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Abstract

Background: High-density linkage maps facilitate the mapping of target genes and the construction of partial
linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging
in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-
density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile
gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious
social pollinosis problems.

Results: We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-
derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the
GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map
length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups
matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group
and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf)
that is closely linked to the ms1 gene, being separated from it by only 0.5 cM.

Conclusions: Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a
partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker
was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early
selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis
problems without harming productivity.

Background
High-density linkage maps facilitate not only the under-
standing of genome structure and comparative genomic
studies, but also quantitative trait loci (QTL) mapping
and the construction of partial linkage maps around tar-
get loci to develop markers for marker-assisted selection
(MAS). MAS is an effective method for accelerating the
screening of target genes using tightly-linked molecular
markers. Effective MAS for QTLs or specific genes has

been reported in crops such as barley [1], rice [2] and
tomato [3]. However, it is difficult to employ MAS in
conifers, primarily because their genomes are very big
and complex and are largely uncharacterized. Indeed,
very few DNA markers linked to major genes have been
reported in conifers; the only ones of note are some
dominant markers linked to a major dominant resis-
tance gene in Pinus lambertiana [4,5], P. monticola [6],
P. taeda [7], and P. thunbergii [8,9].
Sugi (Cryptomeria japonica D. Don) is an allogamous,

diploid, wind-pollinated conifer species with a haploid
chromosome number (n) of 11 (2n = 22). Using flow
cytometry, the DNA content of its haploid cells was
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estimated to be 11.045 pg/C [10], which corresponds to
a haploid genome size of 10.8 Gb as calculated using
the following expression: genome size (bp) = 0.978 ×
109 × DNA content (pg) [11]. C. japonica is frequently
used for commercial afforestation in Japan, and about
45% of all the man-made forests of Japan are composed
of this species. However, since the 1970s, the incidence
of C. japonica pollinosis in Japan has risen in line with
the increasing number of man-made C. japonica forests
[12]. Today, C. japonica pollinosis is a serious social
problem in Japan, affecting almost 20% of the popula-
tion. In 1992, a genetically male-sterile C. japonica tree
whose sterility is determined by a major recessive gene
(ms1) was found in Toyama prefecture [13,14]; this gene
is expected play an important role in breeding for
reduced pollen dispersal. Since the discovery of this
male-sterile individual, considerable effort has been
expended on characterizing male sterility in C. japonica,
identifying male-sterile and plus-trees, creating artificial
crosses between male-sterile and plus-trees, and propa-
gating male-sterile trees [15]. Male-sterile trees are cur-
rently identified by direct inspection of the male strobili
using a magnifying glass or a microscope. Conversely,
plus-trees that are heterozygous for ms1 have been iden-
tified by examining segregation data for the progeny
arising from artificial crosses; such trees provide impor-
tant breeding material for seed production while avoid-
ing the problems associated with inbreeding depression.
However, these methods are very time-, labour-, and
space-intensive; as such, it would be extremely useful to
develop a MAS-based method for selecting trees carry-
ing the male-fertile gene.
A composite linkage map for C. japonica was con-

structed using data for two pedigrees, YI and KO [16].
A total of 438 markers were assigned to 11 large linkage
groups and some small or non-integrated linkage
groups; the total observed map length was 1372.2 cM,
and the average marker interval was 3.0 cM. In general,
the most efficient way to study the linkage of a given
target gene in a mapping population for which no link-
age map is available is to start with a high-density link-
age map.
In a recent study on spruces, it was found that the

Golden Gate single nucleotide polymorphism (SNP)
assay system developed by Illumina greatly facilitates the
genetic mapping of species whose genomes have not
been extensively studied [17]. To design an SNP geno-
typing array, it is necessary to identify a large number of
SNPs. In the case of C. japonica, a database of 55,543
expressed sequence tags (ESTs) has been constructed
from cDNA libraries obtained from seedlings, inner
bark, female strobili, male strobili, pollen, leaves, vegeta-
tive buds and heartwood; this database is freely-available
on the internet (ForestGEN; http://forestgen.ffpri.affrc.

go.jp/en/info_cj.html) [18-23]. A number of cDNA-
based sequence-tagged site (STS) markers have been
also identified using these ESTs [24-26]. A library of C.
japonica SNPs suitable for use in a Golden Gate SNP
array has been identified [27], and complements the
existing C. japonica EST databases, which will also be
useful in identifying candidate genes associated with
male gametophyte development and male sterility on
the basis of sequence similarity and microarray expres-
sion analysis.
This paper reports a study in which a high-density

linkage map for C. japonica was constructed and the
mapping population was subjected to the GoldenGate
genotyping assay. Using information from the high-den-
sity linkage map, we mapped the ms1 gene and con-
structed a partial linkage map around the ms1 locus.
This allowed us to identify SNP markers that are tightly
linked to the ms1 gene for use in MAS. The paper also
includes a discussion of the importance of high-density
maps and MAS markers in tree breeding.

Methods
Plant materials and DNA extraction
A high density linkage map for the YI pedigree of C.
japonica was constructed using 150 half-sib progenies
from crosses between two F1 plants (YI96 (’Yabukuguri
× Iwao’) × YI38 (’Yabukuguri × Kuji34’)) (Figure 1) [16].
In addition, to avoid the effects of inbreeding depres-
sion, a partial linkage map around the ms1 locus (ms1 is
a recessive male-sterile gene) was constructed for 209
progenies of the TO-S pedigree, which was derived from
a cross between a TO2 F1 plant and the elite tree Suzu-
2 (Figure 1). The TO2 F1 plant was a cross between
‘Toyama1 [male-sterile, ms1/ms1]’ and ‘Ohara-2 [male-
fertile, Ms1/Ms1]’ and is thus a male-fertile tree that is
heterozygous for the ms1 gene (Ms1/ms1). Suzu-2 is
also male-fertile and heterozygous for the ms1 gene
[male-fertile, Ms1/ms1] [28]. Of the 209 TO-S progeny,
142 were male-fertile and 67 were male-sterile. The
actual segregation ratio thus deviated significantly from
the expected ratio of 3:1 (X2 = 5.55, df = 1, P <0.05);
the reason for this is as yet unknown.
Needle tissue was collected from the parents and pro-

geny of both the YI and TO-S pedigrees. Genomic DNA
was extracted from individual needles using a modifica-
tion of the CTAB method [29]. For use in the Illumina
GoldenGate assay, the extracted DNA was purified
using a genomic DNA purification kit (Promega) and its
concentration was standardized (100-200 ng/uL).

Genetic markers
For the YI pedigree, six kinds of genetic markers were
used to construct the linkage map: cleaved amplified
polymorphic sequences (CAPS) markers, restriction
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fragment length polymorphism (RFLP) markers, micro-
satellite (simple sequence repeat; SSR) markers, EST-
derived microsatellite (EST-SSR) markers, amplicon
length polymorphism (ALP) markers and single nucleo-
tide polymorphisms (SNP) merkers. The segregation
data for 121 CAPSs, 117 RFLPs, 34 SSRs, 1 ALP and 5
SNP markers were obtained in the previous study [16].
In this study, we added 16 EST-SSR markers and 968
SNP markers including 761 gSNPs, 159 hrmSNPs, 33
ssSNPs and 15 meaSNPs to the linkage map for the YI
pedigree (refer to latter sections for these names of
SNPs). Detailed information on these markers can be
found at Sugi Genome Database website (http://www.
ffpri.affrc.go.jp/labs/cjgenome/).

SNP genotyping for randomly-developed markers
A large set of SNP markers was genotyped using the
GoldenGate assay; collectively, this set is referred to as
“gSNPs”. For the YI pedigree, multiplexed genotyping of
the gSNP markers was carried out using the 1536-plex
GoldenGate array, in accordance with the manufac-
turer’s protocol. A detailed description of the procedures
employed and results obtained in the course of discover-
ing these SNPs can be found elsewhere [27]. A total of
0.5-1.0 μg of genomic DNA per sample (at a concentra-
tion of 100-200 ng/μl) was used in the GoldenGate
assay. To screen the gSNP markers linked to the ms1
gene, 17 male-sterile progenies and the parents of TO-S
pedigree were also genotyped using this assay, since the
gSNP markers found to be monomorphic in the YI ped-
igree were excluded from linkage mapping in the TO-S
pedigree. The GoldenGate assay employs highly multi-
plexed allele-specific extension methods and universal
PCR amplification reactions. The PCR products, which
were fluorescently labeled by the incorporation of 5’-
labeled primers P1 (Cy3) and P2 (Cy5), were hybridized
to capture probes on the beads in the array. The ratio
of the fluorescent signals from 2 allele-specific ligation
products was used to determine the sample’s genotype.
Signal intensity data processing, clustering and genotype
calling were performed using the genotyping module in
the BeadStudio software (Illumina). Genotyping was
conducted exclusively on the basis of SNPs with an Illu-
mina GenTrain score in excess of 0.25; the GenTrain
score provides a measure of the reliability of SNP

detection based on the distribution of genotypic classes.
For each analyzed SNP, individual genotypes with an
Illumina GenCall score below 0.25 were excluded; the
GenCall score provides a measure of the reliability of an
individual SNP call relative to the distribution of genoty-
pic classes.
High Resolution Melting (HRM) analysis was also

used to obtain SNP genotyping data for linkage map
construction; the SNPs identified in this way are hence-
forth referred to as “hrmSNPs”. The development proce-
dure and analyzed condition was reported elsewhere
[30]. The linkage map also incorporated EST-SSR mar-
kers; details on the use of this data have been reported
previously [31].

Screening and genotyping of candidate genes
Sequence information for genes related to male gameto-
phyte development and sterility were collected by
reviewing the literature on other plant species such as
Arabidopsis [32-42], Brassica [43], Oryza [44-46], Nicoti-
ana [47] and Petunia [48]. The sequences from these
publications were then compared to the available C.
japonica EST sequences using TBLASTN (Additional
file 1) [49]. In addition, genes related to male-sterility
were screened by comprehensive expression analysis
using a microarray containing around 366,000 probes
derived from 22,882 tentative consensus sequences
obtained from ESTs. Genes that exhibited at least a
four-fold difference in expression between male-sterile
and male-fertile strobili during the end of September
and mid-October were selected for further analysis
(Futamura et. al, manuscript in preparation). These time
points were chosen because they represent the periods
immediately before and immediately after male gameto-
genesis was observed in male-sterile strobili.
To identify SNP markers, PCR primers for the

selected candidate genes were designed using the Pri-
mer3 software. PCR amplifications were carried out
using a Model 9700 GeneAmp PCR system (Applied
Biosystems) in reaction mixtures with a total volume of
15 μL containing 20 mmol/L Tris-HCl (pH 8.0), 50
mmol/L KCl, 2 mmol/L MgCl2, 0.2 mmol/L of each
deoxynucleoside triphosphate, 0.2 μmol/L of each pri-
mer, 5 ng template DNA, and 1.0 units of Taq polymer-
ase (Promega). The following thermal profile was used:

Figure 1 Two three-generation pedigrees used for linkage mapping in this study.
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3 min denaturation at 94°C, followed by 30 cycles of 45
s denaturation at 94°C, 30 s annealing at 55-64°C, and
30 s extension at 72°C, with a final extension step of 72°
C for 10 min. Amplification products were separated by
electrophoresis in 2% (w/v) agarose gels run in 1 × TAE
buffer. The gels were then stained with ethidium bro-
mide and visualized under UV light. Each PCR fragment
was sequenced using the BigDye Terminator kit
(Applied Biosystems) and ABI Prism 3100 DNA sequen-
cer (Applied Biosystems) to identify SNPs in the parents
of the YI pedigree (YI96 and YI38). Primers for both the
forward and the backward direction were used. SNP
markers associated with genes having significant simila-
rities to genes from other species that are known to be
important in male gametophyte development and/or
male-sterility were collectively referred to as ssSNPs,
while SNP markers associated with genes exhibiting dif-
ferential expression between male-fertile and male-infer-
tile individuals were collectively referred to as meaSNPs.
The ssSNP and meaSNP markers were genotyped by
sequencing. For the mapped meaSNP markers, proteins
with high similarities to their original ESTs were identi-
fied from the NCBI RefSeq database using BLASTX
(Additional file 2) [49]

Construction of the linkage map for the YI pedigree
Linkage analyses were conducted for all hrmSNP (Addi-
tional file 3) [30], EST-SSR [31], gSNP [27], ssSNP
(Additional file 1) and meaSNP (Additional file 2) mar-
kers that exhibited polymorphism in the parents of the
YI pedigree. The segregation data for CAPS, RFLP, SSR,
SNP, and ALP markers in the previous study [16] were
used together with the genotype data obtained in this
work to construct a linkage map.
Chi-squared tests were performed for each locus to

assess its deviation from the expected Mendelian segre-
gation ratio. Loci exhibiting extreme segregation distor-
tion (P <0.001) were excluded from further linkage
analysis. All linkage analyses were performed using the
JoinMap v3.0 software with the parameter CP (cross-
pollination) [50]. During the construction of the maps,
markers were assigned to tentative linkage groups using
logarithm of odds ratio (LOD) thresholds of 3.0 to 9.0,
with increments of 1.0; an LOD threshold of 8.0 was
ultimately used when defining groups of markers. Map
distances were calculated using the Kosambi mapping
function [51]. For the other parameters such as recom-
bination frequency threshold and a ripple value, default
settings were used. Images of the linkage groups were
drawn using the Mapchart v2.0 software [52].

Estimation of genome length and map coverage
The observed genome length (Go) for the linkage map
was calculated as the sum of the sizes of the linkage

groups. The expected genome length, Ge, was estimated
using method 4 of Chakravarti et al. (1991) [53], in
which the total length of the linkage groups is multi-
plied by the factor (m + 1)/(m-1), where m is the num-
ber of markers in the linkage groups. The observed map
coverage, Co, is the ratio of the observed and the esti-
mated genome lengths, i.e. Go/Ge. The expected genome
coverage, Ce, was calculated using the equation of
Bishop et al. (1983) [54]:

Ce = 1− [
2R

N + 1
{(1− X

2Ge
)N+1 − (1− X

Ge
)N + 1} + (1− RX

Ge
× (1− X

Ge
)N]

Here, R is the haploid number of chromosomes, N is
the number of positioned loci, X is the maximum
observed map distance between two adjacent assigned
markers in cM at or above a minimum LOD threshold
value of 8.0, and Ge is the estimated genome length.

Analysis of marker distribution
If the markers were randomly distributed and the gen-
ome is divided in N intervals, the number of markers
per interval would follow a Poisson distribution with a
mean of μ. To determine whether the markers were ran-
domly distributed, all linkage groups were divided into
1, 2, 3, 4, 5, 10 and 15 cM intervals. The number of
intervals that contained markers were counted and the
average number of markers per interval (μ) was calcu-
lated. If the average number of random occurrences per
interval is μ, then the probability that x markers will fall
within a given interval is

P(x) =
e−u(µ)x

x!

We compared the actual distribution of markers to
that expected for a Poisson distribution using the chi-
squared test as described by Kang et al. (2010) [55].

Localization of ms1 gene
Microsatellite markers were used to identify the linkage
group on which the target gene is located because of
their high polymorphism and straightforward analysis.
Thus, to identify the linkage group containing the ms1
gene, a total of 19 microsatellite markers on the linkage
map (Additional file 4) that were polymorphic in the
parents of the TO-S pedigree were genotyped for 48 of
the male-sterile progeny of the TO-S pedigree. If mar-
kers were linked to ms1, they should be significantly
deviated from segregation rates expected from parental
genotypes. PCR amplifications were carried out using
the Model 9700 GeneAmp PCR System (Applied Biosys-
tems). A reaction mixture with a total volume of 8 μL
was used, consisting of 1 × Multiplex PCR master mix
(Qiagen), fluorescently-labeled forward primers (0.2
μM), reverse primers (0.2 μM), and 5 ng of genomic
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DNA. The following thermal profile was used: 15 min at
94°C, then 32 cycles of 30 sec at 94°C, 90 sec at 55-62°
C, 60 sec at 72°C, followed by 30 min at 72°C; the
results were analyzed using a 3100 genetic analyzer
(Applied Biosystems). The independence of the segrega-
tion of the SSR markers and the ms1 gene was investi-
gated using chi-square tests to identify markers linked
to the ms1 gene.

The construction of a partial linkage map around the ms1
locus
Linkage analysis using EST-SSR markers indicated that
the ms1 gene was located in the 9th linkage group,
which is hereafter referred to as “LG9.” The markers in
LG9 that exhibited polymorphism in the parents of the
TO-S pedigree were therefore used to construct a partial
linkage map around the ms1 locus. In addition, gSNP
markers that exhibited polymorphism in the parents of
the TO-S pedigree and whose segregation with the ms1
gene deviated significantly from that expected in the
absence of linkage (as judged by the chi-squared test, P
<0.05) in 17 male-sterile progenies were also used in the
construction of the partial linkage map.
The markers of LG-9 in the TO-S pedigree except

two microsatellite markers and four CAPS markers
were genotyped on a BioMark 48.48 Dynamic Array
(Fluidigm) using KASPar assays. Primer pairs suitable
for the KASPar assays were designed on the basis of
the sequences of the relevant markers (gSNP,
meaSNP, ssSNP, hrmSNP and CAPS); see Additional
file 5. A total of 6.5 ng of genomic DNA per sample
(at a concentration of 5 ng/μl) was used for specific
target amplification (STA); the KASPar reactions were
performed using the STA products after dilution by a
factor of 100. The primers were designed and the
assays were performed as specified by the manufac-
turer. The data obtained were analyzed using the Flui-
digm SNP Genotyping Analysis software to obtain
genotype calls.
Linkage analyses for the TO-S pedigree were per-

formed using the same conditions as were used for the
YI pedigree. Loci whose segregation patterns deviated
significantly from Mendelian ratios were not excluded
from the further linkage analysis in the TO-S pedigree
because distortion of loci linked to the ms1 gene was
expected in this case.

Results
Identifying SNP markers associated with candidate genes
related to male gametophyte development and male
sterility
On the basis of the sequence similarity results, 238 pri-
mer pairs were designed for various candidate genes; of
these, 141 generated PCR products that could be

separated and identified after electrophoresis on a 2%
agarose gel. Of these obtained STSs, 36 were poly-
morphic in the parents of the YI pedigree (Additional
file 1).
In the microarray expression analysis, significant dif-

ferences in expression were observed between trees with
male-fertile and male-sterile strobili using probes
derived from 32 different tentative consensus sequences.
Primer pairs were designed on the basis of these
sequences and the 17 meaSNP markers that exhibited
polymorphism in the parents of the YI pedigree (Addi-
tional file 2).

Genotyping markers
A total of 1304 gSNP markers from the 1536 SNP array
(84.9%) were successfully genotyped, of which 795
exhibited clear segregation within the YI pedigree. In
addition to these gSNP markers, 144 CAPSs, 135 RFLPs,
41 microsatellites, 16 EST-SSRs, 173 hrmSNPs (Addi-
tional file 3), 6 SNPs, 1 ALP, 36 ssSNPs and 17
meaSNPs markers were also used in mapping. 74 of
these markers exhibited significant deviations (as judged
by chi-squared tests, P ≤ 0.001) from the expected Men-
delian ratios and were therefore excluded from further
linkage analysis; among the excluded markers were 22
gSNPs, 8 hrmSNPs, 20 CAPSs, 13 RFLPs, 6 SSRs, 3
ssSNPs and 2 meaSNPs (Table 1).

Construction of a linkage map for the YI pedigree
Of the 1290 markers that exhibited no segregation dis-
tortion, 1279 could be assigned to specific linkage
groups; in total, 1262 markers were mapped, including
761 gSNPs, 159 hrmSNPs, 121 CAPSs, 117 RFLPs, 34
SSRs, 33 ssSNPs, 15 meaSNPs, 16 EST-SSRs, 5 SNPs
and 1 ALP (Figures 2, 3 and 4). The observed and esti-
mated map lengths were 1405.2 cM (Go) and 1430.6
cM (Ge), respectively; the observed and estimated map
coverages were estimated to be 98.2% (Co) and 100.0%
(Ce), respectively. The maximum observed map dis-
tance between two adjacent assigned markers in cM
(X) was 17.3 cM. Significant deviations from the Pois-
son distribution of markers were observed for marker
intervals of 1 cM, 2 cM, 3 cM, 4 cM, 5 cM, 10 cM
and 15 cM (P < 0.001), indicating that the 1262 mar-
kers used to construct the linkage map for the YI pedi-
gree were not randomly distributed (Additional file 6).
Linkage map for the YI pedigree is shown on the Tree-
Genes database (http://dendrome.ucdavis.edu/cmap/,
accession: TG122).

The construction of a partial linkage map around the ms1
locus
19 SSRs were screened to identify markers linked to the
ms1 gene. Independence testing was conducted using
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the chi-squared method; two suitable SSRs were found,
both of which are on LG9: CJG0101S and CJG0177_S
(Additional file 4).
A partial linkage map around the ms1 locus was con-

structed for the TO-S pedigree using the markers
assigned to LG9 in the YI pedigree. While gSNP mar-
kers were not used in the construction of the YI linkage
map, those that appeared to be linked to the ms1 gene
on the basis of the segregation patterns observed in 17
male-infertile TO-S progeny were also used in the con-
struction of the partial map. In total, 42 markers were
ultimately mapped in the vicinity of the ms1 locus (Fig-
ure 5). Three markers (ssSNP_005, meaSNP_007 and
ssSNP_013) identified by the candidate gene approach
were mapped to LG9 but were not closely linked to the
ms1 gene (i.e. were separated from it by > 20 cM). The
YI map indicated that most of the ssSNP and meaSNP
markers considered were associated with other linkage
groups. The partial linkage map around the ms1 locus
was constructed for the TO-S pedigree is shown on the
TreeGenes database (http://dendrome.ucdavis.edu/
cmap/, accession: TG123).
The marker most tightly linked to the ms1 gene was

hrmSNP970_sf, which was separated from it by only 0.5
cM in the TO-S pedigree.

Discussion
A high-density linkage map for the YI pedigree
The success rate for SNP genotyping (i.e. the SNP con-
version rate) with the GoldenGate assay was 81.6% in
Picea glauca [17], 82.0% in P. mariana [17] and 66.9%
in Pinus taeda [56]; these values are similar to those we
observed for C. japonica (84.9%), although the evalua-
tion criteria used in this work differed slightly from
those used in previous studies. These values are slightly
lower than that obtained in crops, e.g. 91.3% in barley
[57], 89.0% in soybean [58] and 92.0% in maize [59].
The lower conversion rate for conifers compared to
food crops may be due to the complexity of conifer gen-
omes, which would be expected to hamper the develop-
ment of specific probes for the assay, as suggested by
Pavy et al. (2008) [17]. Nonetheless, the high success
rate achieved in this work suggests that Illumina’s high-
throughput GoldenGate SNP genotyping assay is an effi-
cient method for mapping EST-based markers and
enriching linkage maps for almost any species.
The GoldenGate assay was used to construct a high-

density linkage map of C. japonica featuring 1262 mar-
kers. The observed map length (Go) was 1405.2 cM, and
the average marker interval was only 1.1 cM. A total of
11 distinct linkage groups were identified, which corre-
sponds to the haploid number of chromosomes in C.
japonica. The number of mapped markers in C. japo-
nica was higher and the average interval between mar-
kers was smaller than those reported for other conifers
(Table 2). While anonymous markers such as AFLPs
were used extensively in previous conifer linkage maps,
most of the mapped markers in C. japonica were highly
informative co-dominant markers derived from EST.
The incorporation of EST-based markers into the link-
age map should facilitate comparative mapping between
C. japonica and related species such as Chamaecyparis
obtusa, which is the second most important forestry tree
species in Japan; it has also been shown that around
30% of C. japonica EST-based STS markers are directly
applicable to C. obtusa [60]. In addition, when EST-
based markers are identified in a target trait locus, they
are generally more effective than other kinds of markers
for identifying genes that affect the relevant traits
[61,62].
The genome length in C. japonica estimated in our

study is 1430.6 cM (Kosambi). The observed and
expected genome coverages were 98.2 (Co) and 100.0%
(Ce), respectively. It thus appears that the C. japonica
linkage map developed in this work is almost saturated.
As was shown to be the case in P. mariana [55], chi-

squared testing indicated that the distribution of mar-
kers in the C. japonica genome was non-random. This
suggests that there are marker-rich and marker-poor

Table 1 Parameters of the linkage map for the YI
pedigree in C. japonica

Mapping parameters YI pedigree

Total number of available markers 1364

Number of distorted markers (P < 0.01) 74

Total number of markers without segregation distortion 1290

Number of unlinked markers 11

Total number of assigned markers 1279

Number of positioned markers 1262

Number of gSNP markers 761

Number of hrmSNP markers 159

Number of CAPS markers 121

Number of RFLP markers 117

Number of SSR markers 34

Number of ssSNP markers 33

Number of meaSNP markers 15

Number of EST-SSR markers 16

Number of SNP markers 5

Number of ALP markers 1

Average map density, cM 1.1

Total observed map length G o, cM 1405.2

Expected map length G e, cM 1430.6

Observed map coverage C o (%) 98.2

Expected map coverage C e (%) 100.0
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regions in the C. japonica linkage map. If markers were
distributed equally over the genome, they would be
expected to concentrate in regions of suppressed recom-
bination such as centromeric regions, in which the map
distance between markers becomes shorter than their
physical separation, as reported for barley [63] and
maize [64]. Feuillet and Keller (2002) [65] suggested
that genes are not distributed randomly and there are
gene-rich and gene-poor regions in species with large
genomes. The non-random distribution of markers in
the C. japonica linkage map created in this work might
thus reflect the distribution of genes in this species,
since most of the mapped markers were based on ESTs.
To fill in the gaps, it would be desirable to add data on

markers for non-coding regions such as genomic micro-
satellite markers or random genetic markers such as
AFLPs.
It seems unlikely that any of the ssSNP and meaSNP

markers identified in this work correspond to the ms1
gene. It is possible that this is because the genes asso-
ciated with male gametophyte development and male
sterility in other species are not closely related to the
ms1 gene in C. japonica. Alternatively, the putative
homologs detected in this study might not be ortholo-
gous to those involved in male gametophyte develop-
ment in other species; instead, they may be paralogous,
with similar domains. While one would expect that
genes involved in male gametogenesis would exhibit
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Figure 2 A linkage map for C. japonica derived from the YI pedigree (LG1, LG2, LG3 and LG4). Marker names are indicated to the right of
the linkage groups. Centimorgan distances (Kosambi) are indicated to the left of each linkage group. Definitions for the labels ssSNP, maeSNP
and hrmSNP are provided in the Materials and Methods section. The nature of the other markers is indicated by the last letter of the locus
names: C, CAPS; R, RFLP; S, SSR; ES, EST-SSR; A, ALP; s, SNP.

Moriguchi et al. BMC Genomics 2012, 13:95
http://www.biomedcentral.com/1471-2164/13/95

Page 7 of 13



differential expression in male-sterile and male-fertile
individuals, and that this difference would be detectable
by analysing the microarray expression data, it is possi-
ble that the difference may be statistically insignificant
owing to the limitations of the methodology. Future stu-
dies in this area should aim to address these issues. In
addition to the problems related to the identification of
a specific sequence corresponding to ms1, it should be
noted that 217 (80.4%) of the 270 candidate genes could
not be located on the linkage map due to a lack of poly-
morphism in the parents of the YI pedigree or because
the sequence data was very complex. The efficiency of
the mapping could potentially be improved to address
these issues by designing primers that span exon/intron
junctions. Once suitable candidate genes have been
identified, they should be exploited in studies on the
TO-S pedigree.

A partial linkage map around the ms1 locus
Although we were unable to assign a specific sequence
for ms1, we were able to determine that it is located on
LG9 and to construct a partial linkage map around the
ms1 locus (Figure 5). To our knowledge, this is the first
case in which a recessive major gene has been localized
on a linkage map in conifers, although they have pre-
viously been identified using morphological and bio-
chemical mutants [66-69]. The closest marker to the
ms1 locus was hrmSNP970_sf; the map distance
between the locus and the marker was only 0.5 cM. By
using the two closest markers to the ms1 locus
(hrmSNP970_sf and gSNP01452), the male-sterility or
-fertility of 96.6% of the 205 individuals in the TO-S
pedigree could be accurately determined. In theory, this
will facilitate the selection of individuals that are hetero-
zygous for the ms1 gene without needing to create
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Figure 3 A linkage map for C. japonica derived from the YI pedigree (LG5, LG6, LG7 and LG8). Marker names are indicated to the right of
the linkage groups. Centimorgan distances (Kosambi) are indicated to the left of each linkage group. Definitions for the labels ssSNP, maeSNP
and hrmSNP are provided in the Materials and Methods section. The nature of the other markers is indicated by the last letter of the locus
names: C, CAPS; R, RFLP; S, SSR; ES, EST-SSR; A, ALP; s, SNP.
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control crosses. The identification of these two adjacent
markers will increase the viability of using MAS in the
TO-S pedigree. This will make it possible to perform
early selection of germinated seedlings, which could be
useful in that it would reduce the expenditure of time,
labour, and space on the growing of seedlings.
While the two markers will be very useful for TO-S

pedigree, it will be necessary to identify the target gene
itself to do MAS in other pedigrees. To this end, candi-
date gene approaches may become more useful as the
amount of information on the species increases and
techniques improve. An alternative approach for identi-
fying target genes is genome walking using a BAC
library. The likelihood of isolating a gene using genome
walking depends on the physical distance (per cM) in
the target species. On the basis of the estimated genome
length calculated from the recombination rates observed
in this study (Ge; 1430.6 cM), the average physical

distance per cM would be roughly 7.5 Mb. This physical
distance per cM in C. japonica suggests that the closest
markers we identified may be around 3.8 Mb from ms1
locus. As such, genome walking would be impractical
with current methods, but it would be feasible to isolate
the ms1 gene by BAC walking if markers lying within
0.1 cM of the target could be identified. We have con-
structed a BAC library for C. japonica that covers 4
times as much of the genome as the marker libraries
employed in this work and relates to a mapping popula-
tion with a large number of individuals (unpublished
data). The construction of a more dense linkage map
around the ms1 gene will greatly facilitate its isolation
or that of more tightly-linked markers.

Conclusions
We have constructed a high-density linkage map for
C. japonica using expressed sequence-derived co-
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Figure 4 A linkage map for C. japonica derived from the YI pedigree (LG9, LG10 and LG11). Marker names are indicated to the right of
the linkage groups. Centimorgan distances (Kosambi) are indicated to the left of each linkage group. Definitions for the labels ssSNP, maeSNP
and hrmSNP are provided in the Materials and Methods section. The nature of the other markers is indicated by the last letter of the locus
names: C, CAPS; R, RFLP; S, SSR; ES, EST-SSR; A, ALP; s, SNP.
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dominant SNP markers that were primarily genotyped
using the GoldenGate assay. A total of 1261 markers
were assigned to 11 linkage groups with an observed map

length of 1405.2 cM and a mean distance between adja-
cent markers of 1.1 cM. The number of linkage groups
identified matches the basic chromosome number of

CJG0101S0.0
ssSNP_005_sf1.6
gSNP024752.5
gSNP032412.6
gSNP00834
gSNP03665
gSNP01224

5.9

CC0937C10.0
CC1504C10.1
CC796R_sf13.3
gSNP0330319.6
CC0625_sf21.6
hrmSNP970_sf24.6
ms125.1
gSNP0145226.1
gSNP0043826.8
gSNP0380032.0
CC1633_sf34.6
gSNP0358938.3
gSNP00062
hrmSNP_s1640.2
hrmSNP_s798
gSNP02267
gSNP03401
gSNP00661

40.5

gSNP0517541.0
CJG0177_S41.4
gSNP0458441.9
CC2081F_sf45.0
meaSNP_007_sf46.3
gSNP0043053.7
gSNP0406258.8
gSNP0131564.7
gSNP0519379.5
gSNP0425080.6
gSNP0058183.4
gSNP0503884.0
gSNP0364487.7
gSNP0285488.4
gSNP0315388.6
CC0285C92.1
CC2676C96.2
ssSNP_013_sf104.5

Figure 5 A partial linkage map around the ms1 locus for C. japonica, derived from the TO-S pedigree. Marker names are indicated to the
right of the linkage groups. Centimorgan distances (Kosambi) are indicated to the left of each linkage group. The ms1 locus is indicated in bold.
The SSR and CAPS markers are indicated by the last latter of the locus names: C, CAPS; S, SSR.
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C. japonica. While other conifer linkage maps have lar-
gely relied on anonymous markers such as AFLPs, most
of the markers mapped for C. japonica were highly infor-
mative co-dominant markers derived from ESTs. The
expected map coverage rate of this constructed linkage
map was very high (100.0%), indicating that the linkage
map developed in this work is almost saturated. The dis-
tribution of the mapped loci on the linkage map for the
YI pedigree was not random, as demonstrated by a chi-
squared test (c2 = 3233.7, df = 13, P < 0.001).
Genetic male-sterility in C. japonica is known to be con-

trolled by a major recessive gene (ms1). We mapped the
ms1 gene to the 9th linkage group and constructed a par-
tial linkage map around the ms1 locus using information
from the dense map constructed in this work. A total of
42 markers were located on this partial linkage map. A
marker, hrmSNP970_sf that is tightly linked to the ms1
gene was identified; the two are separated by only 0.5 cM.
The markers linked to ms1 identified in this work will
facilitate the early selection of male-sterile trees, which
should prove useful in C. japonica breeding programs.

Additional material

Additional file 1: Candidate markers developed from genes with
significant similarity to genes related to male gametophyte
development and male sterility in other plant species.

Additional file 2: Candidate markers developed from genes
differently expressed between male-fertile and male-sterile
individuals.

Additional file 3: Primer information of hrmSNP markers. The
method used for marker development has previously been reported by
Ujino-Ihara et al. (2010).

Additional file 4: Linkage association between microsatellite
markers and a male-sterile gene (ms1) in C. japonica.

Additional file 5: Primer information for BioMark 48.48 Dynamic
Array (Fluidigm) using KASPar assays.

Additional file 6: Results of marker distribution analysis in each
marker interval.
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