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Abstract

We introduce three algorithms for learning generative models of molecular structures from molecular dynamics
simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified
covariates (e.g., fluctuations, distances, angles, etc). L, reg-ularization is used to ensure sparse models and thus

reduce the risk of overfitting the data. The topology of the resulting model reveals important couplings between
different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model
makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of
an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm
learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory,
revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical
models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular

dynamics trajectories.

Introduction

The three dimensional structures of proteins and other
molecules vary in time according to the laws of thermo-
dynamics. Each molecule visits an ensemble of states
which can be partitioned into distinct conformational
sub-states [1,2] consisting of similar structures. The
study of these conformational sub-states remains an
active area of research [3-5] and has provided valuable
insights into biological function, such as enzyme cataly-
sis [5-7] and energy transduction [8].

Molecular dynamics (MD) simulations are often used
to characterize conformational dynamics [9]. These
simulations are performed by numerically integrating
Newton’s laws of motion for a set of atoms. Conforma-
tional frames are written to disk into a trajectory for
subsequent analysis. Until recently, MD simulations
were limited to time-scales of several tens of nanose-
conds (ns = 10 sec.). Recent advances in hardware and
software (e.g., [10-14]) make it possible to investigate
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conformational dynamics on microsecond (us = 10™°
sec.) and millisecond (ms = 107 sec.) time-scales. Such
long simulations are especially well-suited to identifying
and studying the conformational sub-states relevant to
biological function. Unfortunately, the corresponding
trajectories are often difficult to analyze and interpret
due to their size and complexity. Thus, there is a need
for algorithms for analyzing such long timescale trajec-
tories. The primary goal of this paper is to introduce
new algorithms to do so.

Our approach to analyzing MD data is to learn gen-
erative models known as Markov Random Fields (MRF).
This is the first time MRFs have been used to model
MD data. A MRF is an undirected probabilistic graphi-
cal model that encodes the joint probability distribution
over a set of user-specified variables. In this paper those
variables correspond to the positional fluctuations of the
atoms, but the technique can be easily extended to
other quantities, such as pairwise distances or angles.
The generative nature of the model means that new
conformations can be sampled and, perhaps more
importantly, that users can make structural alterations
to one part of the model (e.g., modeling the binding of a
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ligand) and then perform inference to predict how the
rest of the system will respond.

We present three closely related algorithms. The first
algorithm learns a single model from the data. Both the
topology and the parameters of the model are learned.
The topology of the learnt graph reveals which variables
are directly coupled and which correlations are indirect.
Alternative methods, such as constructing a covariance
matrix cannot distinguish between direct and indirect
correlations. Our algorithm is guaranteed to produce an
optimal model. Regularization is used to reduce the ten-
dency of over-fitting the data. The second algorithm
learns a time-varying model where the topology and
parameters of the MRF change smoothly over time.
Time-varying models reveal the different conformational
sub-states visited by the molecule and the features of
the the energy barriers that separate them. The final
algorithm learns a Markov Chain over MRFs which can
be used to generate new trajectories and study to
kinetics.

Background

Molecular dynamics simulation

Molecular Dynamics simulations involve integrating
Newton’s laws of motion for a set of atoms. Briefly,
given a set of u atomic coordinates
X = {X, ... X, : X; € R3} and the corresponding velocity
vectors V = {V, ..., V,, : V; € R3}, MD updates the posi-
tions and velocities of each atom according to an energy
potential. The updates are performed via numerical inte-
gration, resulting in a conformational trajectory. The
size of the time step for the numerical integration is
normally on the order of a 1-2 femtoseconds (fs = 107"
sec), meaning that a 1 microsecond simulation requires
one billion integration steps. In most circumstances,
every 1000th to 10000th conformation is written to disc
as an ordered series of frames.

Traditional methods for analyzing MD data either
monitor the dynamics of global statistics (e.g., the radius
of gyration, total energy, etc), or else identify sub-states
via a clustering the frames [15-17] or through Principal
Components Analysis (PCA) and closely related meth-
ods (e.g., [18-22]). Clustering based methods do not pro-
duce generative models and generally rely on pairwise
comparisons between frames and thus run in quadratic
time with respect to the number of frames in the trajec-
tory. Our algorithms produce generative models and
only perform linear work in the number of frames. This
complexity difference is especially important for long
timescale simulations. PCA-based methods implicitly
assume that the data are drawn from a multivariate
Gaussian distribution. Our method makes the same
assumption but differs from PCA in two important
ways. First, PCA projects the data onto an orthogonal
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basis. Our method involves no change of basis, making
the resulting model easier to interpret. Second, we
employ L1 regularization when learning the parameters
of our model. Regularization is a common strategy for
reducing the tendency to over-fit data by, informally,
penalizing overly complicated models. We use L1 regu-
larization because it has desirable statistical properties.
Specifically, it leads to consistent models (that is, given
enough data our algorithm learns the true model) while
while enjoying high efficiency (that is, the number of
samples needed to achieve the true model is small).
More recently, Lange and Grubmiiller introduced full
correlation analysis [23], which can capture both linear
and non-linear correlated motions from MD simula-
tions. The algorithms in this paper are limited to linear
models, but we note that they can be easily extended to
more complex forms by using non-Gaussian random
variables (e.g., [24,25]). Our final algorithm produces
models that resemble Markov State Models (MSMs)
[26] but are different in that they are fully generative.

Markov Random Fields

A Markov Random Field M = (G, ®) consists of an
undirected graph G over a set of random variables X =
{X1, ..., X,,} and a set of functions ® over the nodes and
edges of G. Together, they define the joint distribution P
(X). The topology of the graph determines the set of
conditional independencies between the variables. In
particular, the ith random variable is conditionally inde-
pendent of the remaining variables, given its neighbors
in the graph. Informally, if variables X; and X; are not
connected by an edge in the graph, then any correlation
between them is indirect. By ‘indirect’ we mean that the
correlation between X; and X; (if any) can be explained
in terms of a pathway of correlations (e.g., X; &> Xz — -
— X;). Conversely, if X; and X; are connected by an
edge, then the correlation is direct. Our algorithm auto-
matically detects these conditional independencies and
learns the sparsest possible model, subject to fitting the
data.

Gaussian Graphical Models
A Gaussian Graphical Model (GGM) or Gaussian Mar-
kov Random Field is simply a MRF where each variable
is normally distributed. Thus, a GGM encodes a multi-
variate Gaussian distribution. A GGM has parameters
M = (;1,271) where X! is an # x # matrix (known as
the precision matrix) and , is a n x 1 vector. The non-
zero elements of X' reveal the edges in the MRF. The
inverse of the precision matrix, denoted by %, is the cov-
ariance matrix for a multivariate Gaussian distribution
with mean = iT e

Gaussian distributions have a number of desirable
properties including the availability of analytic
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expressions for a variety of quantities. For example, the
probability of observing x = (x, ..., x,) is:

P = el (- ) Y G- ), 0

where Z = \/(271)"| >" | is the partition function and
|Z| denotes the determinant of X. Other quantities of
interest can be computed as well, such as the free
energy of the model, - In Z, its differential entropy:

1
In[(2me)" 2
, Inf@re) 1)1l 2)
or the KL-divergence between two different models:
KLMollM) = 1/2(mace(32 S el o) Y, (i = fio) = In(3211Y1) = ). (3)

A GGM can also be used to manipulate a subset of
variables and then then compute the marginal densities
for the remaining variables. For example, let V € X be
an arbitrary subset of variables X and let W be the com-
plement set. We can condition the model by setting
variables V to some particular value, 7. The marginal
distribution over W given p is a multivariate Gaussian
with parameters (i3, Y ) where

- - T -1 -
Rwip = Rw + Zw Zvv (v — ) (4)

Zw - wa B Z:\/V Z\;\II ZWV ®)

Here, > - Lyw ZW). Thus, inference can be per-
formed analytically via matrix operations. In this way,
users can predict the conformational changes induced
by local perturbations or, more generally, study the cou-

plings between arbitrarily chosen subsets of variables.

Algorithms
We now present three algorithms for learning various
kinds of generative models from MD data.

Input The input to all three algorithms is a time-ser-
ies of vectors D = (al, _,_,at) where ai is a n x 1 vector
of covariates (e.g., positional and/or angular deviations)
and ¢ is the number of snapshots in the MD trajectory.

Algorithm 1

Output The first algorithm produces a Gaussian Gra-
phical Model M = (1, 3°71). Thg first step is to compute
the sample mean j = 1/t ZE=1 d;- Then it computes the
regularized precision matrix ' (see below). Finally, A is
computed as follows: h = S ji.

The algorithm produces the sparsest precision matrix
that still fits the data (see below). It also guarantees that
>! is positive-definite, which means it can be inverted
to produce the regularized covariance matrix (as
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opposed to the sample covariance, which is trivial to
compute). This is important because Eqs 1-3 require
the covariance matrix, X. We further note that a sparse
precision matrix does not imply that the corresponding
covariance matrix is sparse, nor does a sparse covar-
iance imply that the corresponding precision matrix is
sparse. That is, our algorithm isn’t equivalent to simply
thresholding the sample covariance matrix, and then
inverting.
Learning regularized precision matrices
A straight-forward way of learning a GGM is to find the
parameters ((ft, Y_)) that maximize the likelihood of the
data (i.e., by finding parameters that maximize
ZLI P(Zi,)) It is known that a maximum likelihood
model can be produced by setting the pair (i, }_) to the
sample mean and covariance matrices, respectively.
Unfortunately, maximum likelihood estimates can be
prone to over-fitting. This is not surprising because the
covariance matrix alone contains m = O(#%) parameters,
each of which must be estimated from the data. This is
relevant because the number of independent samples
needed to obtain a statistically robust estimate of X
grows polynomially in m. We note that while modern
MD simulations do produce large numbers of samples
(i.e., frames), these samples are not independent
(because they form a time-series), and so the effective
sample size is much smaller than the number of frames
in the trajectory.

Our algorithm addresses the problem of over-fitting
by maximizing the following objective function:

0y ') = Y log P(di) — 1Y . ©)
k=1

Here, ||Z7||; is the L; norm of the precision matrix.
The L, norm is defined as the sum of the absolute
values of the matrix elements. It can be interpreted as a
measure of the complexity of the model. In particular,
each non-zero element of ! corresponds to a para-
meter in the model and must be estimated from the
data. Thus, Eq. 6 establishes a tradeoff between the log
likelihood of the data (the first term) and the complexity
of the model (the second term). The scalar value A con-
trols this tradeoff such that higher values produce spar-
ser precision matrices. This is our algorithm’s only
parameter. Its value can be computed analytically [27]
from the number of frames in the trajectory and vari-
ables. Alternatively, users may elect to adjust A to obtain
precision matrices of desired sparsity.

Algorithmically, our algorithm maximizes Eq. 6 in an
indirect fashion, by defining and then solving a convex
optimization problem. Using the functional form of p(?j)
according to Eq. 1, the log-likelihood of X! can be
rewritten as:
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t

(Y ID) = —log(1 3N = Y - )Y (- i) =213 .
k=1
Noting that |> 1= 1,1‘ and that trace (ABC) = trace
(CAB), the log-likelifiood of ¥! can then be rewritten
as:

1Y 1D) = log(1Y" 1) — race((D — )Y (D~ i)~ Ay .

Next, using the definition of the sample covariance
matrix,

s= (0 - @)D - D)),

we can define the matrix £ that maximizes 6 as the
solution to the following optimization problem:

-1 -1 -1
argzn}fixo logIZ | — trace(SZ )— AIIZ [11(7)

We note that L; regularization is equivalent to maxi-
mizing the likelihood under a Laplace prior and so the
solution to Eq. 7 is a maximum a posteriori (MAP) esti-
mate of the true precision matrix, as opposed to a maxi-
mum likelihood estimate. That is, our algorithm is a
Bayesian method. Moreover, the use of L; regularization
ensures additional desirable properties including comnsis-
tency — given enough data, the learning procedure learns
the true model, and high statistical efficiency — the num-
ber of samples needed to achieve this guarantee is small.

We now show that the optimization problem defined
in Eq. 7 is smooth and convex and can therefore be
solved optimally. First, we consider the dual form of the
objective. To obtain the dual, we first rewrite the L;-
norm as:

[1X]]1 = Inax1 trace(XU)

[aj
where ||U||e denotes the maximum absolute value
element of the matrix U. Given this change of formula-
tion, the primal form of the optimization problem can
be rewritten as:

max min lo — trace .S+ ).
5150 I1U[ <A gl>_ | Q ) (8)

That is, the optimal £ is the one that maximizes the
worst case log likelihood over all additive perturbations
of the covariance matrix.

Next, we exchange the min and max in Eq. 8. The
inner max in the resulting function can now be solved
analytically by calculating the gradient and setting it to
zero. The primal form of the objective can thus be writ-
ten as:

Ux = min —log|S+U|—mn,
[U]oo <A
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such that = = (S + U*)™L.
After one last change of variables, W = S + U, the
dual form of Eq. 7 can now be defined as:

> x = max{log[W| : [[W = S||o < A} ©)

Eq. 9 is smooth and convex, and for small values of # it
can be solved by standard convex multivariate optimization
techniques, such as the interior point method. For larger
values of # we use Block Coordinate Descent [27] instead.
Block Coordinate Descent
Given matrix A, let Ayx; denote the matrix produced by
removing column k and row j of the matrix. Let A; also
denote the column j, with diagonal element Aj; removed.
The Block Coordinate Descent algorithm [27]. Algo-
rithm 1 proceeds by optimizing one row and one col-
umn of the variable matrix W at a time. The algorithm
iteratively optimizes all columns until a convergence cri-
teria is met. The Ws produced in each iterations are
strictly positive definite and so the regularized covar-
iance matrix £ = W is invertible.

Algorithm 1 Block Coordinate Descent

Require: Tolerance parameter €, sample covariance S,
and regularization parameter A.

Initialize W®:= S + AI where I is the identity
matrix.
repeat
forj=1,.ndo ‘
e =argminy ("W Dy [y = il < 1)
{//Here, WYV denotes the current iterate.}
Set W% to WUV such that W; is replaced by
¥
end for
Set W = w
until trace(W?)?'S) - n + A||[(WO) |, <&
return W©

The time complexity of this algorithm is o(n*?/g) [27]

when converging to a solution within & > 0 of the opti-

1
mal. This complexity is better than O<n6/10g<8>>,

which would have been achieved using the interior
point method on the dual form [28].

In summary, the algorithm produces a time-averaged
model of the data by computing the sample mean and
then constructing the optimal regularized X by solving Eq.
9 using Block Coordinate Decent. The regularized covar-
iance matrix X is guaranteed to be invertible which means
we can always compute the precision matrix, X!, which
can be interpreted as a graph over the variables revealing
the direct and indirect correlations between the variables.

Algorithm 2
The second algorithm is a straight-forward extension of
the first. Instead of producing a time-averaged model, it



Razavian et al. BMC Genomics 2012, 13(Suppl 1):S5
http://www.biomedcentral.com/1471-2164/13/51/S5

produced time-varying model: M(7) = (fl(r), Z*I(f)).
Here, 7 < t indexes over sequentially ordered windows
of frames in the trajectory. The width of the window, w,
is a parameter and may be adjusted to learn time-vary-
ing models at a particular time-scale. Naturally, a sepa-
rate time-averaged model could be learned for each
window. Instead, the second algorithm applies a simple
smoothing kernel so that the parameters of the rth win-
dow includes information from neighboring window
too. In this way, the algorithm ensures that the para-
meters of the time-varying model evolve as smoothly as
possible, subject to fitting the data.

Let D € D denote the subset of frames in the MD
trajectory that correspond to the tth window, 1 < 7 < T.
The second algorithm solves the following optimization
problem for each 1 <7< T:

Z_l(r) = arg r)I(lagilog IX| — trace(S(7)X) — AlIX]|:

Here, S(7) is the weighted covariance matrix, and is
calculated as follows:

e wy ((D(k) — (DW)(D® — (D(k)))T>

k=T—k
S(T) = T+K

k=t—x Wk

where k indexes over windows 7 - K to 7 + K, Kk is a
user-specified kernel width, and the weights w; are
defined by a nonnegative kernel function. The choice of
kernel function is specified by the user. In our experi-
ments the kernel mixed the current window and the
previous window with the current window having twice
the weight of the previous. The time-varying model is
then constructed by solving Eq. 9 for each S(z). That is,
the primary difference between the time-averaged and
time-varying version of the algorithm is the kernel
function.

Algorithm 3

The final algorithm builds on the second algorithm.
Recall that the second algorithm learns T sequentially
ordered models over windows of the trajectory. More-
over, recall that each model encodes a multivariate
Gaussian (Eq. 1) and that the KL-divergence between
multivariate Gaussians can be computed analytically
via Eq. 3. The KL-divergence (also known as informa-
tion gain or relative entropy) is a non-negative mea-
sure of the difference between two probability
distributions. It is zero if and only if the two distribu-
tions are identical. It is not, however, a distance metric
because it is not symmetric. That is D(P||Q) = D(Q||
P), in general. However, it is common to define a sym-
metric KL-divergence by simply summing KL, = D
(P||Q)+D(Q||P). We can thus cluster the models using
any standard clustering algorithm, such as k-means or
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a hierarchial approach. In our experiments we used
complete linkage clustering, an agglomerative method
that minimizes the maximum distance between ele-
ments when merging clusters.

Let S be the set of clusters returned by a clustering
algorithm. Our final algorithm treats those clusters as
states in a Markov Chain. The prior probability of being
in each state can be estimated using free energy calcula-
tions [29,30] for each cluster, or according to the rela-
tive sizes of each cluster. It then estimates the transition
probabilities between states i and j by counting the
number of times a model assigned to cluster i is fol-
lowed by a model assigned to cluster j. This simple
approach creates a model that can be used to generate
new trajectories by first sampling states from the Mar-
kov Chain and then sampling conformations from the
models associated with that state.

Experiments

We applied our algorithms to several molecular
dynamics simulation trajectories. In this section, we
illustrate some of the results obtained through this ana-
lysis. The algorithms were implemented in Matlab and
run on a dual core T9600 Intel processor running at 2.8
Ghz. The wall-clock runtimes for all the experiments
were on the order of seconds to about 10 minutes,
depending on the size of the data set and parameter
settings.

Algorithm 1: application to the early events of HIV entry
We applied the first algorithm to simulations of a com-
plex (Figure 1-left) consisting of gp120 (a glycoprotein
on the surface of the HIV envelope) and the CD4 recep-
tor (a glycoprotein expressed on the surface of T helper
cells). The binding of gp120 to CD4 receptors is among
the first events involved in HIV’s entry into helper T-
Cells. We performed two simulations using namd [31].
The first simulation was the gp120-CD4 complex in
explicit solvent at 310 degrees Kelvin. The second simu-
lation was the same complex bound to Ibalizumab (Fig-
ure 1-right), a humanized monoclonal antibody that
binds to CD4 and inhibits the viral entry process [32].
Each trajectory was each 2 ns long and contained 4500
frames.

Ibalizumab’s mechanism of action is poorly under-
stood. As can be seen in Figure 1, Ibalizumab does not
prevent gp120 from binding to CD4, nor does it directly
bind to gp120 itself, suggesting that its inhibitory action
occurs via an allosteric mechanism. To investigate this
phenomenon, we applied our first algorithm to the two
trajectories and then compared the resulting models.
The variables in the models corresponded to the posi-
tional fluctuations of the C-o atoms, relative to the
initial frame of the simulation.
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Unbound

HIV entry inhibitor. Notice that Ibalizumab does not bind to gp120.

Figure 1 (Left) gp120 (blue) bound to CD4 (green). (Right) The same complex bound to Ibalizumab (yellow and purple), a monoclonal antibody

Bound

Ibalizumab

Correlation networks

Figure 2 illustrates the correlation networks learned
from the drug-free (left) and drug-bound (right) simula-
tions. The same lambda value (250) was used in each

case. In each panel, a black dot indicates that residue i
is connected to residue j in the graphical model. The
residues corresponding to gp120 and CD4 are labeled
on the left-hand side. Edges exist between both spatially

With drug
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Edges learned by algorithm for the drug-bound simulation.
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Figure 2 gp120-CD4 correlation networks learned with Algorithm 1. (Left) Edges learned by algorithm for the drug-free simulation. (Right)
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proximal and distant residues. For these panels, only the
data from the gp120 and CD4 atoms were modeled.
However, the effects of the drug are obvious. In the
drug-free case the direct correlations are largely intra-
molecular, with inter-molecular correlations limited to
the binding interface. The drug-bound model, in con-
trast, exhibits many more inter-molecular edges. More-
over, the drug-bound gp120 has far fewer inter-
molecular edges. That is, Ibalizumab not only modulates
the interactions between gp120 and CD4, it also changes
the internal correlation structure of gp120, despite the
fact that the drug only binds to CD4. This is consistent
with the hypothesis that Ibalizumab’s inhibitory action
occurs via an allosteric mechanism.

The probabilistic nature of the model means that it is
possible to compute the likelihood of each data set
under both models. Table 1 presents the log-likelihoods
of both data sets under both models. As expected, the
log-likelihood of the unbound data is larger (i.e., more
likely) under the unbound model than it is under the
bound model, and visa-versa. That is, the models are
capturing statistical differences between the simulations.

Figure 3 illustrates the correlation networks learned
for all three molecules in the drug-bound simulation. A
red box encompasses edges between the drug and the
V5 loop of gp120. These particular couplings are inter-
esting because it is known that mutations to the V5
loop can cause resistance to Ibalizumab [33]. Future
simulations of such mutants might provide further
insights into the mechanism of resistance.

Comparison to sub-optimal models

Our method is guaranteed to return an optimal model.
Here we compare the models returned by our algorithm
to those obtained by a reasonable, but nevertheless sub-
optimal algorithm for generating sparse networks. For
comparison, we inverted the sample covariance matrices
for each data set. The resulting sample precision
matrices were then thresholded so that they had the
same number of edges as the ones produced via our
method. We find that while the resulting models have
similar fits to the data (-0.02 log-likelihood for the
unbound trajectory; -0.03 log-likelihood for the bound
trajectory), the L; penalty is is much larger in each case
(0.86 vs 15.1 for unbound; 0.75 vs 12.9 for bound). The
difference in L; penalties is due to the radically different
choices of edges each method makes. Only 41% (resp.

Table 1 Log-likelihood (L L) of the gp120-CD
simulations under both models

Data L L(Data|Unbound L L(Data|Drug - Bound
Model) Model)
Unbound -0.03 -0.19
Bound -0.04 -0.29
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31%) of the unbound (resp. bound) edges match the
ones identified by our algorithm. Moreover, the thre-
sholded sample precision matrices (Figure 4) lack the
kind of structure seen in Figure 2. Thus, in addition to
producing models that maximize Eq. 6, the resulting
models are potentially easier to interpret.

Perturbation analysis

Next, we demonstrate the use of inference to quantify
the sensitivity of gp120 to structural perturbations in
the drug. We conditioned the model learned from the
trajectory with gp120, CD4 and Ibalizumab on the
structure of the drug and then performed inference (Eq.
4) to compute the most likely configuration of remain-
ing variables (i.e., those corresponding to gp120 and
CD4). This was repeated for each frame in the trajec-
tory. The residues with the highest average displacement
are illustrated as red spheres in Figure 5. As expected,
the residues that form the binding interface between
CD4 and Ibalizumab are sensitive Ibalizumab’s motions.
Interestingly, a number of gp120 residues are also sensi-
tive, including residues in the vicinity of the V5 loop.

Algorithm 2: application to a 1 microsecond simulation of
the engrailed homeodomain

We applied the second algorithm to a simulation of the
engrailed homeodomain (Figure 6), a 54-residue DNA
binding domain. The DNA-binding domains of the
homeotic proteins, called homeodomains (HD), play an
important role in the development of all metazoans [34]
and certain mutations to HDs are known to cause dis-
ease in humans [35]. Homeodomains fold into a highly
conserved structure consisting of three alpha-helices
wherein the C-terminal helix makes sequence-specific
contacts in the major groove of DNA ([36]. The
Engrailed Homeodomain (En-HD) is an ultra-fast fold-
ing protein that is predicted to exhibit significant
amounts of helical structure in the denatured state
ensemble [37]. Moreover, the experimentally determined
unfolding rate is of 1.1E + 03/sec [38], which is also
fast. Taken together, these observations suggest that the
protein may exhibit substantial conformational fluctua-
tions at equilibrium.

We performed three 50-microsecond simulations of
the protein at 300, 330, and 350 degrees Kelvin. These
simulations were performed on ANTON[14], a special-
purpose supercomputer designed to perform long-time-
scale simulations. Each simulation had more than
500,000 frames. In this paper, we learned a time-varying
model of the first microsecond of the 300 degree trajec-
tory, modeling the fluctuations of the alpha carbons.
The window size was 2 ns, and a sawtooth smoothing
kernel was applied such that the ith model is built from
the data from windows i, i -1, and i - 2 such with kernel
weights 0.57, 0.29, and 0.14, respectively. A total of 500
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simulation. Here, all three models are shown.

Figure 3 gp120-CD4-lbalizumab correlation networks learned with Algorithm 1.

Edges learned by algorithm for the drug-bound

models were learned from the first microsecond of the
trajectory.

Figure 7-A plots the differential entropy (Eq. 2) of the
500 models. We see that the curve has a variety of
peaks and valleys that can be used to segment the tra-
jectory into putative sub-states. Figures 7-B and 7-C
illustrate the correlation networks obtained from the
models with the smallest and largest differential

entropies, respectively. As can be seen, the simulation
visits sub-states that have radically different correlation
structures.

Figure 8-A plots the average log-likelihood of the
frames from the i + 1st window under the ith model.
Sharp drops in the likelihood can also be used to seg-
ment the trajectory into possible sub-states and to pin-
point the moment when the system transitions between

\
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lack the kind of structure seen in Figures 2 and 3.

Figure 4 Thresholded precision matrix models. (Left) Edges produced by thresholding inverse of sample covariance matrix for the drug-free
simulation. (Right) Edges produced by thresholding inverse of sample covariance matrix for the drug-bound simulation. Notice that the edges
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Figure 5 Sensitivity to perturbations. The red spheres mark the residues that are most sensitive to perturbations in the drug.

them. Figure 8-B shows the log-likelihood of each of the
frames under each of the 500 models. Figure 8-C shows
the first 50 rows and the first 2,000 columns of Figure
8-B. The clear block-structure of the matrix more
clearly illustrates the sub-states visited by the simulation.

Figure 6 Engrailed homeodomain.
A

Figure 9-A plots the symmetric version of the KL-
divergence (Eq. 3) between sequential models. Once
again, spikes in this curve can be used to segment the
trajectory.

Algorithm 3: application to a 1 microsecond simulation of
the engrailed homeodomain

Using the 500 models learned in the previous section,
we computed the symmetric KL-divergence between all
pairs of models. Recall that the KL-divergence (Eq. 3) is
a measure of the difference between distributions. Figure
9-B plots the pairwise KL divergences between the 500
models.

We then applied complete linkage clustering to the
KL-divergence matrix. Complete linkage clustering mini-
mizes the maximum distance between elements when
merging clusters. We selected a total of 7 clusters based
on the assumption that the number of sub-states visited
by a sequence of m models proportional to the loga-
rithm of m. The intuition behind this assumption is that
different sub-states are separated by energy barriers and
the probability of surmounting an energy barrier is
exponentially small in the height of the barrier. Figure
10 shows two representative structures from the two lar-
gest clusters. As can be seen, the primary difference
between the two structures is the N-terminal loop.
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Figure 7 (A) Differential entropy of the 500 model learned from the engrailed trajectory. (B) Correlation network of the model with the smallest
differential entropy (model 42). (C) Correlation network of the model with the largest differential entropy (model 342).
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Finally, we estimated the parameters of a Markov
chain over the 7 clusters by counting the number of
times a model from the ith cluster was followed by a
model from the jth cluster. The resulting state-transition
matrix is shown in Figure 11. The matrix indicates that
state 4 is the dominant state, but inter-converts with
states 6 and 7. This state-transition matrix and the gra-
phical models associated with each state encapsulate the
statistics of the trajectory.

Discussion

Many existing techniques for analyzing MD data are
closely related to, or direct applications of Principal
Components Analysis (PCA). Quasi-Harmonic Analysis
(QHA) [18,19], for example, is PCA applied to a mass-
weighted covariance matrix of atomic fluctuations. PCA-
based methods diagonalize the covariance matrix and
thus produce a set of eigenvectors and corresponding
eigenvalues. Each eigenvector can be interpreted as one
of the principal modes of vibration within the system or,
equivalently, as a normally distributed random variable
with zero mean and variance proportional to the corre-
sponding eigenvalue. That is, PCA-based methods
model the data in terms of a multivariate Gaussian

distribution. Our methods also build multivariate Gaus-
sian models of the data but does so over the real-space
variables, not the eigen-space variables.

PCA-based methods generally project the data onto a
low-dimensional subspace spanned by the eigenvectors
corresponding to the largest eigenvalues. This is done to
simplify the data and because lower dimensional models
tend to be more robust (i.e., less likely to over-fit the
data). Our methods, in contrast, uses regularization
when estimating the parameters of the model to achieve
the same goals.

The eigenvectors produced by PCA-based methods
contain useful information about how different regions
of the system move in a coordinated fashion. In particu-
lar, the components of each vector quantify the degree
of coupling between the covariates in that mode. How-
ever, the eigenvectors make no distinction between
direct and indirect couplings. Moreover, eigenvectors
are an inherently global description of dynamics. Our
methods, in contrast, do not perform a change of basis
and instead models the data in terms of a network of
correlations. The resulting model, therefore, reveals
which correlations are direct and which are indirect.
Pathways in these networks may provide mechanistic
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Figure 8 (A) Average log-likelihood of the frames from the i + 1st window under the ith model. Sudden drops in likelihood mark the transition
between sub-states. (B) Log-likelihoods for each frame under each of the 500 models. (C) The first 50 rows and first 2,000 columns of the matrix
from panel B. The block-structure illustrates the sub-states visited in the first 2,000 frames.
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Figure 9 (A) KL-divergence between sequential models. (B) Pairwise KL-divergences between models.
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Figure 10 Representative structures for states 4 (green) and 6 (magenta).
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Figure 11 State-transition matrix. The color indicates the log of the number of times state i transitions to state j.
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insights into important phenomena, such as allosteric
regulation. Our models can also be used to investigate
motions that are localized to specific regions of the
system.

Finally, we note that because our first algorithm pro-
duces a regularized estimate of the true covariance
matrix, %, it could potentially be used as a pre-proces-
sing step for PCA-based methods, which normally take
as input the sample covariance matrix.

Conclusions and future work

We have introduced three novel methods for analyzing
Molecular Dynamics simulation data. Our algorithms
learn regularized graphical models of the data which can
then be used to: (i) investigate the networks of correla-
tions in the data; (ii) sample novel configurations; or (iii)
perform in silico perturbation studies. We note that our
methods are complementary to existing analysis techni-
ques, and are not intended to replace them.

There are a number of important areas for future
research. Gaussian Graphical Models have a number of
limitations, most notably that they encode uni-modal
distributions and are best suited to modeling harmonic
motions. Boltzmann distributions, in contrast, are
usually multi-modal. Our third algorithm partially
addresses this problem by creating a Markov chain over

GGMs but the motions are still harmonic. Discrete dis-
tributions could be used to model anharmonic motions
(e.g., by adapting the algorithm in [24]). Gaussian distri-
butions are also best suited to modeling variables
defined on the real-line. Angular variables, naturally, are
best modeled with circular distributions, like the von
Mises. We've recently developed an algorithm for learn-
ing multivariate von Mises graphical models [25] which
could be used to model distributions over bond and
dihedral angles.

List of abbreviations used

GGM: Gaussian Graphical Model; KL: Kullback Leibler; MAP: maximum a
posteriori; MD: Molecular dynamics; MRF: Markov Random Field; MSM:
Markov State Model; PCA: Principal Components Analysis; QHA: Quasi-
Harmonic Analysis.

Acknowledgements

This work is supported in part by US NSF grant 115-0905193. Use of the
Anton machine was provided through an allocation from National Resource
for Biomedical Supercomputing at the Pittsburgh Supercomputing Center
via US NIH RC2GM093307.

This article has been published as part of BMC Genomics Volume 13
Supplement 1, 2012: Selected articles from the Tenth Asia Pacific
Bioinformatics Conference (APBC 2012). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2164/13?
issue=ST1.

Author details
'Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA
15213, USA. “Department of Biochemistry, University of Washington, Seattle,


http://www.biomedcentral.com/1471-2164/13?issue=S1
http://www.biomedcentral.com/1471-2164/13?issue=S1

Razavian et al. BMC Genomics 2012, 13(Suppl 1):S5
http://www.biomedcentral.com/1471-2164/13/51/S5

WA 98195, USA. *Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. “Lane Center for Computational Biology, Carnegie
Mellon University, Pittsburgh, PA 15213, USA.

Authors’ contributions

All three authors contributed to the creation and implementation of the
algorithms and writing the manuscript. NSRR. and CJ.L. performed the
experiments and analysis.

Competing interests
The authors declare that they have no competing interests.

Published: 17 January 2012

References

1. Frauenfelder H, Petsko GA, Tsernoglou D: Temperature-dependent X-ray
diffraction as a probe of protein structural dynamics. Nature 1979,
280(5723):558-563.

2. Frauenfelder H, Parak F, Young RD: Conformational substates in proteins.
Annu Rev Biophys Biophys Chem 1988, 17:451-479.

3. Henzler-Wildman K, Kern D: Dynamic personalities of proteins. Nature
2007, 450:964-972.

4. Boehr DD, Nussinov R, Wright PE: The role of dynamic conformational
ensembles in biomolecular recognition. Nat Chem Biol 2009,
5(11):789-796.

5. Fraser J, Clarkson M, Degnan S, Erion R, Kern D, Alber T: Hidden alternative
structures of proline isomerase essential for catalysis. Nature 2009,
462(7273):669-673.

6.  Eisenmesser EZ, Bosco DA, Akke M, Kern D: Enzyme dynamics during
catalysis. Science 2002, 295(5559):1520-1523.

7. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev D, M WW, Bosco D,
Skalicky J, Kay L, Kern D: Intrinsic dynamics of an enzyme underlies
catalysis. Nature 2005, 438:117-121.

8. Leitner DM: Energy flow in proteins. Annu Rev Phys Chem 2008,
59:233-259.

9. Karplus M, McCammon JA: Molecular dynamics simulations of
biomolecules. Nat Struct Biol 2002, 9:646-652.

10. Philips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C,
Skeel RD, Kale LV, Schulten K: Scalable molecular dynamics with NAMD. J
Comput Chem 2005, 26(16):1781-1802.

11. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL,
Koloss-vary |, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE:
Scalable algorithms for molecular dynamics simulations on commodity
clusters. SC 06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. New York, NY, USA: ACM; 2006, 84-96[http://dx.doi.org/
10.1145/1188455.1188544].

12. Pande VS, Baker I, Chapman J, ElImer SP, Khalig S, Larson SM, Rhee YM,
Shirts MR, Snow C, Sorin EJ, Zagrovic B: Atomistic protein folding
simulations on the submillisecond time scale using worldwide
distributed computing. Biopolymers 2003, 68:91-109.

13.  Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K:
Accelerating molecular modeling applications with graphics processors.
J Comput Chem 2007, 28:2618-2640.

14.  Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C,
Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP,

Ho CR, lerardi DJ, Kolossvary |, Klepeis JL, Layman T, McLeavey C,

Moraes MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B,
Wang SC: Anton, a special-purpose machine for molecular dynamics
simulation. SIGARCH Comput. Archit News 2007, 35:1-12.

15. Shao J, Tanner S, Thompson N, Cheatham T: Clustering molecular
dynamics trajectories: 1. Characterizing the performance of different
clustering algorithms. J Chem Theory Comput 2007, 3(6):2312-2334.

16.  Frickenhaus S, Kannan S, Zacharias M: Efficient evaluation of sampling
quality of molecular dynamics simulations by clustering of dihedral
torsion angles and Sammon mapping. J Comput Chem 2009,
30(3):479-492.

17. Daura X, van Gunsteren WF, Mark AE: Folding-unfolding thermodynamics
of a beta-heptapeptide from equilibrium simulations. Proteins 1999,
34(3):269-280.

18.  Karplus M, Kushick JN: Method for estimating the configurational entropy
of macro-molecules. Macromolecules 1981, 14(2):325-332.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

Page 13 of 13

Levy RM, Srinivasan AR, Olson WK, McCammon JA: Quasi-harmonic
method for studying very low frequency modes in proteins. Biopolymers
1984, 23:1099-1112.

Berendsen HJ, Hayward S: Collective protein dynamics in relation to
function. Curr Opin Struct Biol 2000, 10(2):165-169.

Ramanathan A, Agarwal PK, Kurnikova M, Langmead CJ: An online
approach for mining collective behaviors from molecular dynamics
simulations. J Comput Biol 2010, 17(3):309-324.

Ramanathan A, Yoo J, Langmead C: On-the-fly identification of
conformational sub-states from molecular dynamics simulations. J Chem
Theory Comput 2011, 7(3):778-789.

Lange OF, Grubmdiller H: Full correlation analysis of conformational
protein dynamics. Proteins 2008, 70(4):1294-1312.

Balakrishnan S, Kamisetty H, Carbonell JG, Lee SI, Langmead CJ: Learning
generative models for protein fold families. Proteins 2011,
79(4):1061-1078.

Razavian N, Kamisetty H, Langmead C: The von Mises graphical model:
regularized structure and parameter learning. Tech Rep CMU-CS-11-108,
Carnegie Mellon University, Department of Computer Science 2011.

Bowman GR, Beauchamp KA, Boxer G, Pande VS: Progress and challenges
in the automated construction of Markov state models for full protein
systems. J Chem Phys 2009, 131(12):124101.

Banerjee O, El Ghaoui L, d'’Aspremont A: Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data.
J Mach Learn Res 2008, 9:485-516.

Vandenberghe L, Boyd S, Wu SP: Determinant maximization with linear
matrix inequality constraints. SIAM Journal on Matrix Analysis and
Applications 1998, 19:499-533.

Kamisetty H, Xing EP, Langmead CJ: Free energy estimates of all-atom
protein structures using generalized belief propagation. J Comput Biol
2008, 15(7):755-766.

Kamisetty H, Ramanathan A, Bailey-Kellogg C, Langmead C: Accounting for
conforma-tional entropy in predicting bidning free energies of protein-
protein interactions. Proteins 2011, 79(2):444-462.

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C,
Skeel RD, Kalé L, Schulten K: Scalable molecular dynamics with NAMD. J
Comput Chem 2005, 26:1781-1802.

Jacobson JM, Kuritzkes DR, Godofsky E, DeJesus E, Larson JA,

Weinheimer SP, Lewis ST: Safety, pharmacokinetics, and antiretroviral
activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4
monoclonal antibody, in human immunodeficiency virus type 1-infected
adults. Antimicrob Agents Chemother 2009, 53(2):450-457.

Toma J, Weinheimer SP, Stawiski E, Whitcomb JM, Lewis ST, Petropoulos CJ,
Huang W: Loss of asparagine-linked glycosylation sites in variable region
5 of human immunodeficiency virus type 1 envelope is associated with
resistance to CD4 antibody ibalizumab. J Viro/ 2011, 85(8):3872-3880.
Gehring W, Affolter M, Burglin T: Homeodomain proteins. Annu Rev
Biochem 1994, 63:487-526.

D'Elia AV, Tell G, Paron |, Pellizzari L, Lonigro R, Damante G: Missense
mutations of human homeoboxes: a review. Hum Mutat 2001, 18:361-374.
Gehring W, Qian Y, Billeter M, Furukubotokunaga K, Schier A,
Resendezperez D, Affolter M, Otting G, Wuthrich K: Homeodomain-DNA
recognition. Cell 1994, 78:211-223.

Mayor U, Grossmann JG, Foster NW, Freund SM, Fersht AR: The denatured
state of engrailed homeodomain under denaturing and native
conditions. J Mol Biol 2003, 333:977-991.

Mayor U, Johnson CM, Dagget V, Fersht AR: Protein folding and unfolding
in microseconds to nanoseconds by experiment and simulation. Proc
Natl Acad Sci U S A 2000, 97:13518-13522.

doi:10.1186/1471-2164-13-S1-S5
Cite this article as: Razavian et al: Learning generative models of
molecular dynamics. BMC Genomics 2012, 13(Suppl 1):S5.



http://www.ncbi.nlm.nih.gov/pubmed/460437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/460437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3293595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18075575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19841628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19841628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11859194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11859194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18393676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12198485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12198485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16222654?dopt=Abstract
http://dx.doi.org/10.1145/1188455.1188544
http://dx.doi.org/10.1145/1188455.1188544
http://www.ncbi.nlm.nih.gov/pubmed/12579582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12579582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12579582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17894371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6733249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6733249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10753809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10753809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17876828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17876828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21268112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21268112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19791846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19791846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19791846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21120864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21120864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21120864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16222654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7979246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11668629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11668629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8044836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8044836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14583194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14583194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14583194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11087839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11087839?dopt=Abstract

	Abstract
	Introduction
	Background
	Molecular dynamics simulation
	Markov Random Fields
	Gaussian Graphical Models

	Algorithms
	Algorithm 1
	Learning regularized precision matrices
	Block Coordinate Descent

	Algorithm 2
	Algorithm 3

	Experiments
	Algorithm 1: application to the early events of HIV entry
	Correlation networks
	Comparison to sub-optimal models
	Perturbation analysis

	Algorithm 2: application to a 1 microsecond simulation of the engrailed homeodomain
	Algorithm 3: application to a 1 microsecond simulation of the engrailed homeodomain

	Discussion
	Conclusions and future work
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

