisting of ‘Gala’ scions grafted to a range of rootstocks, with E. amylovora. Disease severity
was measured by the extent of shoot necrosis over time. ‘Gala’ scions grafted to G.30 or MM.111 rootstocks
showed the lowest rates of necrosis, while ‘Gala’ on M.27 and B.9 showed the highest rates of necrosis. ‘Gala’
scions on M.7, S4 or M9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230
unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown ‘Gala’
scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels
correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be
differentially expressed during £. amylovora infection were disproportionately represented among these transcripts.
A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these
correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts
originally identified using the first-generation array, 39 had expression levels that correlated with fire blight

Conclusions: Rootstocks had significant effects on the fire blight susceptibility of ‘Gala” scions, and rootstock-
regulated gene expression patterns could be correlated with differences in susceptibility. The results suggest a
relationship between rootstock-regulated fire blight susceptibility and sorbitol dehydrogenase, phenylpropanoid
metabolism, protein processing in the endoplasmic reticulum, and endocytosis, among others. This study illustrates
the utility of our rootstock-regulated gene expression data sets for candidate trait-associated gene data mining.

Background

Fire blight, the disease caused by the bacterial pathogen
Erwinia amylovora (Burrill) [1], is a devastating, systemic
disease that occurs in apples and other Rosaceous plants.
Control is limited to pruning of infected branches and the
use of antibiotics and copper compounds, both of which
are only preventative, and are often strictly regulated. In
addition, the emergence of streptomycin-resistant strains
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of Erwinia amylovora has raised questions about the con-
tinued use of this control agent [2]. Once established,
infection leads to the development of necrotic regions on
the leaves, shoots and petals. The infected regions of the
plant eventually become brown or black and look as if
swept by fire [3]. Severe fire blight outbreaks can result in
the destruction of whole orchards. Current production
methods have shifted towards high-density plantings on
dwarfing or very-dwarfing rootstocks, resulting in greater
yields per acre [4]. However many of the dwarfing root-
stocks are highly susceptible to fire blight, resulting in
greater disease problems.
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The susceptibility of the different rootstocks and
scion cultivars to fire blight varies substantially, and
there are recommendations against certain combina-
tions in regions particularly prone to fire blight [5]. It
has been observed in the field and in the greenhouse
that a given cultivar can have different levels of disease
resistance depending on the rootstock to which it is
grafted [6,7]. In the case of susceptible scion cultivars,
it is recommended that they be grafted to resistant
rootstocks to reduce susceptibility to fire blight. In the
current study we demonstrate that rootstocks can have
a significant effect on the resistance of the scion to fire
blight.

A number of plant genes and pathways have been impli-
cated as playing roles in the response to E. amylovora
infection. Several pathogenesis related (PR) genes have
been shown to be up-regulated in apple in response to
E. amylovora infection [8,9]. Overexpression of NPRI in
apple results in increased PR gene expression and reduced
susceptibility to E. amylovora and a number of other
pathogens [10]. Norelli et al. [11] identified transcripts
that are differentially expressed between control and
E. amylovora-infected shoots using suppression subtrac-
tive cDNA hybridization. Recently, further studies identi-
fied additional transcripts that are differentially expressed
during E. amylovora infection of apple leaves [12] and in
apple flowers [13].

E. amylovora has been shown to specifically delay the
expression of host genes in the phenylpropanoid path-
way during infection [14,15]. This pathway leads to the
production of anti-microbial compounds as well as lig-
nin formation [16,17]. In addition, a general increase in
free carbohydrate levels has also been associated with
increased fire blight susceptibility [15].

Genetic analysis in apple is difficult due to its largely
self-incompatible nature, high degree of heterozygosity,
and large genome. However, the clonal propagation of
apples provides an opportunity for genetic analysis of
rootstock-regulated phenotypes, such as disease resis-
tance. In a previous study, we used DNA microarrays to
examine steady-state gene expression in the shoot tips
of healthy, uninfected ‘Gala’ apple scions grafted to
seven different rootstocks [18]. Each of the scion/root-
stock combinations had a unique phenotype. In the pre-
sent study, we undertook to identify constitutively
expressed genes in ‘Gala’ apple whose expression levels
were associated with a rootstock-induced decrease in
fire blight susceptibility. Using fire blight resistance rat-
ings from field-grown trees, we were able to mine the
microarray data obtained during the earlier study [18] to
identify genes and pathways that might be related to the
tree fire blight susceptibility status. Previously, we used
a similar approach to identify transcripts whose expres-
sion levels correlated with tree stature [18].
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Methods

Plant Material

Trees for the fire blight tests were purchased from Adams
County Nursery Inc. (Aspers, PA) and planted in five
replica blocks at The Pennsylvania State University Fruit
Research and Extension Center, Biglerville, PA. Trees con-
sisting of ‘Gala’ scions grafted to a range of rootstocks
were planted and conventionally managed with pesticides
to control weeds, fungal diseases and insects in prepara-
tion for inoculation. For the greenhouse-grown tree first-
generation microarrays, fresh bench grafts were grown as
described previously [18]. For fire blight susceptibility
tests, ‘Crimson Gala’ (Waliser cultivar) on the same seven
rootstocks were planted in 2005 at the Fruit Research and
Extension Center in Biglerville, PA. The rootstocks were,
from the least to the most vigorous, Malling 27 EMLA
(M.27), Budagovsky 9 (B.9), Malling 9 Fleuren 56
(M.9F56), Geneva 30 (G.30), Malling 7 EMLA (M.7), Sup-
porter 4 (S.4), Malling Merton 111 EMLA (MM.111).
Throughout the text, plants are described as scion/root-
stock combinations. For example, a ‘Gala’ scion on an M.7
rootstock is designated as ‘Gala’/M.7. The trees used for
the second-generation microarray experiment were from a
segregating population from an ‘Ottawa 3’ x ‘Robusta 5’
cross and were grown in an orchard in Geneva, NY [19].
This population had been previously characterized for
resistance to fire blight [19].

Fire Blight Susceptibility

For the fire blight tests conducted in Biglerville, PA,
actively growing scion shoot tips of three-year old trees
were wounded by using scissors to cut across the midribs
of the youngest leaves, and a drop of phosphate buffer (10
mM, pH 7) containing 1 x 10° cfu/ml of E. amylovora
(strain Ea581a or HKNO06P1) was placed on the cut sur-
face. The shoot tip was then covered for 24 hours with a
plastic bag containing a wet piece of filter paper to main-
tain a humid environment and promote infection. Necro-
tic region measurements were taken over the course of the
disease progression. Disease severity was calculated as the
length of the blighted section of an inoculated shoot as a
percentage of the total shoot length. Four replicate trials
were conducted, each replicate consisting of 10 trees of
each of the 7 scion/rootstock combinations. At least 5
shoots per tree were inoculated. The fire blight susceptibil-
ity of the ‘Ottawa 3’ x ‘Robusta 5’ cross progeny used for
the second-generation microarray experiment, to two E.
amylovora strains (Ea273, Ea2002a), was published pre-
viously [19]. The susceptibility data for a third E. amylo-
vora strain (Ea4001a) is unpublished.

RNA isolation and microarray analysis
The methods and results for our first-generation micro-
array, including RNA isolations from greenhouse-grown
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trees and microarray analysis, are described elsewhere
[18]. The first generation array contained probes
designed to detect 55,230 unique transcripts, represent-
ing up to 95% coverage of the apple genome. The
sequences for all of the contigs used to develop the
probes for the arrays can be found at the Gene Expres-
sion Omnibus (GEO) dataset website [20]. For the pre-
sent study, we developed and used a second-generation
apple DNA NimbleGen expression microarray that was
designed based on our first-generation NimbleGen array
[18] and used it to analyze RNA samples isolated from
the progeny of the ‘Ottawa 3’ x ‘Robusta 5’ cross grown
in Geneva, NY. The expression levels for each tree were
analyzed on a single array only, with no biological repli-
cates for any individual tree. The second-generation
array was a 12-plex array containing 135,000 probes per
plex, representing 26,017 transcripts, enabling us to
query a relatively large number of samples. The probes
for this array represent a subset of those included in the
first-generation array. The second-generation array
represents the transcripts with the best-performing
probe sets from the first-generation array and includes
the transcripts that showed differential expression
between any two scion/rootstock combinations. Tran-
scripts that had high variability among their probes were
left off of the second-generation array. The five best-
performing probes of the original six probes per tran-
script were used in the second-generation array to
increase the number of different transcripts that could
be queried by the second-generation array.

DNA microarray analysis on our second-generation
microarrays was performed by the Penn State Genomics
Core Facility at University Park, PA. Briefly, one micro-
gram of total RNA from each sample was amplified using
the Ambion (Life Technologies) Amino Allyl Messa-
geAmp II aRNA Amplification Kit (AM1753) following
the manufacturer’s protocol for one cycle amplification.
Fifteen micrograms of aRNA was dye coupled with either
Cy3 or Cy5 (GE Health Care #RPN5661), as appropriate.
Following quenching and cleanup of dye coupling reac-
tions, 1.5 pg of a Cy3 labeled sample is combined with 1.5
pg of a Cy5 labeled sample and fragmented using RNA
Fragmentation Reagents (Ambion AM8740) according the
manufacturer’s instructions. After fragmentation, samples
are dried down completely in a speed-vac and then resus-
pended in tracking controls and hybridization solution
according to the microarray manufacturer’s instructions
(Roche NimbleGen). Pairs of samples were hybridized
overnight at 42°C with active mixing in a MAUI Hybridi-
zation System. Following hybridization, microarrays were
washed and scanned according to the manufacturer’s pro-
tocol (Roche NimbleGen). Images were burst, gridded,
and pair files generated using NimbleScan software. The
gene expression data from the hybridization experiments

Page 3 of 17

using the second-generation DNA microarray were nor-
malized using R software and un-adjusted p-values were
calculated by regression analysis using R software [21,22].

Multiple regression analysis

Stepwise multiple regression analysis was used to identify
genes whose expression levels were related to fire blight
severity. The response variable was mean fire blight sever-
ity, calculated as the length of blighted section of an inocu-
lated shoot as a percentage of the entire shoot and
averaged across 5 replicates for each of 48 (Geneva trees).
The explanatory variables were gene expression levels,
expressed as arbitrary units of fluorescence intensity, for a
set of 60 candidate genes selected based on potential for
involvement in fire blight susceptibility. A full stepwise
regression model was implemented so that each of the
explanatory variables was evaluated in the regression with
significance level for staying in the model set at P = 0.15.
For both up-regulated and down-regulated candidate
genes, separate stepwise regression analyses were com-
puted for fire blight severity data for each of three E. amy-
lovora strains. Stepwise multiple regression analysis were
implemented using the REG procedure of SAS 9.2 (SAS
Institute Inc., Cary, NC), and the resulting models were
evaluated for goodness of fit based on standard regression
analysis procedures [23].

Results

Rootstock-dependent differences in fire blight
susceptibility of ‘Gala’ scions

Significant differences in the relative size of the necrotic
regions were observed within 15 days of inoculation of the
‘Gala’ shoot tips with two different strains of E. amylovora
(Figure 1). For both strains, ‘Gala’/G.30 and ‘Gala’/M.111
were the least susceptible and ‘Gala’/B.9 and ‘Gala’/M.27
were the most susceptible. Interestingly, strain-dependent
differences in fire blight susceptibility were observed for
‘Gala’/M.7 and ‘Gala’/M.9F56 trees. ‘Gala’/M.7 susceptibil-
ity to E. amylovora strain Ea581a was similar to that of the
most susceptible trees ('Gala’/B.9 and ‘Gala’/M.27), while
‘Gala’/M.9F56 susceptibility to strain Ea581a was similar
to that of the most resistant trees ('Gala’/G.30 and ‘Gala’/
MM.111). The results were reversed with E. amylovora
strain HKNO6P1, with ‘Gala’/M.7 susceptibility being simi-
lar to that of the most resistant trees and ‘Gala’/M.9F56
susceptibility being similar to that of the most susceptible
trees. E. amylovora strain Ea581a is a moderately virulent
isolate, while HKNO6P1 is a hypervirulent isolate [24].

Clustering of trees according to phenylpropanoid
pathway gene expression

After obtaining fire blight susceptibility ratings for all the
‘Gala’/rootstock combinations used in the study, it
became possible to ask whether expression levels of
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Figure 1 Susceptibility of grafted ‘Gala’ scions on seven
different rootstocks to two different strains of E. amylovora.
Bars sharing the same letter are not significantly different (Fisher's
LSD).

genes involved in specific biochemical pathways related
to fire blight resistance might contribute to the root-
stock-regulated fire blight resistance phenotype. Gene
expression levels in scions of all the ‘Gala’/rootstock
combinations used in this study were previously profiled
on a large scale using our first-generation DNA microar-
ray [18], and these microarray data were mined in the
present study for genes related to fire blight susceptibil-
ity. Because the phenylpropanoid biosynthesis pathway
has been implicated in fire blight resistance [11,14], a
search of the apple genome was conducted to find the
predicted phenylpropanoid biosynthetic pathway genes.
A total of 67 transcripts on our first-generation array
were identified as belonging to the phenylpropanoid bio-
synthetic pathway, among other pathways (Additional
File 1, Table S1).

A complete linkage cluster analysis using the expres-
sion values for these genes was conducted to evaluate the
potential contribution of the expression levels of genes in
this pathway to resistance (Figure 2). There were two
main clusters of trees based on the expression patterns of
putative phenylpropanoid biosynthetic genes. The two
least susceptible scion/rootstock combinations (‘Gala’/

7 6 5 4 3 2 1

Euclidean distance (Log?2)

- Highly susceptible |:| Strain-dependent susceptibility
Least susceptible Intermediate susceptibility

Figure 2 Clustering analysis of transcripts involved in the
phenylpropanoid biosynthetic pathway using complete linkage
with Euclidean distance (Log,).

G.30 and ‘Gala’/M.111) were paired in one cluster, along
with a branch containing one scion/rootstock combina-
tion displaying strain-dependent susceptibility (‘Gala’/
M.7). The second main cluster contained both of the
highly susceptible scion/rootstock combinations (‘Gala’/
M.27 and ‘Gala’/B.9) as well as a scion/rootstock combi-
nation with strain-dependent susceptibility (‘Gala’/
M.9F56) and the moderately susceptible scion/rootstock
combination (‘Gala’/S.4). Thus, the clustering of trees
according to phenylpropanoid pathway gene expression
closely followed the pattern of susceptibility to the highly
virulent E. amylovora strain HKNO6P1 (Figure 1).

Clustering of trees according to sugar metabolic pathway
gene expression

The AraCyc metabolic pathways tool [25] was used to
identify 93 Arabidopsis genes involved in sugar metabo-
lism, and the potential homologs of these Arabidopsis
genes in the apple genome were identified. A BLAST
search of the set of the Arabidopsis genes involved in
sugar metabolism to the apple genome resulted in the
identification of 227 unique apple coding sequences. A
total of 219 of these transcripts were represented on our
first-generation array. A complete linkage cluster analy-
sis using the expression values for the 219 identified
sugar metabolism genes did not closely follow the pat-
tern for the levels of fire-blight susceptibility for the var-
ious scion/rootstock combinations (compare Figures 1 &
3). Instead, the clustering by sugar metabolism gene
expression closely resembled clustering based on data
for all the transcripts represented on the first-generation
array [18].
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Figure 3 Clustering analysis of transcripts involved in sugar
metabolism using complete linkage with Euclidean distance
(Logy).

Identification and categorization of candidate rootstock-
regulated, fire blight susceptibility-associated transcripts
Constitutive gene expression levels in scions of all the
‘Gala’/rootstock combinations used in this study were
profiled on a large scale previously using our first-genera-
tion apple DNA microarray [18]. Using the fire blight
susceptibility ratings from the field trials, the microarray
data were sorted to identify those transcripts whose
expression levels correlated with the differences in fire
blight susceptibility among the apple trees being studied.
A diagram showing the comparisons used to sort the
data is shown in Figure 4. Transcripts of interest were
selected based on a fold-expression difference cutoff and
a statistical strength cutoff. For a transcript to be
selected, every possible pairwise comparison between the
two least susceptible (‘Gala’/G.30 and ‘Gala’/M.111) and
the two most susceptible scion/rootstock combinations
(‘Gala’/B.9 and ‘Gala’/M/27) had to have at least a 1.5
fold difference in expression and a q-value of less than
0.05. This selection program resulted in a list of 665 tran-
scripts with higher expression levels in the less suscepti-
ble trees (Additional File 1, Table S2), and 25 transcripts
with higher expression in the more susceptible trees
(Additional File 1, Table S3) for a total of 690 candidate
rootstock-regulated, fire blight susceptibility-associated
transcripts. The Malus genome BLAST hits and corre-
sponding e-values are included in Additional File 1,
Tables S2 and S3.

An analysis of the predicted functional categories of
all of the candidate rootstock-regulated, fire blight sus-
ceptibility-associated transcripts was conducted based
on the Arabidopsis thaliana BLASTX hits to the Malus

Each pairwise combination must
have an M-value of greater than
0.58 or less than -0.58

The g-value must be < 0.05 for each comparison

665 transcripts UP in trees with Low Susceptibility
25 transcripts UP in trees with High Susceptibility

Figure 4 Selection scheme used to identify candidate
rootstock-regulated, fire blight susceptibility-associated
transcripts based on expression data.

x domestica sequence (BLASTX cutoff 1E-3). The distri-
bution in the functional categories differed from that
expected based on the whole transcriptome. These Gene
Ontology (GO) enrichment patterns are shown in
Table 1. Transcripts of genes predicted to be involved in
responses to stress and biotic and abiotic stimuli were
disproportionately represented relative to the known
apple transcriptome as a whole.

A functional annotation of the transcripts in Additional
File 1, Table S2 was conducted using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [26] to look for path-
ways that might be overrepresented among the candidate
rootstock-regulated, fire blight susceptibility-associated
transcripts. The sequence of every transcript on the array
was subjected to KEGG analysis to generate an overall pic-
ture of the relative abundance of genes in the KEGG path-
ways. Similarly, all of the transcripts in Additional File 1,
Tables S2 and S3 were analyzed for the KEGG pathways. A
chi-square analysis revealed that, for the candidate root-
stock-regulated, fire blight susceptibility-associated tran-
scripts, several pathways contained more genes than
predicted relative to a KEGG analysis of all of the tran-
scripts represented on the array (Table 2). Those pathways
that had the highest confidence level for being over-repre-
sented include: fatty acid metabolism (ko00071), valine, leu-
cine and isoleucine degradation (ko00280), photosynthesis-
antenna proteins (ko00196), flavonoid biosynthesis
(ko00941), protein processing in the endoplasmic reticulum
(ko04141), endocytosis (ko4144) and peroxisome (ko4146).
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Table 1 GO Enrichment Analysis
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Keyword Category Functional Category Expected Observed
Biological Process cell organization and biogenesis 29 29
Biological Process developmental processes 22 21
Biological Process DNA or RNA metabolism 8 2
Biological Process electron transport or energy pathways 13 21
Biological Process other biological processes 20 37%
Biological Process other cellular processes 138 164
Biological Process other metabolic processes 146 162
Biological Process protein metabolism 60 60
Biological Process response to abiotic or biotic stimulus 23 53%
Biological Process response to stress 19 46*
Biological Process signal transduction 15 7
Biological Process transcription 23 4%
Biological Process transport 31 31
Biological Process unknown biological processes 124 33%
670 670

*Chi Square < 0.001

Genes differentially expressed during fire blight infection
are disproportionately represented among the candidate
rootstock-regulated, fire blight susceptibility-associated
transcripts

Transcripts that increase or decrease in abundance dur-
ing fire blight infection have been identified in apple
[11-13]. Of the 690 candidate, rootstock-regulated, fire
blight susceptibility-associated transcript sequences iden-
tified in the present study (Additional File 1, Tables S2 &
S3), 79 (Table 3) had been determined to be differentially
expressed during fire blight infection by Norelli et al,,
[11]. Based on BLAST searches of both sets of transcripts
to the recently published apple genome [27], a number of
the transcript sequences were found to represent differ-
ent locations on the same predicted gene, resulting in a
final set of 54 unique genes (Table 3). Based on the sizes
of the candidate gene lists and the number of genes on
the array and in the genome, approximately four genes
are expected to be in common between the two data sets
due to chance.

Similarly, a total of 20 of our candidates corresponded
to 10 genes identified by Baldo et al., [12] (Table 4), out
of a total of 190 genes identified in that study. Half of
these 20 candidates were also among those identified by
Norelli et al [11]. We also compared our candidate list to
a list of ~3,500 genes identified as being differentially
expressed during flower infection by Sarowar et al., [13]
and found that 117 of our candidates shared an Arabi-
dopsis BLAST hit (Additional File 1, Table S4). For Baldo
et al., and Sarowar et al., the number of genes expected
to be in common between the two data sets due to
chance are 2 and 60 respectively.

Interestingly, of the 54 transcripts identified in com-
mon with Norelli et al., over half were down-regulated

post infection [11]. However, we found that these same
genes had higher expression levels in the less susceptible
trees. A few of these were initially up-regulated in the
Norelli study at early time points, but were down-regu-
lated at later time points. In Sarowar et al., again over
half of the transcripts in common were identified as
being down-regulated upon infection; they were
expressed at higher levels in the least susceptible trees
in the present study. Only 2 of 10 of the genes in com-
mon with Baldo et al. were down-regulated upon infec-
tion. A KEGG analysis of the genes in Table 3 is
included in Table 2. Those pathways that had the high-
est confidence level for being overrepresented relative to
the total transcriptome include protein processing in the
endoplasmic reticulum (ko04141) and endocytosis
(ko4144).

Analysis of expression patterns of candidate fire blight
susceptibility-associated genes in an apple rootstock
breeding population

To further analyze which candidate rootstock-regulated,
fire blight susceptibility-associated transcripts might
prove to be the best indicators of resistance, we examined
the expression levels of a subset of the candidate tran-
scripts in a test population of 48 individual, non-grafted
apple lines, grown in Geneva, NY, that were offspring
from a single ‘Ottawa 3’ x ‘Robusta 5’ cross segregating
for fire blight resistance. Expression was measured using
a second-generation, 135,000 feature microarray (repre-
senting ~26,000 transcripts) developed from the original,
larger microarray used for rootstock-regulated gene
expression profiling [18]. The second-generation micro-
array was designed before the 690 fire blight-associated
candidate transcripts had been identified; of the 690
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Table 2 KEGG functional analysis of candidate rootstock-regulated, fire blight susceptibility-associated transcripts

Whole array  Suppl Table 3 Table 5 p-value >
Table 2 transcripts transcripts
Pathway KEGG no. Total Exp Obs Exp Obs Exp Obs Suppl Table2 Table 3 Table 5
Fatty acid metabolism 71 10 0.1 4 nfa n/a n/a n/a 0.001 n/a n/a
Protein processing in endoplasmic reticulum 4141 60 0.8 8 03 3 03 3 0.001 0.001 0.001
Carbon fixation pathways in prokaryotes 720 10 0.1 3 nfa n/a n/a n/a 0.001 n/a n/a
Peroxisome 4146 30 04 5 0.2 1 n/a n/a 0.001 0.05 n/a
Photosynthesis-antenna proteins 196 12 1.5 7 0.7 1 0.7 2 0.001 NS 0.001
Endocytosis 4144 30 04 3 0.2 2 0.2 1 0.001 0.001 0.05
Valine, leucine and isoleucine degradation 280 20 03 2 n/a n/a n/a n/a 0.001 n/a n/a
Carbon fixation in photosynthetic organisms 710 22 28 8 1.3 2 n/a n/a 0.01 NS n/a
Methane metabolism 680 19 24 7 1.1 2 n/a n/a 0.01 NS n/a
Spliceosome 3040 95 122 3 55 1 52 1 0.01 NS NS
Arginine and proline metabolism 330 30 04 2 nfa n/a n/a n/a 0.01 n/a n/a
Flavonoid biosynthesis 941 13 1.7 5 0.7 2 0.01 NS
Antigen processing and presentation 4612 6 0.8 3 03 2 03 2 0.05 0.01 0.01
Purine metabolism 230 75 96 2 nfa n/a n/a n/a 0.05 n/a n/a
Pentose and glucuronate interconversions 40 10 0.1 1 nfa n/a n/a n/a 0.05 n/a n/a
Indole alkaloid biosynthesis 901 1 0.1 1 nfa n/a n/a n/a 0.05 n/a n/a
Neuroactive ligand-receptor interaction 4080 1 0.1 1 nfa n/a n/a n/a 0.05 n/a n/a
Renin-angiotensin system 4614 1 0.1 1 nfa n/a n/a n/a 0.05 n/a n/a
Benzoate degradation 362 4 05 2 nfa n/a 03 1 0.05 n/a NS
Fructose and mannose metabolism 51 16 2.1 5 09 1 n/a n/a 0.05 NS n/a
Ubiquitin mediated proteolysis 4120 47 6.0 1 n/a n/a 32 1 0.05 n/a NS
Cell cycle-yeast 4111 46 59 1 na n/a 31 1 0.05 n/a NS
Phagosome 4145 26 33 7 n/a n/a 14 3 0.05 n/a NS
NOD-like receptor signaling pathway 4621 3 04 1 0.2 1 0.2 1 NS 0.05 NS

NS = not significant, n/a = no transcripts identified matching this pathway.

candidate transcripts, 429 were represented on the sec-
ond-generation microarray.

Three different strains of E. amylovora (Ea2002a,
Ea273a, and Ea4001a) were used to determine the sus-
ceptibility of the segregating population. Regression ana-
lysis of the data identified a set of 39 transcripts out of
the 429 candidates that had some association with fire
blight resistance in the breeding population (Table 5).
The transcripts included in this set had un-adjusted p-
values of less than 0.05.

For the transcripts identified as having higher levels of
expression in less susceptible trees, 3 had an un-adjusted
p-value below 0.05 for two strains, and 36 had an un-
adjusted p-value below 0.05 for one strain. For those
transcripts that had higher expression levels in the more
susceptible scion/rootstock combinations, only 3 tran-
scripts had un-adjusted p-values below 0.05. The tran-
script list in Table 5 includes 3 transcripts previously
shown to be differentially expressed upon E. amylovora
infection [11] (Table 3). The functional annotation of
these genes is included in Table 2. Those pathways, as

determined by the KEGG analysis, that had the highest
confidence level for being disproportionately represented
include: photosynthesis-antenna proteins (ko00196), pro-
tein processing in the endoplasmic reticulum (ko04141),
and endocytosis (ko4144).

Gene expression patterns correlating with fire blight
susceptibility

A total of 13 genes with higher transcript levels in
more resistant trees were identified as being signifi-
cantly related to the level of fire blight caused by at
least one of the three E. amylovora strains, with the
resulting regression models accounting for between 40
and 60% of the variation in disease severity (Additional
File 2, Table S5). Of these, increased transcription of
one gene (APPLEOF000020273) was negatively related
to levels of fire blight caused by all three strains.
Increased levels of transcripts of APPLEOF000027501,
APPLEOOR00018643 and APPLEOF000019968 were
related to lower levels of fire blight caused by at least
two of the E. amylovora strains, while increased
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Table 3 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection
by Norelli et al., [11]

Seq_ID GenBank_Accn Malus Contig  Description evalue SSH
BLAST Hit Response’®

APPLEOF000017044/  EG974017 MDCO011793.214 plastocyanin-like domain-containing protein 9E-14  early up-
regulated

APPLEOFR00078469

APPLEOF000011437/ fibrillarin 1 (FBR1) (FIB1) (SKIP7) identical to fibrillarin 1 1E-59

APPLEOF000051475/  EG974020 MDC019359.48  GI:9965653 from [A. thaliana]; C-terminus identical to SKP1 3E-53  early up-
regulated

APPLEOF000020924 interacting partner 7 GI:10716959 from [A. thaliana] 3E-28

APPLEOF000022573 EH009495 MDC009164.88  putative cytochrome ¢ oxidase subunit 5¢ [Helianthus annuus] 5E-14  up-
regulated 1
hpi

APPLEOF000017734/ EH009489 MDC002049.218 leucine-rich repeat transmembrane protein kinase, putative 4E-11  up-
regulated 1
hpi

APPLEOF000060312 9E-06

APPLEOF000019504 EH009551 MDC011946.321 L-ascorbate peroxidase 1, cytosolic (APX1 7E-12 up-
regulated 1
hpi

APPLEOFR00043470 EH009570 MDC010527.333 Encodes a novel component essential for NDH-mediated non- up-

photochemical reduction of the plastoquinone pool in regulated 1
chlororespiratory electron transport. hpi

APPLEOF000017575/  EH009572 MDC015841.261 oxygen-evolving enhancer protein 3, chloroplast, putative 5E-13  up-
regulated 1
hpi

APPLEOF000020381 (PSBQ2 7E-11

APPLEOF000015792 EH009577 MDC006495.372 catalase 3 (SEN2) 3E-12 up-
regulated 1
hpi

APPLEOF000015821 4E-16

APPLEOF000006776 EH009561/ MDC013772.152 putative strong similarity to plastidic fructose-bisphosphate) 3E-25  up-
regulated 1
hpi

EH009491 aldolase (EC 4.1.2.13) from Nicotiana paniculata (NPALDP1

APPLEOOR00054041 EH009563 MDC008063.227 similar to putative 60S acidic ribosomal protein PO GB:P50346 4E-32  up-
regulated 1
hpi

APPLEOF000022368 EH090785 MDC016063.220 Glycine-rich RNA-binding protein 7 {A. thaliana} 2E-11 up-
regulated 12
hpi

APPLEOOR00018459 EH090787 MDC002341.180 40S ribosomal protein 527 (ARS27A 2E-17  up-
regulated 12
hpi

APPLEOF000016047/  EH090788 MDC013560.291  chlorophyll A-B binding protein 2, chloroplast/LHCII type | 5E-27  up-
regulated 12
hpi

APPLEOF000021251 CAB-2/CAB-140 (CAB2B)

APPLEOOR00018530 EH090762 MDC009496.462 putative mRNA binding protein precursor (Gl:26453355) 1E-22  up-
regulated 2
hpi

APPLEOF000021275 EH090763 MDC011225.39  dehydrin ERD10 (Low-temperature-induced protein LTI45) [A. up-

thaliana] SWISS-PROT:P42759 regulated 2
hpi

APPLEOF000020273 EH090764 MDC007862.188 heat shock protein 81-4 (HSP81-4) contains Pfam profiles PF02518, 1E-22  up-

PF00183: Hsp90 pro regulated 2

hpi
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Table 3 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection
by Norelli et al., [11] (Continued)

APPLEOF000017683/  EG974803 MDC009596.270 sugar transporter, putative similar to ERD6 protein {A. thaliana} 8E-29  up-
regulated 48
and 72 hpi

APPLEOF000019355 1E-33 72 hpi

APPLEOF000015156 EG974779 MDC021689.444 contains Pfam profile PFO0407: Pathogenesis-related protein Bet v 1E-11  up-reg. 48

| family and 72 hpi

APPLEOF000018467/

APPLEOF000019900/

APPLEOF000060942/ EG974812 MDC007381.261 cytosolic (GAPC)/NAD-dependent glyceraldehyde-3-phosphate 1E-20  up-reg. 48
and 72 hpi

APPLEOFR00073702/ dehydrogenase

APPLEOFR00045573/

APPLEOF000015746 EG974761 MDCO017137.174 ribulose bisphosphate carboxylase small chain 3B/RuBisCO small 8E-20  up-reg. 48

subunit 3B (RBCS-3B) (ATS3B and 72 hpi

APPLEOOR00062179 EH034496/ MDC006746.407 conserved hypothetical protein [Corynebacterium efficiens YS- 4E-07  early up-
reg.,, down-,

EG974019 314] mitochondrial 26S ribosomal RNA protein reg. 2 hpi

APPLEOOR00062069/

APPLEOOR00062142/ early up-
reg., up-reg.

APPLEOFR00063223/ EH009493/ MDC021568.167 3'utr of MDP0000053760 Unknown A. thaliana. protein 3E-12 1 hpi,
down-reg. 2

APPLEOFR00072001/ EG974018 hpi,

APPLEOFR00074986

APPLEOF000019494/  EH034531/ MDC008933.302 jasmonate-zim-domain protein 1 up-reg. 1
hpi, down-

APPLEOFR00070531 EH009567 reg. 2 hpi

APPLEOF000015761/  EH034470/ 1E-20

APPLEOF000016441/  EH034448/ MDC012615.331 chlorophyll A-B binding protein 2, chloroplast/LHCII type | 3E-70  up-reg. 1
hpi, down-

APPLEOF000017178/  EH009539/ CAB-2/CAB-140 (CAB2B) 1E-20  reg. 2 hpi,

APPLEOF000016322 EH009499 1E-70

EH034678/

EH034677/

EH034635/ up-reg. 1
hpi, down-

APPLEOOR00015736/  EH034631/ MDC017026.232 ribulose bisphosphate carboxylase small chain 3B/RuBisCO 4E-26  reg. 1 hpi,
down-reg.

APPLEOF000025537 EH034620/ small subunit 3B (RBCS-3B) (ATS3B) 12 hpi,
down-reg.
24

EH034600/ hpi, down-
reg. 48
EH034581/ hpi,
EH034578/
EH009517/
EH009492
APPLEOOR00061494 EH034644 MDC008988418 ribosomal protein L2 family protein similar to ribosomal protein L2 4E-07  down-
[Gossypium arboreum] Gl:17644114; contains Pfam profile regulated 1
PF03947: Ribosomal Proteins L2, C-terminal domain hpi
APPLEOOR00016015 EH034651 MDCO013883.400 glycosyl hydrolase family 1 protein contains Pfam PF00232: 1E-22  down-
domain; TIGRFAM TIGR01233: 6-phospho-beta-galactosidase; regulated 1

similar to amygdalin hydrolase isoform AH | precursor hpi
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Table 3 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection
by Norelli et al., [11] (Continued)

APPLEOF000019334 EH034681 MDC023674.27  expressed protein 4E-25  down-
regulated 1
hpi

APPLEOF000015900 EH034690 MDC013694.297 68414.m02538 plastocyanin similar to plastocyanin Gl:1865683 9E-11  down-

from [A. thaliana] regulated 1
hpi
EHO034668/

APPLEOFR00069028 EH034488/ MDCO019115.109  piggyBac transposable element derived 5 [Homo sapiens] 1E+00 down-reg. 1

hpi,
EH034454 down-reg. 2
hpi

APPLEOF000059582 EH034691/ MDC011711.503 elongation factor 1-alpha/EF-1-alpha 1E-81  down-reg. 1
hpi,

EH034556 down-reg.
24 hpi

APPLEOF000021983 EH034459/ MDC004849.508  sodium/calcium exchanger family protein/calcium-binding EF 2E-18  down-
regulated 2
hpi

EH034663 hand family protein contains Pfam profiles: PF01699

APPLEOF000017271 EH034459/ MDC004849.509 oxygen-evolving enhancer protein, chloroplast, putative/33 kDa 3E-48  down-
regulated 2
hpi

EH034663 subunit of oxygen evolving system of photosystem I,

APPLEOF000022030 EH034485 MDCO015890.82  ADP-ribosylation factor, putative similar to DcARF1 3E-26 down-
regulated 2
hpi

APPLEOF000018523 EH034540 MDC015915.252  heat shock protein 70, putative/HSP70, putative strong similarity to 8E-49  down-

heat shock protein GI:425194 [Spinacia oleracea] regulated 2
hpi

APPLEOF000020112 EH034525 MDC000302.731 ribulose bisphosphate carboxylase small chain 3B/RuBisCO small 7806 down-

subunit 3B (RBCS-3B) (ATS3B) regulated 2
hpi

APPLEOF000050108/

APPLEOF000061371/  EH034439 MDC021556.182  polyubiquitin (UBQ4) identical to Gl:17677 1E-112 down-
regulated 2
hpi

APPLEOF000022561

APPLEOF000060823 EH034517 MDC012000.76  heat shock cognate 70 kDa protein 1 (HSC70-1) (HSP70-1) down-
regulated 2
hpi

APPLEOF000017293 EH034563/ MDC021812.77  peroxidase 42 (PER42) (P42) (PRXR1 2E-57  down-reg. 2
hpi,

EH034487 down-reg.
24 hpi

APPLEOF000017691 EH034538 MDC021024.27  phosphatidylinositol-4-phosphate 5-kinase family protein 4E-51  down-reg.
24 hpi

APPLEOFR00045757 EH034536 MDC016554.129 possible 5’ utr for Thiamin diphosphate-binding fold (THDP- down-reg.

binding) superfamily protein 24 hpi

APPLEOOR00002434/  EH034628 MDC008650.425 germin-like protein (GER3) 1E-62  down-reg.
48 hpi

APPLEOF000049504 9E-08

APPLEOF000018527 EH034604 MDC005688.181 oxygen-evolving enhancer protein, chloroplast, putative/33 kDa down-reg.

subunit of oxygen evolving system of photosystem || 48 hpi

APPLEOOR00058028 EH034627 MDC010241.225 putative/L-iditol 2-dehydrogenase, putative similar to NAD- OE-26  down-reg.

dependent sorbitol dehydrogenase from Malus x domestica 48 hpi
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Table 3 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection
by Norelli et al., [11] (Continued)

APPLEOFR00038628 EH009528 MDC000300.335 No Hits Found up-
regulated 1
hpi

APPLEOF000015847/  EH034662 MDC022487.75  chlorophyll A-B binding protein/LHCII type | (LHB1B1) 5E-31

APPLEOF000016638 4E-40

APPLEOFR00073381 EH034693 MDC000997.260 No Hits Found

APPLEOF000024130 EH034466 MDC004582.94  protochlorophyllide reductase A, chloroplast/PCR A/NADPH- 5E-9

protochlorophyllide oxidoreductase A

APPLEOF000059277 EG974791 MDC004462.498 60S ribosomal protein L19 (RPL19C) similar to L19 from several 4E-41

species

APPLEOFR00073380 EH034693 MDC000997.260 No Hits Found

APPLEOFR00039729 EH009538 MDC005169.268 No Hits Found

APPLEOFR00036633 EH009530 MDC001354.357 hypothetical protein [Burkholderia fungorum] 02

Up in sensitive

APPLEOF000061746 EG974808/ MDC022200.129 catechol oxidase activity molecular function Catalysis of the up-reg. 48

reaction: 2 catechol + O2 metal ion binding molecular function and 72 hpi
EG974767 Interacting selectively with any metal ion. predicted with glimmer

APPLEOF000001556 EH034619 MDC011650.665 expressed protein protein induced upon wounding-A. thaliana 4E-79  down-
regulated 48
hpi

§ SSH response corresponds to the change in expression after infection.

Bold text corresponds to genes that are phosphorylated upon infection.

Italicized text corresponds to genes that were also identified as differentially expressed upon infection by Baldo et al., [12].
Underlined text corresponds to genes that were also identified as differentially expressed upon infection by Sarowar et al., [13].

Table 4 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection
by Baldo et al., [12]

SEQ_ID GenBank_Accn  Malus Contig Description evalue cDNA-AFLP
BLAST Hit response§
APPLEOF000017734/ EX982051 MDC002049.218  leucine-rich repeat transmembrane protein kinase, putative”  4E-11 up-regulated 2
APPLEOF000060312 9E-06 hpi in M.26
APPLEOOR00062069/

APPLEOOR00062 142/

APPLEOFR00063223/ EX982063 MDC021568.167 235aa long hypothetical protein [Pyrococcus horikoshii] 3E-12 up-regulated 2
APPLEOFR00072001/ hypothetical protein [Deinococcus radiodurans] 5E-11 hpi in M.26
APPLEOFR00074986

APPLEOOR00062069/

APPLEOOR00062142/

APPLEOFR00063223/ EX982064 MDC021568.167 235aa long hypothetical protein [Pyrococcus horikoshii] 3E-12  down-regulated
APPLEOFR00072001/ hypothetical protein [Deinococcus radiodurans] S5E-11 2 hpi in M.26
APPLEOFR00074986

APPLEOOR00062069/

APPLEOOR0O0062 142/

APPLEOFR00063223/ EX982070 MDC021568.167 235aa long hypothetical protein [Pyrococcus horikoshii] 3E-12 up-regulated 2

APPLEOFR00063223/ hypothetical protein [Deinococcus radiodurans] SE-11 & 48 hpi

APPLEOFR00072001/ in M.26

APPLEOFR00074986

APPLEOF000062056 EX982066 MDC001431.265 hypothetical protein [Oenothera elata subsp. hookeri] OE-18 up-regulated 2
hpi in G-41

APPLEOFR00045573/ EY437146 MDC005648.389 up-regulated 48

APPLEOFR00073702 hpi in G-41
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Table 4 Transcripts in common with those found to have differential expression in apple upon E. amylovora infection

by Baldo et al., [12] (Continued)

APPLEOF000020631/ EX982080 MDC005535.336  invertase/pectin methylesterase inhibitor family protein similar ~ 2E-19  up-regulated 48
to pectinesterase from Arabidosis thaliana hpi in G-41
APPLEOF000016328/ plasma membrane intrinsic protein, putative very strong 7E-57
APPLEOFR00076854/ EX982085 MDC003306.225 similarity to plasma membrane intrinsic protein (SIMIP) up-regulated 48
APPLEOFR00076855 [Arabidopsis thaliana] GI:2306917" hpi in G-41
APPLEOOR00015876/ 3E-19
APPLEOF000019554/ 4E-11
APPLEOF000021355/ EX982096 MDC012593.380 chlorophyll A-B binding protein (LHCB2:4) nearly 7E-16  up-regulated 48
APPLEOF000024114/ identical to Lhcb2 protein [Arabidopsis thaliana] 5E-06 hpi in G-41
APPLEOFR00036952/ Gl:4741950
APPLEOFR00037537
APPLEOF000062056 EX982108 MDC001431.265  hypothetical protein [Oenothera elata subsp. hookeri] 3" UTR ~ 9E-18  down-regulated

of MDP499035

48 hpi in G-41

§ cDNA-AFLP response corresponds to the change in expression after infection

Bold text corresponds to genes that are phosphorylated upon infection

Italicized text corresponds to genes that were also identified as differentially expressed upon infection by Norelli et al,, [11]
Underlined text corresponds to genes that were also identified as differentially expressed upon infection by Sarowar et al., [13].

Table 5 Candidate transcripts whose expression levels correlated with fire blight resistance in a population of trees
segregating for fire blight susceptibility (regression analysis).

E. amylovora strain

Seq_ID E2002a Ea273 4001a hit Description evalue
APPLEOF000021750 X X At3g54020 inositol phosphorylceramide synthase 2 - 3E-19
APPLEOF000017942 X X At5g17420 cellulose synthase, catalytic subunit (IRX3) identical to gi:5230423 5E-08
APPLEOOR00017800 X X At5g02570 histone H2B, putative similar to histone H2B-2 Lycopersicon esculentum  2E-24
APPLEOF000016970 X At3g01090 Snfl-related protein kinase (KIN10) (SKIN10) 2E-14
APPLEOF000020273* X At5g56000 heat shock protein 81-4 (HSP81-4)
APPLEOFR00077763 X No Hits Found 1E-34
APPLEOF000025563 X At3g47520 malate dehydrogenase [NAD], chloroplast (MDH) identical to chloroplast  9E-30
NAD-malate dehydrogenase [A. thaliana] GI:3256066
APPLEOFR00039135 X No Hits Found
APPLEOF000018055 X At3g22550 similar to senescence-associated protein SAG102 4E-41
APPLEOFR00077391 X No Hits Found 1E+00
APPLEOF000059277 X At4g02230 60S ribosomal protein L19
APPLEOFR00069907 X No Hits Found 2E-18
APPLEOF000018558 X At3g47470 chlorophyll A-B binding protein 4, LHCI type Ill CAB-4 (CAB4) 1E-22
APPLEOFR00078469 X No Hits Found
APPLEOFR00072723 X gb|AAD45359| cycloidea-like protein [Linaria vulgaris] 2E-06
AF161252_1
APPLEOFR00048629 X emb unnamed protein product [Candida glabrata CBS138] ref|XP_4463991| 2.E-02
CAG59326|| unnamed protein product [Candida glabrata]
APPLEOFR00038610 No Hits Found
APPLEOOR00062246 dbj|BAB1270| P0671B1122 [Oryza sativa (japonica cultivar-group)] 2.E-06
APPLEOF000021761 At1g72370 40S ribosomal protein SA (RPSaA) identical to laminin receptor-like protein  9.E-20
GB:U01955 [A thaliana]
APPLEOFR00036516 X gb|EAA23003| Ribosomal protein L31e, putative [Plasmodium yoelii yoelii] 2E-06
APPLEOFR00076821 X No Hits Found
APPLEOFR00076762 X No Hits Found
APPLEOF000016441* X At1929930 chlorophyll A-B binding protein 2, LHCII type | CAB-2/CAB-140 3E-70
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Table 5 Candidate transcripts whose expression levels correlated with fire blight resistance in a population of trees
segregating for fire blight susceptibility (regression analysis). (Continued)

APPLEOF000019498 X At2g42210 mitochondrial import inner membrane translocase subunit Tim17/Tim22/  8E-07
Tim23 family protein

APPLEOF000018523* X At3g12580 heat shock protein 70, putative/HSP70, putative 8E-49

APPLEOOR00018643 X At3g27690 chlorophyll A-B binding protein (LHCB2:4) 4E-22

APPLEOF000020073 X At2g34690 expressed protein 3E-14

APPLEOF000021409 X At3g05890 hydrophobic protein (RCI2B)/low temperature and salt responsive protein  5E-10

(LTI6B)

APPLEOFR0O0037149 No Hits Found

APPLEOFR00080491 X gb]AAK07949 unknown [Bovine herpesvirus 4] 1E+00
AF318573_29

APPLEOF000025192 X At3g56900 aladin-related/adracalin-related weak similarity to SPJQONRG9Y 3E-16

APPLEOF000060354 X At5g02120 68418m00133 thylakoid membrane one helix protein (OHP) 1E4+00

APPLEOF000001282 X At4g38920 vacuolar ATP synthase 16 kDa proteolipid subunit 3/V-ATPase 1.E-34

APPLEOF000058071 X At1g75780 tubulin beta-1 chain (TUB1) nearly identical to SP|P12411 2E-02

APPLEOF000020583 X At2g34250 protein transport protein sec61, putative similar to PfSec61 [Plasmodium — 6E-34

falciparum] GI:3057044

APPLEOF000019736 X At5g39740 60S ribosomal protein L5 (RPL5B) ribosomal protein L5, rice 2E-02

APPLEOFR00045816 X No Hits Found

APPLEOFR00036516 X gb|EAA23003| Ribosomal protein L31e, putative [Plasmodium yoelii yoelii] 1E-16

APPLEOF000018069 X At5g09810 actin 7 (ACT7)/actin 2 identical to SP|P53492 Actin 7 (Actin-2) {Arabidopsis 4E-72

thaliana}
APPLEOF000026657" At1g04540 C2 domain-containing protein low similarity to cold-requlated gene SRC2 3E-11
[Glycine max]

APPLEOFR00032503" X ref|XP_032996| similar to KIAA0819 protein [Homo sapiens] 3E-01

APPLEOF000061746" X sp|P43309] Polyphenol oxidase, chloroplast precursor (PPO) (Catechol oxidase) OE+00
PPO_MALDO

X = an un-adjusted p value of less than 0.05 for the analysis
* Transcripts also found in Table 3
# Transcripts less abundant in plants with low susceptibility to fire blight

Underlined text corresponds to genes that were also identified as differentially expressed upon infection by Sarowar et al., [13].

transcript levels of APPLEOF000019334, APPLEOFO
00018558, APPLE0OF000020583 and APPLEOF0000
23953 were noted in tissues with higher levels of dis-
ease for at least two of the strains (Additional File 2,
Table S5).

The models relating the expression of genes with
higher levels of expression in more susceptible trees to
levels of fire blight were much weaker, only accounting
for between 29 and 32% of disease severity (0.031 < P <
0.009; Additional File 2, Table S6). In all, lower expres-
sion levels of eight of the genes were related to levels of
fire blight for at least one of the E. amylovora strains,
with APPLEOFR00081295, APPLEOFR00067567 and
APPLEOF000016771 being related with higher levels of
fire blight caused by Ea 273 (Additional File 2, Table S6).
Only the lower transcript levels of APPLEOF000026657
were related to lower levels of fire blight for all three E.
amylovora strains, while lower transcript levels of
APPLEOFR00066754 and APPLEOFR00063520 were asso-
ciated with lower levels of disease caused by Ea273 and
Ea4001a, respectively (Additional File 2, Table S6).

Discussion
In this study, we found that rootstock genotype influenced
‘Gala’ scion fire blight susceptibility in grafted apple trees.
This indicates that at least some level of resistance pos-
sessed by the rootstock can be conferred upon the scion
variety that is grafted to it. These phenotypic differences
in scion fire blight susceptibility were associated with
reproducible patterns of gene expression in uninfected
trees. Most of the transcripts identified in this study had
higher levels of expression in the least susceptible trees.
The expression levels of some of these genes may play a
role in determining the susceptibility status of apple trees
to E. amylovora prior to infection. Some of the identified
genes may also play a role in fire blight disease resistance
after infection has begun. It is also possible that some of
the genes identified in the study affect the suitability of the
host environment for the bacterium, rather than being
involved in defense directly.

Tree breeding is a slow and costly process, particularly
due to long juvenile periods. The screening of seedlings
for the expression of a suite of genes correlated with a
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given trait could provide a valuable short-cut to reduce
breeding time. The suite of genes identified in the pre-
sent study might be useful as predictors of the fire blight
resistance status of apple trees and seedlings. Seedlings
could be selected based on gene expression patterns asso-
ciated with favorable traits. This approach is not novel;
the use of expression-based markers has proven to be
effective in the screening of human breast cancers in
order to predict the aggressiveness of the tumor [28].
Some of the genes identified in this study might also be
suitable targets for direct manipulation for improvement
of apple tree fire blight resistance and for the develop-
ment of sequence-based molecular breeding markers.

Pathways and processes

Three transcripts on the array corresponding to genes in
the phenylpropanoid pathway were on our preliminary list
of rootstock-regulated candidates, including two for chal-
cone synthase (APPLEOF000017774, APPLEOF0000
178640) and a chalcone isomerase (APPLEOF000056938)
(Additional File 1, Table S2). However, these genes do not
appear on any of our subsequent lists. Nevertheless, the
expression pattern of the genes in the phenylpropanoid
pathway as a whole (Figure 2) is consistent with the pro-
posed role of this pathway in the response to E. amylovora
infection [14,15]. This suggests that the expression of the
phenylpropanoid pathway as a whole might be a good pre-
dictor of fire blight resistance.

Sorbitol dehydrogenase (SDH) (APPLEOF000058028,
APPLEOF000007408, APPLEOF000017030), was found to
be expressed at higher levels in the trees that were least
susceptible to fire blight (Table 3 and Additional File 1,
Table S4). Sorbitol is a major form of translocated sugar
in apples [29]. SDH converts sorbitol to fructose in sink
tissues [30]. For E. amylovora, sorbitol is an important
factor in determining host specificity [31]. It may be that
higher SDH levels reduce the availability of sorbitol to
E. amylovora. However it has also been shown that high
sorbitol levels can inhibit the development of disease
symptoms [32]. Our analysis of the recently released
apple genome suggests that there may be up to 28 genes
encoding SDH enzymes, as opposed to a single copy of
SDH in Arabidopsis (AT5G51970). This complexity
points to the importance of SDH to apple physiology.

Not surprisingly, there was a GO annotation enrich-
ment among the genes having higher expression in the
least susceptible trees (Table 1), with genes predicted to
be involved in responses to stress and biotic and abiotic
stimuli being disproportionately represented relative to
the known apple transcriptome as a whole. Upon
further analysis of these transcripts (Table 2), more
transcripts than expected, relative to the proportion
among all of the transcripts represented on the array,
were identified in the secretory pathway, including
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several heat shock proteins (APPLEOF000018523,
APPLEOF000020273, APPLEOF000060823), suggesting
that protein processing in the endoplasmic reticulum
may be more active in the trees least susceptible to fire
blight. Heat shock proteins are important for protein
processing in the endoplasmic reticulum and have also
been shown to play critical roles in signal transduction
in defense responses in tobacco [33]. Additionally,
higher levels of the transcripts encoding a predicted cal-
nexin (APPLEOF000027501) and a Sec61 homolog
(APPLEOF000020583) were associated with reduced fire
blight susceptibility by stepwise multiple regression ana-
lysis. Both of these proteins have functional annotations
indicating involvement in protein processing in the
endoplasmic reticulum. Consistent with these findings,
it has been shown that the entire secretory pathway is
up-regulated during systemic acquired resistance (SAR)
[34] as well as during the N-mediated viral defense
response in tobacco [35].

Similarly, from the same data set, a greater than
expected number of genes involved in both the endocyto-
sis and peroxisomal pathways were identified, suggesting
that these processes may be more active in the least sus-
ceptible trees. Intriguingly, endocytosis processes are
involved in plant recognition of pathogen-associated mole-
cular patterns (PAMPs) [36]. For example, the bacterial
flagellin protein FLG22 is recognized in plants by the
FLS2 receptor kinase [37], which leads to endocytosis of
the FLS2 receptor and its subsequent degradation by the
proteosome [38]. Higher levels of a transcript encoding a
predicted fatty acyl CoA ligase (APPLEOF000019968) were
associated with reduced fire blight susceptibility by the
stepwise multiple regression analysis. The protein encoded
by this gene has a functional annotation indicating invol-
vement in endocytosis and fatty acid metabolism. We also
identified a transcript encoding a putative phosphatidyli-
nositol-4-phosphate 5-kinase (PIP5K) (APPLEOF000
017691) that had higher expression levels in the least
susceptible trees. The product of PIP5K, phosphoinositol
4,5-bisphosphate (PI(4,5)P2), is a key regulator of clathrin-
mediated endocytosis [39].

Additional candidate genes of particular interest

A major objective of this study was to identify candidate
genes in apple that are potentially involved in determining
fire blight resistance prior to an infection event. Interest-
ingly, quite a few of the candidate genes identified in our
study had previous links to disease resistance processes,
including differential expression upon E. amylovora infec-
tion in apple [11-13]. This includes several heat shock pro-
teins, a leucine-rich repeat transmembrane kinase, and
sorbitol dehydrogenase. Strikingly, over half of the tran-
scripts that we identified as being expressed at higher
levels in less susceptible trees are down-regulated during
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E. amylovora infection [11-13]. It is possible that the
expression of these genes is down-regulated by the patho-
gen to promote disease. Additionally, eight of the genes in
both Tables 3 have also been shown to be phosphorylated
upon infection [40], which offers another level of regula-
tion in addition to changes in transcript abundance.

Only one gene was found in common between our data
set and those of Norelli et al. [11], Baldo et al. [12], and
Sarowar et al [13]. This gene had higher steady-state
expression levels in resistant trees and was up-regulated in
all three pathogen induction studies. The Arabidopsis
homolog of APPLEOF000017734/APPLEOF000060312
(AT2G31880 or SOBIRI) (Tables 3 and 4, Additional File
1, Table S4) encodes a putative leucine rich repeat trans-
membrane protein that is expressed in response to Pseudo-
monas syringae infection in Arabidopsis. Overexpression of
SOBIRI in Arabidopsis caused a constitutive upregulation
of PR-1 and PR-2, and the plants showed enhanced resis-
tance to P. syringae DC3000, suggesting that elevated levels
of SOBIRI lead to a constitutive activation of disease-resis-
tance responses [41]. SOBIRI overexpression also resulted
in the activation of cell death. It has been proposed that
SOBIRI may play a role in the regulation of the golgi appa-
ratus, particularly during periods of cellular stress [42].

We also identified a transcript encoding a putative cell
death regulator, inositolphosphorylceramide synthase
(APPLEOF000021750, Additional File 1, Table S4), that
had higher expression levels in the least susceptible
trees. Inositol can be modified by inositolphosphorylcer-
amide synthase to produce inositolphosphorylceramide.
Inositolphosphorylceramide has been shown to be
involved in the regulation of programmed cell death
during the plant defense response [43].

Jasmonic acid has been shown to play an important role
in the response to pathogens, in a pathway parallel to that
of salicylic acid [44,45]. In particular, ethylene and jasmo-
nate have been shown to play an important role in defense
against necrotrophic pathogens like E. amylovora [46]. We
also identified homologs of the JAZI gene in Arabidopsis
(APPLEOF000019494/APPLEOF000070531, Table 3, Addi-
tional File 1, Table S4) that had greater expression in the
least sensitive trees. The JAZ1 protein of Arabidopsis is
part of the COI1/JAZ jasmonate receptor complex [47].

Conclusions

The influence of rootstocks on the fire blight susceptibil-
ity and gene expression of the scion has allowed us to
identify genes potentially associated with this phenotypic
trait. The identification of these genes will contribute to
the understanding of host-pathogen interactions as well
as provide plant breeders with valuable new markers for
improved disease resistance breeding. This study illus-
trates the utility of our rootstock-regulated gene
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expression data sets for candidate trait-associated gene
data mining.

Additional material

Additional file 1: Tables S1-S4. Table S1. Expression patterns of
putative phenylpropanoid genes from Malus x domestica. Table S2.
Candidate fire blight resistance transcripts with higher expression in
‘Gala’ scion/rootstock combinations with lower susceptibility to E.
amylovora. Table S3. Candidate fire blight resistance transcripts with
higher expression in ‘Gala’ scion/rootstock combinations with higher
susceptibility to E. amylovora. Table S4. Transcripts in common with
those known to have differential expression in apple flowers upon E.
amylovora infection [13] (Sarowar et al. 2011).

Additional file 2: Tables S5-S6. Table S5. Stepwise multiple regression
analysis parameter estimates and associated statistics for transcripts with
higher expression in less susceptible trees. Table S6. Stepwise multiple
regression analysis parameter estimates and associated statistics for
transcripts with higher expression in more susceptible trees.
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