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Abstract

Background: Transmembrane B-barrel proteins are a special class of transmembrane proteins which play several
key roles in human body and diseases. Due to experimental difficulties, the number of transmembrane B-barrel
proteins with known structures is very small. Over the years, a number of learning-based methods have been
introduced for recognition and structure prediction of transmembrane B-barrel proteins. Most of these methods
emphasize on homology search rather than any biological or chemical basis.

Results: We present a novel graph-theoretic model for classification and structure prediction of transmembrane §-
barrel proteins. This model folds proteins based on energy minimization rather than a homology search, avoiding
any assumption on availability of training dataset. The ab initio model presented in this paper is the first method
to allow for permutations in the structure of transmembrane proteins and provides more structural information
than any known algorithm. The model is also able to recognize B-barrels by assessing the pseudo free energy. We
assess the structure prediction on 41 proteins gathered from existing databases on experimentally validated
transmembrane B-barrel proteins. We show that our approach is quite accurate with over 90% F-score on strands
and over 74% F-score on residues. The results are comparable to other algorithms suggesting that our pseudo-
energy model is close to the actual physical model. We test our classification approach and show that it is able to
reject a-helical bundles with 100% accuracy and B-barrel lipocalins with 97% accuracy.

Conclusions: We show that it is possible to design models for classification and structure prediction for
transmembrane B-barrel proteins which do not depend essentially on training sets but on combinatorial properties
of the structures to be proved. These models are fairly accurate, robust and can be run very efficiently on PC-like
computers. Such models are useful for the genome screening.

Background

Transmembrane proteins play several key roles in the
human body including inter-cell communication, trans-
portation of nutrients, and ion transport. They also play
key roles in human diseases like depression, hyperten-
sion, cancer, thus are targeted by a majority of pharma-
ceuticals being manufactured today. The transmembrane
proteins are divided into two main types according to

* Correspondence: vandu@lix.polytechnique.fr
INRIA AMIB Team, Laboratory of Computer Science (LIX), Ecole
Polytechnique, 91128, Palaiseau CEDEX, France

( BioMVed Central

their conformation: o-helical bundles and -barrels
(TMB). The TMB proteins, which are much less abun-
dant than helical bundles, are found in the outer mem-
brane of Gram-negative bacteria, mitochondria and
chloroplasts. They perform diverse functions such as por-
ins, passive or active transporters, enzymes, defensive or
structural proteins [1]. Thus, the structure of TMB pro-
teins is very important for both biological and medical
sciences.

These proteins, which span the membrane entirely,
make up 20 - 30% of identified proteins in most whole
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genomes. However, due to difficulties in determination
of their structures, solved TMB structures constitute
only a meagre 2% of the RCSB Protein Data Bank (PDB)
[2-5]. This is mainly due to experimental difficulties and
complexity of the TMB structure [6]. Consequently, var-
ious learning-based techniques have been developed for
discriminating TMB proteins from globular and trans-
membrane o-helical proteins [6-8], and for predicting
TMB secondary structures [7-12]. We first discuss these
methods and their potential shortcomings in detail, and
then proceed with describing our approach.

Ou et al. [10] proposed a method based on radial basis
function networks to predict the number of B-strands
and membrane spanning regions in f3-barrel outer mem-
brane proteins. Randall et al. [9] tried to predict the
TMB secondary structure with 1D recursive neural net-
work using alignment profiles. Gromiha et al. [7,8] used
the amino acid compositions of both globular and outer
membrane proteins (OMPs) to discriminate OMPs and
developed a feed forward neural network-based method
to predict the transmembrane segments. Bagos et al.
[11] produced a consensus prediction from different
methods based on hidden Markov models, neural net-
works and support vector machines [8,13-19]. Tractabil-
ity has been an issue for some of these approaches. In
order to overcome this limitation, Waldispiihl et al. [12]
used a structural model and pairwise interstrand residue
statistical potentials derived from globular proteins to
predict the supersecondary structure of TMB proteins.
Freeman et al. [6] have introduced a statistical approach
for recognition of TMB proteins based on known physi-
cochemical properties.

Most of these rely on the learning assumptions in the
underlying models as well as the sampling of proteins in
their training set. However, the number of TMB pro-
teins known today is tiny. Thus, it is arguable whether
these approaches can work well for recognizing and
folding TMB proteins which are not homologous to
those currently known. It is also important to note that
none of these methods allow for permutations in protein
structures. The TMB structures are not merely a series
of B-strands where each is bonded to the preceding and
succeeding ones in the primary sequence, but they may
contain Greek key or Jelly roll motifs as well, for
instance, the C-terminal domain of the PapC usher
[PDB:3L48]. This level of structure may be described as
a permutation on the order of the bonded strands.

In this paper, we present a novel ab initio model for
classification and structure prediction of TMB proteins
based on minimizing free energy in a graph-theoretic
framework. It is able to deal with permuted TMB struc-
tures. The prediction accuracy is evaluated on known
TMB proteins available in popular protein databases
[20], and compared with existing software [9,10,12,21].
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Our approach also performs well in structure prediction
and the results are comparable to those of the existing
algorithms. Ours is the first model that actually gives an
insight into the physicochemical model rather than
merely classifying or predicting TMB proteins. The
results show that our approach is also good at discrimi-
nating TMB proteins.

Results and discussion

Folding

The folding prediction results are presented in Table 1
and Figure 1. Figure 1 plots the Matthews Correlation
Coefficient for our approach BBP (Beta-Barrel Predictor)
and TMBpro for different proteins along the x-axis. The
results of our approach are comparable to those of
TMBpro but more consistent as we do not rely on
training for folding. We note that, in the cases the pro-
gram predicts an optimal structure with a wrong num-
ber of strands, the optimal energy is really close to the
energy of the topologically right structure.

The TMBETAPRED-RBF web-server predicted non-
TMB for 24 over 41 proteins of PDBTM40, or 58.5%.
The structures for correctly identified proteins were
completely accurate. This might be because they were
included in the training set.

Evaluation of shear numbers

We study the energy distribution of 17 TMB structures
(ECOLI40) in E. coli taken from PDBTM40 (including
[PDB: 1AF6_A, 1BXW_A, 1BY3_A, 1FEP_A, 1ILZ_A,
1PNZ_A, 1QJ8_A, 1TLW_A, 2FIT_A, 2GSK_A,
2HDF_A, 2IWW_A, 2JIN_A, 2R4P_A, 2WJQ_A,
3AEH_A, 3GP6_A]) with regards to the slant angle,
hence the shear number (see Figure 2). Most optimal
structures incline with an angle of 41° - 49°, as observed
in databases. This suggests that our model performs
well the physicochemical properties of TMB structures.
It should be also noted that there is no natural way to
define the shear number a priori.

Influence of the filtering threshold 11 2

We apply the filtering thresholds p= , and on
ECOLI40. These thresholds ensure that orP avzerage, on-
sidering 3-residue blocks as subunits, each segment is
accepted as a B-strand if its propensity to be -strand is
at most 3, 2, 1.5 times, respectively, less than its propen-
sity to be other structure (a-helices or turns/loops). The
observed minor difference in accuracy with such consid-
erably distinguished thresholds reinforces the fair inde-
pendence of our approach from the training data. The
results in Table 2 show the strong predicting ability of
BBP from a poor known database. The lower the para-
meter p, the more independent to the training the pre-
dictor. This reduced the prediction performance of the



Tran et al. BMC Genomics 2012, 13(Suppl 2):S5
http://www.biomedcentral.com/1471-2164/13/52/S5

Table 1 Comparison of prediction accuracy on PDBTM40
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Residues Strands
Method Q, Specificity  Sensitivity F-score MCC Specificity Sensitivity F-score MCC
TMBpro 812 + 6.1* 793 £79 842 £ 112 076 0.1 061 = 0.14 90.1 £ 150 942 £ 125 093 £0.12 085 £ 0.26
BBP 792 +£54 784 +63 804 +99 074 +0.1 057 +£0.12 914 + 120 914+ 113 092 £ 0.1 083 £0.22
*Standard Deviation
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Figure 1 Comparison of BBP and TMBpro on structure prediction results.
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model on the known structures, however, it may be use-
ful to discover new TMB proteins.

Evaluation on mutated sequences

We generate the mutated sequences from ECOLI40 by
substituting the amino acids at turns or loops using the
PAM250 substitution matrix [22]. Each sequence in
ECOLI40 is mutated up to 5% of amino acids into 10
new sequences. Figures 3 and 4 show the Matthews
Correlation Coefficient and F-score for residues and f3-
strands. We observe from these results the stability of
our predictions. It also suggests that the TMB proteins
are stable against these mutations at their turns and
loops. The difference in structures of those mutated

proteins may merely come from the shift of membrane
spanning f-strands when their two extremities are
mutated.

Permuted structures

For [PDB:3L48], the C-terminal domain of the PapC
usher in E. coli, the observed structure topology con-
taining a Greek key motif corresponds to the permuta-
tion o = (1, 4, 3, 2, 5, 6, 7) and is predicted with an
accuracy (Qy) of 70.2% at p = 0.2.

Following the experimental observations that were
published previously on the efficiency of the in vivo
membrane assembly of OmpA variants [23], we test our
algorithm with different given permutations. OmpA

Table 2 Comparison of prediction accuracy on ECOLI40 with different thresholds

Residues Strands
P Q. Specificity Sensitivity F-score MCC Specificity Sensitivity F-score MCC
2/3 80.9 + 4.8*% 804 +52 827 +84 0.77 + 0.04 061 + 0.08 948 +57 933 £59 0.94 + 0.05 088 =+ 0.1
1/2 79.7 £60 785 £51 824 +86 0.76 + 0.05 0.58 = 0.11 961 +48 954 £53 0.96 + 0.05 091 + 0.09
1/3 777 +56 756 +65 81.1 £86 0.74 + 0.05 055+ 0.1 917 +£92 949 +65 094 + 007 0.87 + 007

*Standard Deviation
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Figure 3 MCC of mutated ECOLI40.

IAF6 IBXW IBY3 IFEP 1ILZ 1PNZ 1QI8 ITLW 2FIT 2GSK 2HDF 2IWW 2JIN 2R4P 2WIQ 3AEH 3GP6

[PDB:1BXW] consists of eight 3-strands, thus without
feasibility being taken into account, there are (8-1)! =
5040 circular permutations to check (see Figure 5). The
pseudo-energy 10.21 of the observed permutation is
found in the lowest energy zone. 41 permuted struc-
tures, or 0.81%, reach an energy of (10.21 + 0.3). A
ratio of about 1.31% is found in the case of OmpX
[PDB:1QJ8] (see Figure 6). These results are not

surprising since a protein may be folded into more than
one spatial conformation. In both cases, a Poisson-like
distribution is found. This observation may help to dis-
criminate most of infeasible conformations with the use
of a threshold on the global energy. Hence, the method
is expected to rapidly find a small set containing the
right structure within a threshold of, for instance, 2%
from the lowest energy and with structural feasibility
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conditions on permutations. This set might be much
smaller be refining the biologically plausible permuta-
tions. Other proposed solutions in this set may be the
candidates for in vivo and in vitro studies.

Classification
100% of the non-redundant set of 177 «-helical trans-
membrane proteins of length from 140 to 800 residues

in PDBTM are rejected, whereas 31 out of 32 non-
redundant lipocalins taken from PDB are predicted as
non-TMB (the dataset is available at [24]). Though lipo-
calins are also f-barrels which reverse the TMB pattern
with a hydrophobic core, the environmental effects on
both sides of the barrel are still different. Our pseudo-
energy model yields unfavorably on such structures and
discriminates considerably better than the learning-
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Figure 5 Predicting for 7! permutations on E. Coli OmpA [PDB:1BXW] 8-strand barrel.
A

based methods like Freeman-Wimley [6], TMBpro [9], transmembrane protein super-secondary structure based
PRED-TMBB [18] and TMBETAPRED-RBF [10], but on a variety of potential structures. Our approach takes

also of transFold [12]. into account many physicochemical constraints and
minimizes the free energy. It also accounts for permuted
Conclusions structures, thus giving more complete information on

We have presented a new pseudo-energy minimization the folded structure. Our method is quite accurate with
method for the classification and prediction of more than 90% sensitivity and F-score, over 80% M.C.C.
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Figure 6 Predicting for 7! permutations on E. Coli OmpX [PDB:1QJ8] 8-strand barrel.
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score on strands; and over 74% accuracy and F-score on
residues. The results are comparable to those given by
TMBpro and TMBETAPRED-RBF, which are both
learning based methods. Moreover, our results are more
consistent and have a significantly less variation across
different TMB proteins. This is especially interesting
given that our algorithm is based mainly on pseudo-
energy minimizations, and the probabilistic model only
plays a very small role. While the model presented here
is only for TMB proteins, it can be easily extended to
accommodate ¢-helical bundles. We did not use a more
sophisticated statistical model for classifying -barrel
strands because that would risk overfitting and reliance
on the training dataset. It is also interesting to note that
our approach performs very well for identification of
TMB proteins, rejecting all the a-helical bundles. The
Freeman and Wimley [6] approach is more accurate on
some datasets. However, it risks overfitting and does not
predict the structure. Therefore, our approach provides
the best overall classification results amongst the meth-
ods that try to predict structures. Our model does learn
the probabilistic model from training dataset, but it is
mainly to screen out obvious non-TMB strands. There-
fore, there are no concerns about the size of the training
data or overfitting.

Even though the results presented in this paper are
comparable to other methods, the methodology pre-
sented here is novel and gives insight into the actual
physicochemical constraints and energy. Moreover, our
approach should be able to predict TMB proteins which
are significantly different from known proteins. Finally,
our approach provides more information than the cur-
rent approaches by providing the permutations of the
strands.

Future work
We are working on energy models for TM a-helical
bundles and f-barrels with broken strands, as well as
globular B-barrels like lipocalins or membrane targeting
proteins (C2 domain) where permuted structures are
usually found. Nevertheless, similar to the other meth-
ods, we only propose single-domain protein structures.
We are also currently working on refinements in
structural constraints and hydrophobicity, which may
help to improve the accuracy of our predicted structure.
Finally, it will be interesting to investigate more sophis-
ticated statistical models for the initial screening, both
to improve the results and understand how effective a
mixed approach can be.

Methods

We now present the methods developed for classifica-
tion and structure prediction of TMB proteins (a preli-
minary version of this work appeared as a short paper

Page 8 of 18

in [25,26]). TMB proteins are hard to identify, however,
it is relatively easy to identify a majority of other pro-
teins which are not TMB. We use physicochemical
properties and a simple probabilistic model based on a
sliding window for filtering amino acid segments that
are obviously not involved in any f-barrel structures as
a membrane spanning 3-strand. Proteins that are con-
sidered to be putative TMB proteins by this initial phase
are then further analyzed. Next, we try to fold the given
protein, treating it as a TMB protein, using the pseudo-
energy minimization model. If the protein cannot be
folded into B-barrels according to the energy minimiza-
tion framework, the protein is rejected and classified as
a non-TMB protein.

Before presenting the simple model that we used for
filtering the transmembrane f-strands, we discuss some
physicochemical constraints that a protein must obey to
be a TMB protein. We enforce these constraints in both
the filtering and folding steps of our algorithm.

Geometric framework for B-barrels

For a regular B -barrel [27-29], the backbone geometry
is entirely determined by #, the number of strands com-
posing the barrel, and by S, the shear number, which is
defined below.

Definition 1 Shear number of a -barrel In a regular B-
barrel, the shear number S is unambiguously defined as
the ordinal distance between an amino acid A and an
amino acid B that is located on the same strand as A
and linked to A through a path of hydrogen bonds. B is
the projection of the “copy” of A after one turn on the
first strand of the barrel.

Structural constants are # (= 3.3A), the jump per
amino acid along a strand, and d (= 4.4A), the mean
distance between adjacent strands, given respectively by
the peptide bond and hydrogen bond geometries. The
other geometric characteristics, such as 6, the slant
angle of the strands relative to the z barrel axis, are
given from n, S, h and d [30]:

tané = hS
" dn

Angle 6, in association with a given membrane thick-
ness, is involved in the energetic rules and restricts the
membrane spanning f-strand length. Then, # and S
have to be fixed as parameters.

Definition 2 Relative shear number Given a shear
number S, the relative shears between adjacent strands
remain as n - 1 degrees of freedom. As a convention, we
consider the relative shears on the extracellular side of
the barrel. So, Vi >1, s;, the relative shear of strand i + 1
with respect to strand i (strand n + 1 being identified
with 1), is measured on strand i as the ordinal distance
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between the undermost amino acid of strand i and the
one that is directly bound to the undermost amino acid
of strand i + 1.

On the example of Figure 7, the sequence of relative
shears (s;) is (1 112111 2). The sum of consecutive
relative shears naturally defines the shear between two
extreme strands, thus we have the constraint for the -
barrel, where the two extreme strands are strand 1, for
instance, and itself after a round on the barrel:

Z Si=S

1<i<n

We define the shear number, by extension, for the case
of a B-sheet (i.e. an open fB-barrel) to make our algo-
rithms capable of dealing with the structure of 3-sheets.

Definition 3 Shear number of a B-sheet The shear
number of a n-strand B-sheet is defined as the sum of
relative shears on consecutive pairs of adjacent strands:

S=ZS{

1<i<n—1

where s; is the relative shear of strand i + 1 with
regard to strand i.

Each B-strand is directed with respect to the sequence
order from N-terminal to C-terminal. A strand is said to
be upward if it is oriented from the extracellular envir-
onment to the periplasmic space, i.e. the N-terminal of
the strand is located on the extracellular side and its C-
terminal is on the periplasmic side. Inversely, the strand
is said to be downward. The upward/downward orienta-
tion of the strand, relatively to the barrel axis, defines
another degree of freedom.

Finally, considering a f-strand as a ribbon where the
amino acids direct their side-chains alternatively on
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both sides, toward the barrel interior (channel) or
toward the surrounding lipid (membrane), we will dis-
tinguish two ways of facing, neglecting small swivel
adjustments. A strand is said to be odd inward if the
odd indexed amino acids face to the channel and odd
outward if those face to the membrane. We have one
more degree of freedom.

Physicochemical constraints. On the amphipathic 3-
strand of TMB proteins, the side-chains of amino acids
are directed towards the membrane and the channel
alternatively. Hydrophilic and polar side-chains orient
towards the aqueous interior while hydrophobic ones
contact the hydrophobic bilayer [1]. We use the Kyte-
Doolittle scale [31] to measure the hydrophobicity H(r)
of each amino acid r. In this scale, a higher value repre-
sents higher hydrophobicity, and vice versa. The neces-
sary condition for a segment 7; ... 7; to be a potential
membrane spanning f-strand is that one side is hydro-
phobic and the other side is hydrophilic. Formally, we
define

Hij = (H(rak)), i < 2k < j
ng = <H(T2k+1)>,i < 2k+1 S],k e N

as the average hydrophobicity on the respective even
and odd numbered sides. Hence, the constraints

max{HfJ-, ng} > (¢~ and min{HfJ,

H?J} <t

are necessary for a segment of j - i + 1 consecutive
amino acids r; .... 7; to be a potential membrane span-
ning f-strand, where { ~ is a lower bound for the hydro-
phobic side and (" is an upper bound for the
hydrophilic side. We use the values { ~ = -1 and (" = 1,
which were obtained through an statistical data analysis

Figure 7 The schematic planar view of a 8-f -strand barrel (strand 1 is duplicated for clarity). Thick lines represent the peptide bonds
between consecutive amino acids along their strand. Thin lines represent the hydrogen bonds between the amino acids in adjacent strands. In
this example, the shear number is S = 10, which is the ordinal distance between amino acids A and B. We note that all known B -barrels have a
positive shear number [43] and are slanted “to the right”, as illustrated here.
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Figure 8 The distribution of average hydrophobicity index of the hydrophilic and hydrophobic side of the membrane spanning 8

on known TMB structures (see Figure 8). Then, with
respect to the TMB structure, the segment r;....r; is
defined as odd inward oriented if Hj; < H{; and odd
outward oriented if H;; < HSJ"

Classification filtering. In order to identify substrings
as potential membrane spanning -strands (the vertices)

or turns/loops (the edges), we introduce a simple prob-
abilistic model that acts as a primary filter. We use a
sliding window (segment) as a sequence of consecutive
[-residue subsegments (or blocks) (! = 3 in our imple-
mentation). Let r denote the occurrence of a given
block (r = riry . . . r;) and let 7 be the event that a block
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is found in a given conformation (f-strand or turn/
loop). The information that 7 gets from r is defined as:

fr,r/f'rr
ngf,-/f-,-'

where f, , represents the frequency observed in the
training dataset for a block r to be found in conforma-
tion 7 and we denote for short [32]:

f-,r = th,rr ff,~ = for” f = Zfo,r

Thus, I(z ; r) measures the influence of r on the occur-
rence of 7. If I(z ; r) = 0, there is no influence; whereas I
(z; r) >0 indicates that r is favorable to the occurrence
of 7 and vice versa. Formally, the preference of r in
favor of 7 as opposed to 7, any conformation different
from 7 [33], is:

P(zlr) _

I(z;7) =log P(r)

fr,r/fr,-
ff,r/ff,-

A simple measure is associated to each segment r; ry .
.. 1, that helps determine if it is likely a 3-strand or a
turn/loop. It is defined as the sum of informations on
all the l-residue blocks:

I(t:T; r)=1(z; r) = I(T; 1) =log

p—I1+1

f(t:f;rl ra...1p) = Z

i=1

I(T:T; 7iTiy1 ... Tisi—1) — log p
p—1+1

The segment is then considered as a candidate for
conformation 7 if I(t : #;r112...75) > 0.

The non-redundant training set PDBTM40 of 41 TMB
proteins is used to learn this probabilistic model. Due to
the small size of the training set, we apply the filter with
a relatively low threshold at p = _ to avoid overfitting.
This ensures that on average, eachoblock r is accepted in
conformation 7 if the propensity for 7 to be in 7 (i.e. f; ,
/f» +) is at most 1.5 times less than the propensity to be
in T(i.efzr/f;,-). Only substrings that pass these very
stringent criteria are considered to be putative strands.

Now we present a graph-theoretic energy minimiza-
tion model for recognizing and folding TMB proteins.

Definition of the graph structure

Dynamic programming approach. Let S be the
sequence of the N amino acids constituting the primary
structure of a given protein. We will consider
G(V, E, &intrs Eadjs Eloop) , the weighted directed acyclic
graph (DAG) [34] built from S as follows: Vertices Let
V = V*U {T, 1} be the set of vertices. Each vertex of V*
represents a candidate secondary structure item as a f3-
strand associated with a given set of parameters. It
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corresponds to a contiguous part (a substring, defined
by its starting and ending indices 1 < v < k < N) of S
that satisfies given conformational constraints (such as
length, propensity to be a B-strand, . . .). The associated
parameters provide information about the discretized
spatial laying of this part relatively to the whole struc-
ture. So, combining the upward/downward and inward)/
outward degrees of freedom previously introduced, we
consider 4 different orientations for each given candi-
date -strand. We could also consider the different
instances of relative shear to multiply the number of
vertices, but we do not for reasons to be clarified later.
A canonical order is defined on V* as the lexicographic
order on tuples formed by the respective starting/ending
indices in § and the associated parameters. The length
constraint implies that the number of candidate sub-
strings and thus |V|, the number of vertices, are
bounded above by kN for a small value k. To simplify
further definitions, a dummy vertex T will be used to
represent an empty substring at the start of S and,
similarly, 1 will represent an empty substring at the end
of the sequence. To extend the order on all of the ver-
tices, we set T <v < L, Yv € V* (see Figure 9).

Edges

Let E € V x V be the set of directed edges. Intuitively,
an edge corresponds to a turn or a loop that connects
two consecutive f3-strands. To be more precise, Vv, w €
V*, with v,, K,, v, K, denoting their respective starting
and ending indices, (v, w) is an edge, if x, <v,, - 2 and
the substring of amino acids from «, + 1 to v, - 1 satis-
fies the constraints that allow to form a turn or a loop
(such as conditions on length, flexibility, propensity, . . .)
also depending on the relative laying of the two sub-
structures. We have the elementary property:

Yy, weV*, (v, weE=v<w

for the lexicographic order, and this ensures the DAG
structure.

The set E also contains edges of the form (T, v) that
define the subset of starting vertices - the leading sub-
strings satisfying specific constraints. Similarly, E con-
tains edges of the form (v, 1) that define the subset of
ending vertices, with a satisfactory trailing substring.
Again, the length constraints applied to the substrings
associated to edges imply that |E|, the number of edges,
is O(|V]) or O(N).

Figure 9 gives a small example of such a graph (to
simplify, only one orientation has been considered). An
edge like (v4, v,) is forbidden, since the two correspond-
ing substrings overlap. Edges like (v,, v3) or (v,, vg) are
also forbidden, since the inserted substrings are respec-
tively too short for a turn or too long for a loop.
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HSAIQIREAH v1
AIQIREAHFP vz
DAYGRAPIM 73
GRAPIMGSIN

v4 Us

Figure 9 A short example of the graph structure.

LHSAIQIREAHFPGDAYGRAPIMGSINGFADICIPGFRSHRPSGIYTGPVGIDM

V4
GSINGFADIC vs
ADICIPGFRSH Vs

HRPSGIYTGP v7
IYTGPVGIDM s

Energy attributes
The attributes that complete the definition of the graph
G are pseudo-energy functions defined as follows:

« Vv e V', Enu(v) represents the intrinsic energy of
the given strand in the given orientation. This term
is the sum of both the internal energy of the sub-
structure, i.e. the interactions between its own
amino acids, and the interaction energy with the
environment (e.g. membrane and channel) apart
from the rest of the considered protein.

Note that Eing(T) = Eine(L) = 0.

o Y(v,w) € V*xV*, Eqj(v,w, s) represents the inter-
action energy of the pair (v, w) when the two corre-
sponding strands are placed side by side along the
barrel, with respect to the respective orientation
parameters associated to the vertices and accordingly
to the relative shear s. The energy will take into
account the number of contacts and different side-
chain interactions such as the packing of hydropho-
bic cores and bonding abilities. Then,
Y(v,w) € V' xV*, Eugj(v, w) = mingEaqj(v, w, s)is  the
interaction energy of the pair (v, w) for an optimal
relative shear. It is further assumed that &g is
defined over a superset of E, since we will consider
the case where two adjacent strands are not conse-
cutive along the sequence.

We also introduce the particular values:
Eadj(T,v) = Eagj(v, L) =0, Vv € V.

+ An associated function s,q; is defined such that:

o Y(v,w) € V¥ x V¥, Eugi (v, w, Sadj (v, w)) = Eagj (v, w),
which is a relative shear that leads to the optimal
interaction energy.

An arising question is why the orientation degrees of
freedom are described as a multiplicity of nodes but
the relative shear degrees of freedom are considered
when calculating the &) terms. A first answer
comes from the fact that wrong orientations are
rather absolute and will result in pruning the sets E
and V while the shear parameters are not so discri-
minative. The main reason is that we will consider
“floating” parts in which adjacencies are already set,
while a relative shear between any two parts is not
yet known. In such a situation, attaching the relative

shears to node pairs allows a significant
factorization.
e Vv, we EVte{l,2,...,n-1}and V s - a rela-

tive shear, Eoop(V, W, t,s) is related to the intrinsic
energy of the turn/loop between the strands v and w
(consecutive along the sequence) when they are
placed at a distance ¢ along the barrel with a relative
shear s. The distance ¢t = 1 corresponds to the case
where the strands are placed consecutively on the
barrel, while an integer value ¢ >1 will correspond to
the case where ¢ - 1 other strands are interleaf.

To simplify, we will also use &oop(T,v) or
Eloop(v, L) for denoting the intrinsic energy of the
outer fragment attached respectively to a starting or
an ending vertex v. As such a fragment has a free
side, the position parameters may be dropped.

Then, in the usual case of two B-strands that fold as a
hairpin, the related energy is considered to be
Eadj(v, W) + Eloop (v, W, 1, 5agj (v, w)). It is supposed a rela-
tive flexibility for turns and loops, so, when a fold is fea-
sible, &loop is weak compared to £.4j and the relative
placement of the two f-strands is enforced to be close
to Saq;. Nevertheless, Eloop will result in a strong penalty
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in the case of an unfeasible turn or loop, for example a
loop with a majority of hydrophobic residues.

Protein folding problem

Given a graph G(V, E, &in, €adj Eloop) defined as above,
two integers #n, S, and a permutation ¢ as 3 parameters,
we look for the path P in G that maximizes the follow-
ing objective function:

E=) Enu)+ D Eroop(v, w)+

veP (vw)eP

such that Z Sadj(v, w) =S.
(vw)eP

Such a path PP whose vertices are arranged onto a cir-
cle is called a circle-attached path. The adjacent vertices
in the path are not necessarily successive on the circle.
This order of succession is determined by the given per-
mutation ¢ (see Figure 10).

Solving as the longest path problem

We will first consider an open structure, as a 3-sheet,
where the adjacency of strands follows their natural
order along the amino acid sequence, i.e. ¢ is an identity
permutation. We involve here the constraint ¥;_;.,, s; = S.
Hence, solving such a structure will result in finding a
path P in G whose overall “energy” is given by the sum:

> G w)

(vw)eo (P)

Page 13 of 18

[34] of complexity O(|V]) in space and O(|V]| + |E|) in
time, that is also O(N) for both, from the structural
constraints that relate |V|, |E| and N. The objective is
the computation of C} and the optimal structure is
then reconstructed by a usual traceback post-processing.
Note that, for each path, we only have to consider its
last vertex, so, we have to track single index states.

For a barrel secondary structure, we have to consider
a closing spatial adjacency between the last and the first
strands. o is still an identity permutation. The constraint
on the shear number becomes Y _;<,,41 $; = S. The
dynamic programming scheme is almost the same as
previously, except that we also have to keep track of the
first vertex of any path. So, Vv € V*, such that (T, v) €
E, let C(()v,v) = —&inu(V) — E1oop(T, v), then the general
recurrence is: Vv, w € V¥, Vi, such that (T, v) € E,

h=saj (u,0)

Chy = [Clp ™ = Eine(w) = Eailit, 1) — Eroop(it, w, 1, saq1t, w))]

() ueVTua,w)EE
and a special closing step is needed: V v € V*, Vh,
such that (T, v) € E,

Ch*iadi(u,l/) _ gadj(u/ 1/) _ gloop(ur J—):I

h -
C(v,L) - ueVr,laAE,if)eE [ (vu)

The goal is to calculate maXV,(T,V)Ep,C?M).Thus the

& = ToepEine(V) + Zww)er Eagi(v: W) + E100p (v W, 1, sagj(v, w))|scheme is of complexity O(|V|?) in space and

Aiming at minimizing &, the protein folding problem
will turn into finding the path from T to L that maxi-
mizes the criterion C = —&. Let C' be the maximum
value for C over all the paths from T to v, with a shear
number of / of the corresponding B-sheet, then C% =0
and Vv e V\{T}, V4, Cﬁ is defined as:

Cl= max [Chale)

v Einu(v) — Eadj(th v) — Eroop(t, v, 1, saqj(u, v))]
ueV,(u,v)eE

Since the graph is a DAG, the longest path problem is
solved with a well known dynamic programming scheme

O(IV]-|E]) in time, that is also O(N?) for both, from
the structural constraints. This may produce paths of
any length and the constraint of # strands is applied as
a cut in the recurrence.

Generalization

In a more general case, we consider permutations to
deal with the fact that the arrangements of the strands
along the barrel do not necessarily follow their order
along the sequence. This usually occurs with Greek key
motifs or more rarely with Jelly roll motifs. Hence, the
protein folding problem becomes finding the longest

Figure 10 A permuted S-barrel with a Greek key motif 3654, 6 =1 2 3 6 5 4. Left part is a 3D synthetic view of such a protein. Right part
is a schematic view from above, looking down along the axis of the barrel.
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path P in a graph with respect to a given permutation
o, i.e. the vertices of P, seen on a circle as in Figure 10
are permuted according to G.

Let o be a circular permutation of {1, 2, . . ., n}.
When 1, 2, .. ., n are numbering the positions along
the barrel, values o (1), 0 (2), . . ., o(n) will give the
respective ranks of the strands in the sequence order. A
position of reference along the barrel is fixed by setting
o(1) = 1. Figure 10 shows a first example of a structure
with a Greek key motif, which is described by the per-
mutation ¢ = (1, 2, 3, 6, 5, 4).

Hereafter, we will illustrate the presentation of our
algorithm by following the example ¢ = (1, 2, 5, 4, 3, 6),
which is a bit trickier situation. This example is now
said the current example. The corresponding structure
and the dynamic programming process are illustrated in
Figures 11 and 12.

The dynamic programming scheme now consists in
building a barrel, by adding a next strand, taken in
sequence with respect to the graph edges, but that is
inserted at the position defined by the given permuta-
tion. Useful values are the ranks (in the sequence order)
of the two strands between which a given one will be
inserted. For instance, with the current example, the 5th
strand will be inserted between the 2"¢ and the 4™
strands.

Let now k denote the level of construction (1 < k < n),
that is the number of strands already placed.

Proposition 4 The k™ strand (in the sequence order) is
inserted between the two strands whose ranks (in the
sequence order) are left, and right,, defined as:

o(c™(k) = 1)if o (k) > 1

left, = a(n) otherwise

otherwise

With the current example, we get (see Figure 11):

left; = 6 left, = 1 left; = 4 right; = 2 right, = 5
right; = 6

left, = 5 left; = 2 leftg = 3 right, = 3 right; = 4
rightg = 1

An important piece of information to store for the
dynamic programming scheme is the set of “active”
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indices, i.e. ranks of the strands (in the sequence order)
that are not definitively bonded on both sides, along the
barrel, and also not linked along the sequence and thus
have to be kept as degrees of freedom. So, in the current
example (see Figure 12), we have to keep in memory as
many solutions (to subproblems) as valid instances of
the 2°¢ and 4™ strands, until an optimal choice for
these is recorded as a solution for each instance of the
5™ strand. At that time, any instance as the 5™ strand is
kept as a candidate for a link with the 6™, by a turn or
loop, while the different instances as the 3" and 1°* are
kept for proceeding to an insertion in between.

Definition 5 Two ranks i and j, which refer to the
sequence order, are said “adjacent” if

o=t (i) — o)l € {1, n—1},

where the case n - 1 is intended for the adjacency that
will close the barrel.

Proposition 6 The set of “active”
sequence) at level k is defined by:

indices (in the

conf, = {k} U {i|1 <i<kand (3j:k <j < nli,j are "adjecent”)}

With the current example of Figures 11 and 12, we
get:

conf; = {1} conf, = {1, 2} conf; = {1, 2, 3}
conf, = {1, 2, 3, 4} conf; = {1, 3, 5} conf; = {6}

Thus, for this example, the maximal complexity in
space, O(N*), is reached for the set of solutions to the
subproblem with 4 strands. Then looping over this set,

right, - [rf(ff‘l(k)+ 1)if o~!(k) < nfor computing the set of solutions to the subproblem

with 5 strands, will also cost O(N*) in time, since the
choice for the 5™ strand is bounded by the structural
constraints embedded as edges in the graph. It is a dif-
ference with most of the dynamic programming
schemes where the complexity in time is expressed with
an additional O(N) factor compared the complexity in
space. As an other example, in the case of Figure 10, we
obtain the complexity O(N?) in both time and space,

1 25 4 3 6

Figure 11 A permuted f-barrel with a Greek key motif 5436, 6 =12 5 4 3 6. Left part is a “flattened” side view, stands 6 and 1 being also
adjacent. Right part is a schematic view from above, looking down along the axis of the barrel.
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confy = {1,2} confs = {1,2 3}

listed in the conf set.
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conf, = {1,2,3,4}

Figure 12 Successive steps of the dynamic programming scheme for a Greek key motif 5436, c = 1 2 5 4 3 6. Arrows show the
“waiting” constraints. As all the (loop or adjacency) constraints have not been satisfied by determining the linked segments, a segment should
be considered as a variable with the memory of a partial solution for each possible instance. The corresponding ranks are said “active” and are

vl U Us U4 U3 Uy U Us U4 U3 Ug

confs = {1,3,5} confg = {6}

which is similar to the case where o is an identity
permutation.

Now we have to decide at which minimal level k each
term Eadj or Eloop is determined and can be integrated
in the dynamic programming scheme. For the &agj
terms, it is simply asserted that the previous or the next
strand along the barrel is already placed when left, < k
or right, < k, respectively.

Proposition 7 For all k, we have:

left, | k < left, € conf,_y,
right, < k < right;, € confy,_;

This results from the definition of the “active” indices
of confy ;. To simplify the further energy expression,
we use the following notation for an “ifelse” function:

e Eifi<k
ifi(i, £) = {0 otherwise

For the Eloop terms, the problem is to wait until the
relative shear between the two ends of a turn or loop is
solved by the interleaf adjacencies. So, in the given
example, the energy of the loop between the 2"® and 3™
strands can only be evaluated when the 5" strand has

been laid and the optimal relative shear
Snj (V2, V3) = Sadj(V2, Us) + Sadj(Vs, va) + Sadj(va, v3) is
known.

Definition 8 Let A;, be the relation on positive inte-
gers, defined as: Vi, j,

i=j
iAj & | or
i <kandj < kandi,jare "adjacent”

then let A;; denote the equivalence relation defined by
the transitive closure of A4, and let
Ay = (i < RliAz (i + 1)),

Thus, i € A; means that the /™ and (i + 1)* strands
are geometrically linked by adjacencies when the &
substructure is laid and we can compute by composition
an optimal relative shear S:dj.

We will now focus on the set 0 Ay = A - Ag .1, Vk> 1.
Proposition 9 For all k, we have:

(k—1) € 5A, < left, Ay (k—1) or right, A*,_1(k—1)
Proposition 10 For all i < k - 1,

i¢ A1

and

left, A; ;i andright, A;  (i+1)
or

right,, A7 | iand left, A} | (i+1)

i€ dA, &

Definition 11 Let T, c v*l<o*fildenote the set of all
tuples of |confy| vertices such that there is at least one
path (of k edges) starting from T and passing through
these vertices in order.

For any instance z € Ty of such a tuple and, Vi €
confy, let z[i] denote the i vertex of a corresponding
path.

This notation (not to be confused with z; the i com-
ponent of tuple z) is not ambiguous since, from defini-
tion, the vertex z[i] is in common to any path associated
to z. Particularly, z[k] is the last vertex of any path asso-
ciated to z.

Proposition 12 For all z | Ty, the set of tuples corre-
sponding to paths of length k - 1 that can be extended to
a path corresponding to z is defined as:

pre(z) = {y € Ty—1|(y[k — 1], z[k]) € Eand Vi € conf;, N conf;_1, y[i] = z[i]}

Let CZ,Zbe the maximum value for C over all paths
starting from T and leading in order through the ver-
tices of a given tuple z € T, with a shear number of %
of the corresponding f§ -barrel. The general recurrence
relation is: Vz € Ty,

c, = max (c::wweml,zuen—sm,(zlkl,r[nghu(l)m(y[zeml,nngmhl) — Enalzlk])

_ifk(leﬁh,é‘adi (y[leftk], Z[k] — ifk(rightk, Sadi (Z[k], y[rightk]

=D Eroopylil yli+ 1], 07 i+ 1) =07 (@), si(ylil, yli + 1])))

i€8A,
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Note that, from proposition 7, Vy € Ty _ 4, if left, <k
then the vertex y[left;] is defined (and the same is
worth for right,). We can check that each &,4j term is
finally counted exactly once in the sum, at the level cor-
responding to the position of its further vertex in the
sequence order. The optimum is found at k = n and % =
S.

Corollary 13 The complexities are O (N™/|confill) i
space and time.

For any permutation, we have

|lconf, || < min{l+2k n—Fk}, Vk=0, ..., n—1

Hence, max; ||confy|| <1 + (2n - 2) /3. For a permu-
tation that only differs from the identity permutation by
disjoint Greek key motifs [35], ie.
o=(1,2 ...,01, G, i1+5,...,02,Gy, i+5,..., Gj, ..., n)
where Gj=ij+3, i+ 2, i;+ 1, i;+4or Gi=ij+1,i+
4, i; + 3, i; + 2, it is easy to prove that max; ||confy|| <
4 by a discrete analysis on different configurations. The
complexities are thus at most O(N*) for such a
permutation.

In short, it is possible to compute the optimum in
O(N?) running time for structures corresponding to
the identity permutation and from (’)(Nz) (for instance,
example of Figure 10) to O(N*) (for instance, example
of Figure 11) for structures containing disjoint Greek
key motifs, where N is the input sequence length. These
computation costs might be further improved by a tree
decomposition-based algorithm that we are currently
working on.

Implementation details
The number of strands # and the shear number S deter-
mine the geometry of the barrel, particularly the mem-
brane spanning part of the segments, and are thus
involved in the computation of energy terms. If known,
the algorithm can enforce these value and fold the pro-
tein accordingly. The values for n, which are usually
even, are governed by the consideration on the length of
the sequence, the thickness of membrane and the length
of turns or loops and vary between 8 and 22 [1]. The
values for S, are even and included between n and 2x
[28,29]. The problem is then solved by the constrain
dynamic programming with the constraints of given n
and S. A small number of couples (n, S) have to be
explored and our algorithm is fast enough for that.
Side-chain interactions between contiguous residues
along a segment on the same side and interactions with
the environment of channel or bilayer define the intrin-
sic energy of the corresponding vertex. The pairing
energy of two adjacent segments in the barrel is com-
puted by optimizing the relative positions between con-
stituent amino acids. These energies involve hydrogen
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bonds in main chains, electrostatic interactions between
side-chains, hydrophobic effect as well as environmental
effect. More specifically, the extracellular and intracellu-
lar environments with distinct hydrophobicity indices
can have significantly different hydrophobic effects. In
addition, the membrane thickness gives constraints on
segment size and helps identify the interactions inside
or outside the membrane region. We use here by default
a parameter of 3 nm for the membrane thickness, thus 8
residues thick [36,37]. The features on size, polarity [38],
and flexibility [39] of turns and loops are also taken into
consideration, i.e. turns and loops satisfy threshold con-
straints on their polarity and flexibility indices and their
length. Their energies are approximated by hydrophobi-
city [31].

We use the Dunbrack backbone-dependent rotamer
library [40] and the partial charges from GROMOS
force field [41] to compute pairwise interaction energies.
The hydrophobic interaction between two side-chains ,
v is assessed by the amount of contacts between non-
polar groups, calculated by taking the average on all
rotamer pairs of the two side-chains e,, =<e,|rotamers>-
Each side-chain plays a role of a group of partial charges
in the electrostatic interaction. The main-chain hydro-
gen bond is measured by the electrostatic potential
energy between peptide CO and NH groups.

The probabilistic model and the constraints on hydro-
phobicity help discard the unlikely membrane spanning
B-strands. A threshold on overall energy can also be
involved to enhance the discrimination. We studied the
per-strand energy value for a variety of TMB proteins
including the training dataset and other TMB proteins.
Even though this value is always higher than 0.9 for
these proteins, we chose 0.85 as a threshold to avoid
overfitting. Note that this does not affect the prediction
results, and is only used for classification.

Experimental setup

Software

We compare our folding prediction accuracy to
TMBpro [9] and TMBETAPRED-RBE [10]. We compare
our classification results to Freeman et al. [6], TMBE-
TAPRED-RBF [10], PRED-TMBB [18] and transFold
[12]. TMBpro and TMBETAPRED-RBF results are exe-
cuted from their web-server.

Datasets

We used TMB proteins from the PDBTM database [20]
to train and test our approaches.

« Folding: We used CD-HIT [42] to constrain the
redundancy in proteins. A threshold of 40% similar-
ity was applied to reduce the dataset, resulting in 49
sequences (PDBTM40). We retain only the mono-
meric barrels, i.e. the sequences that form a unique
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complete barrel. Thus, PDBTM40 contains 41
sequences [PDB: 10H2_Q, 3A2R_X, 3AEH_A,
3BRZ_A, 3CSL_A, 2R4P_A, 3DWO_X, 2FGQ_X,
3EFM_A, 3EMN_X, 2ERV_A, 2IWW_A, 2F1T_A,
1FEP_A, 3FHH_A, 3FID_A, 1ILZ_A, 1BY3_A,
2GSK_A, 1BH3_A, 2HDF_A, 2J1IN_A, 2IAH_A,
3JTY_A, 1BXW_A, 2VDF_A, 1PNZ_A, 3GP6_A,
1AF6_A, 3NJT_A, 204V_A, 20DJ A, 1QJ8_A,
1P4T_A, 2POR_, 1ITLW_A, 1UXF_A, 1IUYN_X,
2WJQ_A, 2X4M_A, 1XKW_A]. It is important to
note that both TMBPro and our method use the
entire dataset to train. While this may result in over-
fitting for a learning-based approach, the effect on
our approach should be very small.

+ Classification: We used a set of 177 «-helical
transmembrane proteins of length from 140 to 800
residues, at 40% redundancy reduction, from
PDBTM and 32 non-redundant lipocalins taken
from PDB.
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