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Abstract

group of genes is needed.

Background: Sequence features in promoter regions are involved in regulating gene transcription initiation.
Although numerous computational methods have been developed for predicting transcriptional start sites (TSSs) or
transcription factor (TF) binding sites (TFBSs), they lack annotations for do not consider some important regulatory
features such as CpG islands, tandem repeats, the TATA box, CCAAT box, GC box, over-represented
oligonucleotides, DNA stability, and GC content. Additionally, the combinatorial interaction of TFs regulates the
gene group that is associated with same expression pattern. To investigate gene transcriptional regulation, an
integrated system that annotates regulatory features in a promoter sequence and detects co-regulation of TFs in a

Results: This work identifies TSSs and regulatory features in a promoter sequence, and recognizes co-occurrence of
cis-regulatory elements in co-expressed genes using a novel system. Three well-known TSS prediction tools are
incorporated with orthologous conserved features, such as CpG islands, nucleotide composition, over-represented
hexamer nucleotides, and DNA stability, to construct the novel Gene Promoter Miner (GPMiner) using a support
vector machine (SVM). According to five-fold cross-validation results, the predictive sensitivity and specificity are
both roughly 80%. The proposed system allows users to input a group of gene names/symbols, enabling the co-
occurrence of TFBSs to be determined. Additionally, an input sequence can also be analyzed for homogeneity of
experimental mammalian promoter sequences, and conserved regulatory features between homologous promoters
can be observed through cross-species analysis. After identifying promoter regions, regulatory features are
visualized graphically to facilitate gene promoter observations.

Conclusions: The GPMiner, which has a user-friendly input/output interface, has numerous benefits in analyzing
human and mouse promoters. The proposed system is freely available at http://GPMinermbc.nctu.edu.tw/.

Background

Gene transcription is regulated by transcription factors
(TFs) that bind specifically to promoter regions; which
is the crucial control region for transcriptional activation
of all genes [1]. A typical promoter sequence, which is
located near the transcriptional start site (TSS), is
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believed to comprise short DNA sequences known as
regulatory elements, including TF binding sites (TFBSs)
[2]. With the vast amount of available genomic data, an
increasing need exists for techniques that can rapidly
and accurately evaluate sequences for the presence of
promoters [3]. Furthermore, some important regulatory
motifs, such as the TATA box, CCAAT box, GC box,
and INR box, must be annotated in promoter sequences.
Further, the presence of CpG islands close to a TSS, sta-
tistical properties of proximal and core promoters rather
than other genomic sequences, orthologous gene
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promoters, and restricting a promoter region from using
information from mRNA transcripts must be considered
[4]. Additionally, some co-regulatory networks describe
the set of all significant associations among TFs in regu-
lating common target genes [5]. Accordingly, the combi-
natorial interaction of TFs is critical in gene regulation.
PlantPAN, a database-assisted system for recognizing
co-occurrence of cis-regulatory elements in plant co-
expressed genes [6], is effective for plant promoter
investigations. However, no similar resource exists for
identifying co-occurrence TFBSs in a group of mamma-
lian promoters. Veerla et al. recently developed SMART
software for identifying co-occurring TFBSs in gene set
promoters [7]. Nevertheless, this software does not have
a user-friendly interface for identifying TSSs with regu-
latory elements and efficiently analyzing combinatorial
TFBSs of a group of promoters. COXPRESdb provides
coexpressed gene networks and coexpressed gene lists
ordered based on the strength of coexpression for
humans and mice [8]. However, COXPRESdb does not
analyze TFBSs in co-expressed gene promoters.
Although TOUCAN is a Java application for identifying
significant cis-regulatory elements from sets of co-
expressed genes, TOUCAN ignores combinatorial
TFBSs analysis [9]. This work develops a novel system,
Gene Promoter Miner (GPMiner), for identifying co-
occurring TFBSs in a group of gene promoters.
However, the promoter region must be precisely iden-
tified before identification of TFBSs co-occurrence.
Many databases are useful in collecting numerous TSSs
and have promoter prediction tools. The DBTSS is a
TSS database established by gathering experimentally
identified promoter regions via the oligo-capping
method [10]. The Eukaryotic Promoter Database (EPD)
is an annotated non-redundant collection of eukaryotic
POL II promoters, for which the TSS has been deter-
mined experimentally [11]. Various promoter prediction
methods have been developed for analyzing gene pro-
moter regions (Table S1, additional file 1). The
CpGProD program identifies CpG islands in mammalian
promoter regions [12]. The DragonGSF program pre-
dicts gene promoters based on information of CpG
islands, TSSs and downstream signals of predicted TSSs
[13]. The NNPP2.2 program applies a time-delay neural
network for promoter annotation of the Drosophila mel-
anogaster genome [14]. The Eponine detects the tran-
scriptional initiation site near the TATA box, together
with flanking regions of GC enrichment [15]. To identify
TSSs, McPromoter, a statistical method, identifies the
eukaryotic polymerase II TSS in genomic DNA [16-18].
The FirstEF uses a set of discriminant functions that
can recognize both boundaries of the first exon [19].
The PromoSer method computationally identifies TSSs
by considering the alignments of numerous partial and
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full-length mRNA sequences to those of genomic DNA
[20]. The PromH scheme identifies promoters based on
conservation of regulatory features in pairs of human/
mouse orthologous genes. Another regulatory feature of
promoter regions, DNA stability, was investigated for
analyzing prokaryotic promoters [21]. Notably, DNA
stability is a structural property of the DNA duplex frag-
ment. The minimum free energy of the DNA duplex is
calculated based on hydrogen bonding of A-T and C-G
pairs. Kanhere et al. demonstrated that DNA stability of
promoter regions provides a much better clue than
other features when determining the location of the TSS
[21].

Although numerous computational methods have
been developed for identifying promoters of genes in
genomic sequences, their outcomes are not satisfactory,
especially for promoters lacking a TATA box and CpG
islands [1]. Furthermore, many methods have poor pre-
dictive specificity, generating many false-positive predic-
tions, or have poor sensitivity. Therefore, this work
develops an integrated system, GPMiner, that identifies
promoter regions with high predictive sensitivity and
specificity. Moreover, GPMiner comprehensively anno-
tates regulatory elements, including TFBSs, CpG islands,
tandem repeats, the presence of a TATA box, CCAAT
box, or GC box, statistically over-represented sequence
patterns, GC content (GC%), and DNA stability. Addi-
tionally, GPMiner accurately identifies combinatorial
TEBSs in a group of gene promoters.

Construction and content

Figure 1 presents the GPMiner system flow, which iden-
tifies promoter regions and annotates transcriptional
regulatory features in a user-input genomic sequence.
Computational models for promoter identification were
constructed by incorporating the support vector
machine (SVM) with nucleotide composition features,
over-represented hexamer nucleotides, and DNA stabi-
lity. Additionally, GPMiner allows users to input a
group of genes for identification of co-occurring TFBSs
in promoter sequences. All mined promoter regions and
regulatory features in the user-input sequence are visua-
lized graphically to facilitate analysis of gene transcrip-
tional regulation. The details of the proposed method
are as follows.

Input genomic sequence

Users first input a genomic sequence in the FASTA for-
mat to identify promoter regions and to mine regulatory
elements within the input sequence. The input sequence
is used to search for homogeneity of experimental mam-
malian promoter sequences collected from the DBTSS
(version 6.0) [10], EPD (release 80) [11] and Ensembl
(version 61) [22]. All experimentally verified TSSs are
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Figure 1 System flow of GPMiner.
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using genomic positional information provided by regions and extracted for a sequence homology search.
DBTSS and EPD. By default, all the base pairs (bps) Notably, GPMiner collects 22774, 25420, 22159, 22475,
starting with the upstream 2000 bps to the downstream  and 18201 known genes from five mammalian genomes,
200 bps relative to the TSS (+1) are defined as promoter  including the human, mouse, rat, chimpanzee, and dog
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genomes, respectively. After the sequence homology
search, the proposed system outputs a set of known
genes with promoter sequences resembling the input
sequence. Additionally, users can input the chromoso-
mal location to specify sequence regions for mining reg-
ulatory features.

Promoter identification

The GPMiner system uses a SVM that considers ortho-
logously conserved regulatory features, such as CpG
islands, nucleotide composition, over-represented hex-
amer nucleotides, and DNA stability, of a promoter
sequence to identify mammalian proximal promoters
(Figure 2). The promoter length of mammalian cell is
usually around 1000 bp [23]. Because some regulatory
elements locate far from TSS, numerous cis-regulatory
elements annotation system used 3000 bp upstream as
the maximum region for analysis [24]. Furthermore, sev-
eral studies indicate the downstream region of TSS play
critical roles during transcription. Therefore, 3000 bp
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downstream of TSS are also selected to analyze. Conse-
quently, experimentally identified promoters originating
from human and mouse genomes collected from the
DBTSS (Table S2, additional file 1) were mapped to
Ensembl genomic positions, and flanking sequences of
-3000 bps to +3000 bps around the mapped TSSs were
selected. Furthermore, homologous promoter sequences
between human and mouse genomes were analyzed
using the BLAST program [25]. The sequence identity
of homologous promoter sequences exceeding 80% were
extracted and defined as training sequences. These
training sequences were classified into two subgroups
based on whether CpG islands were present by
CpGProD [12]. Table S3 (in additional file 1) lists the
statistics of the classified training set.

After constructing and classifying the training set,
training sequences are first analyzed with their nucleo-
tide composition to calculate the occurrence rate of
mono-, di-, and tri-mer nucleotides within a 20-bp win-
dow sliding along training sequences. Figure S1 (in

DBTSS

!

Human promoter sequences
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Mouse promoter sequences
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Figure 2 Analytical flowchart of promoter identification.
A

By BEfs] @) | 902 | 324
1 2 l n
L
Learning SVM B NNPP2.2,
Classifier h McPromoter,
Y Eponine




Lee et al. BMC Genomics 2012, 13(Suppl 1):S3
http://www.biomedcentral.com/1471-2164/13/51/S3

additional file 1) lists average distributions of occurrence
rates of nucleotide compositions. Pearson’s correlation
coefficient is calculated for clustering average distribu-
tions of mono-, di-, and tri-mer nucleotides into two
groups based on the two major distributions of adenine
and guanine (Table S4, additional file 1). Furthermore,
training sequences are also used to extract over-repre-
sented 6-mer nucleotides within a specified window size
around the TSSs, which comprise the so-called positive
set. The occurrence probabilities of 6-mer nucleotides in
the specified window are calculated and compared to
background probabilities of the entire genome. By opti-
mizing the number (50-200) of over-represented 6-mer
nucleotides, the top 100 over-represented 6-mer nucleo-
tides are selected as training features.

Furthermore, DNA stability is a feature used for iden-
tifying promoter sequences. SantaLucia et al. [26] used
the unified standard free energy of ten dinucleotide
duplexes—AA/TT, AT/TA, TA/AT, CA/GT, GT/CA,
CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC [26]
(Table S5, additional file 1)—to calculate the standard
free energy change of a DNA oligonucleotide based on
dinucleotide composition. This work applied the equa-
tion of standard free energy change to determine the
stability of a DNA duplex with a window size of 15 nt
sliding from -3000 to +3000, corresponding to the TSSs
in training sequences. Figure S2 (in additional file 1)
shows distributions of average free energy of DNA
duplex formation. Near the TSS, a peak exists in the
region starting from -10 to -30, which corresponds to
the TATA box in eukaryotic promoter sequences.

A public SVM library LIBSVM [27] is used to con-
struct predictive models. The SVM kernel function is
set to the radial basis function (RBF). Before using
extracted regulatory features to train SVM models, the
specified window sizes of proximal promoter regions,
which comprise the so-called positive set, must be
defined. Therefore, five window sizes—60 to +20, -100 to
+50, -200 to +100, -300 to +150, and -400 to +200—are
defined, and a benchmark is applied to evaluate the pre-
dictive performance of proximal promoter regions. The
benchmark, namely, cross-validation, extracts equal sizes
from the positive set and negative set, constructs the
SVM model, and evaluates the model with k-fold cross-
validation. Training sequences within the specified win-
dow are defined as the positive set; regions other than
those in specified windows, with window sizes equal to
those in the positive set, are chosen randomly as the
negative set.

Predictive performance of the constructed models is
evaluated by five-fold cross-validation [28]. Training
data are divided into five groups by splitting each data-
set into five approximately equally sized subgroups.
During cross-validation, each subgroup is used as the
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validation set in turn, and the remaining comprise the
training set. Next, the measures of predictive perfor-
mance of trained models are Precision (Prec) = TP/(TP
+FP), Sensitivity (Sn) = TP/(TP+FN), Specificity (Sp) =
TN/(TN+FP), and Accuracy (Acc) = (TP + TN)/(TP+FP
+TN+EN), where TP, TN, FP, and FN are the true posi-
tive, true negative, false positive, and false negative pre-
dictions, respectively. The constructed SVM models of
three different regulatory features are measured, and
models with the best predictive accuracy are selected for
the mammalian proximal promoter prediction. More-
over, several promoter prediction tools, NNPP2.2 [14],
Eponine [15] and McPromoter [16], are integrated into
GPMiner to provide additional information about the
proximal promoter, thereby improving predictive
specificity.

Mining cis-regulatory features
After identifying proximal promoter regions, regulatory
elements involving gene transcriptional regulation, such
as transcription factor binding sites, CpG islands, the
TATA box, CCAAT box, GC box, and over-represented
sequences, are annotated. Furthermore, tandem repeats
and DNA stability and GC content in the promoter
region are provided for advanced analysis of gene tran-
scriptional regulation. Table 1 shows the integrated
databases and GPMiner tools for mining regulatory ele-
ments within input sequences. For instance, MATCH
[29] was utilized for scanning TFBSs in an input
sequence using the TF binding profiles from TRANS-
FAC public release version 7.0 [30] and JASPAR [31].
The CpGProD program [12] was applied to detect the
CpG island in a promoter region with a prediction spe-
cificity of roughly 70%. A tandem repeat finder [32] was
applied to identify tandem repeats in promoter
sequences. In detecting the TFBS in promoter regions,
cutoff values of core and matrix scores of the MATCH
program are set to 1.0 and 0.7, respectively. Particularly,
frequent regulatory elements, such as the TATA box,
CCAAT box, and GC box, are represented separately.
Several important regulatory features, such as repeats
and over-represented oligonucleotides, are integrated.
Repeats, such as tandem repeats, Alu, and L1 elements
can alter OR the methylation distribution in a genome,
and possibly in gene transcription [33,34]. The proposed
system applies a statistical method to identify over-
represented oligonucleotides (6-12 bps) in promoter
regions; these over-represented oligonucleotides are
identified by comparing their occurrence frequencies in
promoter regions with their background occurrence fre-
quencies throughout the whole genome (See additional
file 1 for a detailed description). Based on statistical sig-
nificance, this work chose the oligonucleotide with a Z-
Score > 5 as the OR sequence. Moreover, DNA stability
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Table 1 Supported regulatory features in GPMiner
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Regulatory features Integrated Descriptions
database or tools
Transcriptional start site NNPP2.2 [14] Applying a time-delay neural network for promoter annotation

McPromoter [16]

Using a statistical method to identify eukaryotic polymerase Il TSS in genomic DNA

Eponine [15]

Predicting the transcription start site for a DNA sequence with prediction specificity

> 70%

Transcription factor (TF) binding site TRANSFAC public

release 7.0 [46]

Storing the experimentally verified transcription factors, their genomic binding sites

and DNA-binding profiles

MATCH [29]

Scanning the transcription factor binding site using the transcription factor binding

profiles from TRANSFAC public release 7.0 and JASPAR

CpG island CpGProD [12] Detecting the CpG island
Repeats TRF [32] A tandem repeat finder
TATA box, CCAAT box, and GC box MATCH [29] Scanning the TATA-, CCAAT- and GC-box by the transcription factor binding

profiles from TRANSFAC

Narang et al. [47]

Defining the 6-mer pattern of the TATA box, CCAAT box, and GX box with

positional density

Over-represented pattern Huang et al. [48]

Defining the statistically significant pattern in the promoter region

DNA stability Aditi Kanhere et al. Predicting the DNA stability of the promoter region
[21]
Co-occurrence of TF binding sites apriori [35] A method to mine the association rules
Conserved regions between homologous Blast [25] Using the blast program to analyze the conserved region between the

gene promoter sequences

homologous gene promoter sequences

distributions are provided. The GC contents are also
calculated using a window size of 15 nt and used as
references for identification of CpG islands.

Identifying co-occurrence of TFBSs in a group of gene
promoters

The GPMiner functionalities allow users to input a
group of genes to mine co-occurrence of TFBSs in pro-
moter regions. A mining association rules method,
namely, a priori [35], is applied to mine the co-occur-
rence of TFBSs in a group of gene promoter sequences.
Consider a large database with transactions, in which
each transaction consists of a set of items. An associa-
tion rule is an expression, such as A > B, where A and
B are item sets. The related mining association rule
states that a transaction in a database containing A also
contains B. For example, 90% of people who purchase
beer also purchase diapers. Herein, 90% is rule confi-
dence. Support of the A > B rule used is the percentage
of transactions containing both A and B.

The formal problem statement is as follows. Let S =
{s1, s2, ..., sm} be a set of known TFBSs of the human
genome. The union of members in the set S is called
the item set. Let G = {gl1, g2, ..., gm} be a group of genes
with differential expression in a specific tissue. Each
promoter region of a gene is mapped to a transaction
containing a set of known regulatory sites, also called
items. We assume promoter region S contains A, a set
of items of I, when A € S. An association rule is an
implication of the relationship A > B, where A € [, B ©

I, and A n B = ¢. The A = B rule holds in the set of
promoter regions D with confidence conf when c¢% of
transactions in D contains both A and B. The A > B
rule has support sup in the repetitive sequence set D
when s% of promoter regions in D contains A U B. The
association rules, the so-called co-occurrence of TFBSs,
are generated when a rule has higher support and confi-
dence than those specified by a user.

After mining co-occurrences (combinations) of TFBSs
in a group of gene promoter sequences, the statistical
significance each combination must be examined against
the background set of genes using the hypergeometric
model:

T T K-T

C xC-,
P(t) = Z CF
(4

t

where K is the number of background gene promoters
used, T is the number of observed gene promoters input
by users, k is the number of promoters that have the
combination in the background gene set, and ¢ is the
number of promoters that have the combination in the
observed gene set. The P-value is calculated for each
combination based on the hypermetric equation—the P-
value decreases, statistical significance increases.

Graphical visualization

After mining proximal promoter regions and regulatory
features, all mined regulatory features are presented gra-
phically in the web interface, which is constructed using
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the GD library and PHP programming language. To
simplify graphical visualization, regulatory features with
numerous entries are presented initially in an overview
form. Regulatory features are displayed in detail when
users click the “detailed view” button. Additionally,
detailed information of regulatory features is listed in
tabular form. The co-occurrences of TFBSs in a set of
gene promoter sequences are also represented graphi-
cally. When users investigate promoters of known
genes, conserved regions of homologous gene promoters
are displayed graphically, as are regulatory features
found in conserved promoter regions. The graphical
visualization of regulatory elements facilitates analysis of
gene transcription regulation.

Utilities and discussion

Performance of promoter identification

A benchmark, namely, cross-validation, is used to evalu-
ate the predictive performance of GPMiner, which
incorporates an SVM with nucleotide composition,
over-represented hexamer nucleotides, and DNA stabi-
lity for mammalian proximal promoter identification.
The benchmark is used to extract equal sizes of the
positive set and negative set, construct the SVM model,
and evaluate the model with k-fold cross-validation (k =
5). Table S6 (in additional file 1) lists the prediction per-
formance of the constructed SVM models trained with
three different regulatory features based on the five win-
dow sizes. Since training sequences are classified into
two subgroups by CpG islands—with CpG islands and
without CpG islands—predictive performance of group
with CpG islands is markedly higher than that of the
group without CpG islands; furthermore, as window size
increases, the prediction performance of SVM models
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increases. However, after considering both prediction
performance and window size, a window size of -200 to
+100 is selected as the specified window for identifying
proximal promoter regions. Vertebrate gene expression
is frequently regulated by the proximal promoter, which
is traditionally defined as between -200 bp and the TSS
[36].

Table 2 lists the predictive performance of SVM mod-
els trained with combinations of the three different reg-
ulatory features, such as over-represented hexamer
nucleotides (OR), nucleotide composition (NC), and
DNA stability (DS). Three training sets, “all”, with CpG
islands, and without CpG islands, are evaluated by
benchmark cross-validation, and based on the specified
window size of 200 to 100 relative to the TSS (+ 1). In
all three training sets, the combination OR+NC+DS per-
forms better than other combinations. Moreover, the
training set, namely, that with CpG islands, which
achieves a predictive accuracy of 82%, performs better
than training sets of “all” and without CpG islands. Both
SVM models trained with the training sets with CpG
islands and without CpG islands are used for proximal
promoter identification. Whether an input sequence
contains a CpG island is then detected, and the
sequence is then predicted by the SVM model with
CpG islands or the SVM model without CpG islands.

Notably, GPMiner lets users input a novel sequence to
annotate the proximal promoter region with the putative
TSS. Thus, 1871 human promoter sequences (from
-3000 to +3000) in the EPD comprise the independent
test set used to evaluate predictive performance. The
test sequences whose regions are within -200 to +100
relative to the TSSs (+1) are defined as a positive set;
otherwise, the negative set is extracted randomly from

Table 2 The prediction performance of SVM models with combinations of three kinds of regulatory features such as
over-represented hexamer nucleotides (OR), nucleotide composition (NC), and DNA stability (DS), is evaluated by
benchmark “Cross-validation” based on the specified window size -200 to +100 of TSS(+1).

Training set Window size Features Precision Sensitivity Specificity Accuracy

All -200 ~+100 OR+NC 77% 71% 79% 75%
(6,452)

-200 ~+100 OR+DS 76% 69% 78% 74%

-200 ~+100 NC+DS 75% 74% 76% 75%

-200 ~+100 OR+NC+DS 79% 76% 79% 78%

With CpG -200 ~+100 OR+NC 79% 81% 79% 80%
(4,898)

-200 ~+100 OR+DS 77% 80% 76% 78%

-200 ~+100 NC+DS 77% 82% 75% 78%

-200 ~+100 OR+NC+DS 80% 84% 79% 82%

Without CpG (1,554) -200 ~+100 OR+NC 68% 70% 67% 68%

-200 ~+100 OR+DS 68% 71% 66% 68%

-200 ~+100 NC+DS 66% 67% 66% 66%

-200 ~+100 OR+NC+DS 69% 69% 71% 70%

The number of training sequences used to construct the SVM models is shown in parenthesis of the column “Training set”.
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regions other than those in the positive set. Table S7 (in
additional file 1) compares the predictive performance
of GPMiner and those of NNPP2.2, Eponine, and
McPromoter. Furthermore, Figure S3 (in additional file
1) shows the distribution of promoter predictions of
GPMiner, NNPP2.2, Eponine, and McPromoter. The
sensitivity of GPMiner is better than that of the other
methods; however, predictive specificity of McPromoter
and Eponine are better than that of GPMiner. With
consideration of high specificity, NNPP2.2, Eponine, and
McPromoter are integrated to reduce the number of
false-positive predictions.

Web interface

The GPMiner system has two primary functions. First,
“gene group analysis” is adopted to identify co-occur-
rence of TFBSs in a group of gene promoters. Combina-
torial regulation by TF complexes is an important
feature of eukaryotic gene regulation [5,37,38]. Second,
“promoter analysis” can be employed to analyze TFBSs,
CpG islands, tandem repeats, the presence of a TATA
box, CCAAT box, or GC box, statistically over-repre-
sented sequence patterns, GC content (GC%) and DNA
stability in the promoter sequence of a given gene ID or
a novel promoter sequence. Furthermore, cross-species
analysis of homologous gene promoters is performed by
GPMiner, such that conserved regulatory features in
promoter regions can also be observed.

Figure 3 shows the web interfaces of GPMiner. In the
submission interface, users first choose one of five mam-
mals, such as human, mouse, rat, chimpanzee or dog,
and input a genomic sequence or chromosomal location
for identifying proximal promoter regions and for
mining regulatory features. Eight regulatory features cur-
rently exist in GPMiner. By default, all regulatory fea-
tures are chosen for annotation in the input sequence.
Notably, users can input a chromosome location to spe-
cify regions of interest for retrieving genes located in
this chromosome region. During the mining process, the
proposed system uses various tools individually to anno-
tate different regulatory features in an input sequence.
Each annotating tool for regulatory features has some
search parameters, such as score threshold in NNPP2.2,
Eponine, and McPromoter, the core score and matrix
score for the MATCH program, Z-score for over-repre-
sented oligonucleotides, and support and confidence
scores for co-occurrence TFBSs analysis, in a gene
group search. Default parameters for these tools are set
and the related documentation is shown on the help
webpage. After mining regulatory features, a graphical
visualization of identified promoter regions and mined
regulatory features is provided to users. Figures S4 and
S5 (see additional file 1) present graphical representa-
tions of regulatory elements for known gene promoter
and homologous promoter sequences, respectively.
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Case studies

Figure 4 shows an example gene group analysis. Nota-
bly, NFkappaB is a well-known induced TF that controls
kinetically complex patterns of gene expression in multi-
ple pathways in human. In a previous study, ATM,
EP300, FGFB1, and SEN were regulated by NF-kappaB
and co-regulated by the Ets TF in the progression of
various cancers [39]. To effectively apply GPMiner, four
gene names were input for gene group analysis by
GPMiner to detect co-occurring TFBSs. The thresholds
of the core score and matrix score values in TFBS scan-
ning were 1.0 and 0.9, respectively, and the support and
confidence values in co-occurrence analysis were set
both at 90%. Notably, NF-kappaB and Ets are also iden-
tified as combinatorial TFs in these four gene promoters
after three analytical steps by GPMiner. This effective
result was confirmed by known regulatory pathways
[39]. Therefore, GPMiner accurately identifies TFBSs in
a set of gene promoters. The proposed system can be
applied to analyze co-regulation in microarray gene-
expression databases such as COXPRESdb [40] and
Genevestigator [41]. The proposed GPMiner system
improves our understanding of transcription regulatory
networks of gene regulation in mammalians.

Moreover, to demonstrate the application of single
promoter analysis, a case study involving humans is
described below. The v-fos FB] murine osteosarcoma
viral oncogene homolog (gene symbol is FOS) gene is a
regulator of cell proliferation, differentiation, and trans-
formation [42]. Through experimentally verified annota-
tion of the Entrez Gene database, the FOS gene is
regulated by numerous transcription factors such as
SP1, SRF, SAP-1, and AP-1. Additionally, the FOS gene
exhibited DNA methylation based on information in the
Gene Ontology database. The FOS gene promoter
sequence was extracted and input into GPMiner to
mine the proximal promoter region and annotate regu-
latory elements. The DNA stability of the input
sequence is graphically represented and the proximal
promoter region is highlighted (Figure S2, additional file
1). Using the TSS prediction tool Eponine, potential
TSSs are located near positions 500 and 2000 bps. The
CpG islands were annotated, as were numerous TFs
that may regulate the FOS gene promoter, including
SP1, SRF, SAP-1, and AP-1. Moreover, the TATA box
was annotated near position 2000 bps. To summarize
annotated regulatory features, the proximal promoter
region is likely located near 2000 bps since the experi-
mentally validated TSS of the FOS gene was located at
2001 bps.

Conclusions
The GPMiner system has a gene group analysis function
for analyzing the co-occurrence of TFBSs with statistical
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J

measures in a set of co-expressed genes. This function
uses a practical platform to examine co-expression
genes of microarray data in transcriptional regulation
networks. Furthermore, the GPMiner system has a user-

friendly input/output interface, and has numerous
advantages in mammalian promoter analysis. The pro-
posed system incorporates an SVM with nucleotide
composition over-represented hexamer nucleotides and
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Figure 4 Gene group analysis in GPMiner.

DNA stability for mammalian proximal promoter identi-
fication and mines regulatory elements, including TSSs,
TEBSs, CpG islands, tandem repeats, the TATA box,
CCAAT box, GC box, statistically over-represented

sequence patterns, GC content (GC%) and DNA stabi-
lity. Evaluated by benchmark cross-validation, the pre-
dictive sensitivity and specificity of GPMiner are roughly
80%. All mined promoter regions and regulatory

Table 3 Comparison of GPMiner with several representative gene promoter annotation programs

Transcriptional regulatory PromoSer [20] PromH [49] DragonGSF ~ McPromoter GPMiner
features [13] [16]
Species supported Human, mouse, and Human and Mammalian Eukaryote Human, mouse, rat, chimp, and dog
rat mouse
Promoter identification Yes Yes Yes Yes Yes
Map to known gene promoters Yes - - - DBTSS, EPD and Ensembl
Transcription factor binding site - Yes Yes - TRANSFAC public release and JASPAR,
MATCH
TATA-box - Yes - Yes Yes
Tandem repeat Yes - - Yes Tandem Repeat Finder
CpG island - - Yes - CpGProD
Over-represented pattern - - - - Yes
DNA stability - - - - Yes
GC content - - Yes - Yes
Co-occurrence of TFBSs - Yes - - Yes
Graphical view Yes - - Yes Yes
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features in the user input sequence are graphically
visualized to facilitate gene transcription analysis. Table
3 compares the functions of several representative pro-
grams for promoter annotation with those of GPMiner.

The Functional Annotation of the Mouse 3 (FAN-
TOM3) [43] provides comprehensive experimentally
identified TSSs of human and mouse genomes by cap
analysis of gene expression (CAGE) [44]. The compre-
hensive TSSs of CAGE may be used to analyze promo-
ters in advance. In addition to DNA stability, several
structural properties of the DNA duplex in the promo-
ter region, such as DNA curvature and bendability [45],
should be analyzed and applied to predict identify gene
promoter regions in mammals. Future versions of
GPMiner will include detailed information about gene
regulation such as microarray gene-expression profiles.
The GPMiner system will be maintained and updated
continuously.

Availability

The GPMiner web server will be continuously main-
tained and updated. The web server is now freely avail-
able at http://GPMiner.mbc.nctu.edu.tw/.

Additional material

Additional file 1: Additional figures and tables. Contains additional
figures and tables showing further results in the study.
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