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Abstract

Background: RNA secondary structure plays a scaffolding role for RNA tertiary conformation. Accurate secondary
structure prediction can not only identify double-stranded helices and single stranded-loops but also help provide
information for potential tertiary interaction motifs critical to the 3D conformation. The average accuracy in ab
initio prediction remains 70%; performance improvement has only been limited to short RNA sequences. The
prediction of tertiary interaction motifs is difficult without multiple, related sequences that are usually not available.
This paper presents research that aims to improve the secondary structure prediction performance and to develop
a capability to predict coaxial stacking between helices. Coaxial stacking positions two helices on the same axis, a
tertiary motif present in almost all junctions that account for a high percentage of RNA tertiary structures.

Results: This research identified energetic rules for coaxial stacks and geometric constraints on stack combinations,
which were applied to developing an efficient dynamic programming application for simultaneous prediction of
secondary structure and coaxial stacking. Results on a number of non-coding RNA data sets, of short and
moderately long lengths, show a performance improvement (specially on tRNAs) for secondary structure prediction

stacking.

when compared with existing methods. The program also demonstrates a capability for prediction of coaxial

Conclusions: The significant leap of performance on tRNAs demonstrated in this work suggests that a
breakthrough to a higher performance in RNA secondary structure prediction may lie in understanding
contributions from tertiary motifs critical to the structure, as such information can be used to constrain
geometrically as well as energetically the space of RNA secondary structure.

Introduction

RNA secondary structure plays the critical role of scaf-
folding the tertiary structure (i.e., 3D conformation)
[1-5]. In the secondary structure, Watson-Crick (AU and
GC) and wobble GU pairs form double-stranded helices
that enclose unpaired, single-strand loops [6]. The dis-
tinguishable pattern of canonical base pairs has enabled
ab initio prediction of the secondary structure, typically
by minimization of the global free energy associated
with involved structure elements [7-10]. In the past
three decades, considerable success has been made in
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secondary structure prediction, e.g., with average accu-
racy of about 70% [11-13], and offered a viable venue
toward RNA tertiary structure prediction [4,5,13,14].
However, prediction performance breakthroughs have
been limited to short RNA sequences; improvements on
the accuracy for longer RNA sequences have relied on
multiple related sequences [15,16], which are often not
available, or profile based alignments [17,18], which can
only be effective for known structures.

Elements of the secondary structure are interrelated
with tertiary interaction motifs [2,4,19], which consist of
less understood non-canonical base pairs, with some
just being revealed recently [19,20]. Such motifs bundle
and connect helices to form and stabilize the tertiary
structure. As a common local motif, two helices sharing
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a contiguous backbone strand may coaxially stack
resulting in an energetically more stable pseudo-contigu-
ous helix [21,22]. Coaxial helices are prevalent in known
RNA tertiary structures, for instance accounting for 32%
of 613 tertiary interactions in 54 high-resolution RNA
structures investigated by Schlick group [23]. In particu-
lar, they are present at about 84% of multiple loop junc-
tions involved in these structures. Since junctions are
single-strand loops joined and enclosed by helices, com-
putational methods effective on prediction of coaxial
stacking would substantially improve the performance of
the secondary structure prediction as well.

There were only a few previous results in computa-
tional investigation of RNA helix coaxial stacking. Walter
et al [24] demonstrated in a case study that base-pair to
base-pair stacks between terminal base pairs of two
neighboring helices provide free energy improvement for
the predicted secondary structure. Tyagi and Mathews
[22] tested the idea of predicting coaxial stacking by free
energy minimization using nearest-neighborhood para-
meters on known RNA secondary structures. They
showed the potential to predict coaxial stack with free
energy minimization when the number of intervening
mismatches between stacked helices is small. In the com-
parative analysis of 3-way junctions joined by three
helices, Lescoute and Westhof measured distance distri-
butions between the two coaxially stacked helices within
the junctions [25]. For junctions of four-ways and of
higher orders, it was observed by Schlick group [26,27]
that coaxial stacking occurs preferentially in helices adja-
cent to loops of small size and rich in adenine. In this
paper, we present a new method for the prediction of
RNA secondary structure and coaxial stacking. Different
from previous secondary structure prediction methods,
ours can produce information of coaxially stacked helices
included in the predicted structure. Unlike prediction of
coaxial stacking upon an already predicted secondary
structure, the new method offers the simultaneous pre-
diction of the two. We discovered and applied rules of
coaxial stacking, including both sequential and structural
patterns, to the prediction of secondary structure. Such
rules constrain possible energetic and geometric relation-
ships between helices to be predicted, resulting in a
reduced space of alternative structures and a potential
improvement in secondary structure prediction.

The new method has been developed into a dynamic
programming application (called RNAcoast). We con-
ducted tests on five families of ncRNAs, of total 386
sequences, to evaluate the capability of the new method
in simultaneous prediction of secondary structure and
coaxial stacking. These ncRNAs were retrieved from
Rfam database [28], of short to moderately long lengths,
with and without coaxial stacking in the tertiary struc-
ture. RNAcoast produced comparable predictions as the
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state-of-the-art program RNAfold on all cases, it out-
performed the latter on tRNAs, where coaxial stacks are
present, by an additional 17% accuracy, a significant leap
from the average performance (i.e., 60-70% of the num-
ber of correct base pairs) achievable by previous energy
based models on tRNAs. The test results demonstrate
that coaxial stacking rules can successfully narrow down
a possibly large number of alternative structures within
5-10% of the predicted minimum energy, which would
otherwise be difficult to distinguish.

Results

We implemented the algorithm into a program named
RNAcoast. We tested five ncRNA sets of sequences on
our program and compared the predicted secondary
structure with the original Rfam annotation to evaluate
its accuracy. We also tested these ncRNA sequences on
the state-of-the-art secondary structure prediction pro-
gram RNAfold [9,29], and made performance compari-
sons between the mentioned programs. All test data and
results are available at: http://www.cs.uga.edu/~shareghi/
RNAcoast.

Data preparation

We downloaded five ncRNA datasets from seed align-
ments of Rfam. Ninety-five (10% of) tRNA sequences
were randomly picked up from the corresponding seed
alignment of 967 tRNAs. All ninety-eight available
Intron Group II sequences and all eighty-four available
Hammerhead type III sequences were retrieved directly
from seed datasets. We also downloaded all 30 Intron
Group I sequences available from its seed alignment,
and extracted the P4P6 domain of each sequence. Simi-
larly, we retrieved all 79 HCV IRES sequences available
from its seed alignment, and extracted domain III of
each sequence. The average lengths of tRNAs, Intron
group II, Hammerhead type III, P4P6, and domain III of
HCV IRES are 73.62, 87.18, 55.36, 126, and 111.68,
respectively. Many of these sequences contain long
inserted regions compared to their annotated consensus
structures, with lengths greatly exceeding the corre-
sponding average lengths (see Table 1). Therefore, these
collections of ncRNA sequences cover short to moder-
ately long lengths. Coaxial stacks are present in tRNAs,
Hammerhead type III, and HCV IRES domain III, while
they are not present in the consensus of Intron Group
II or the consensus of P4P6 domain. However, some
P4P6 sequences have a long insertion region containing
a three-way junction, where coaxial stacking may occur.
The secondary structures of these ncRNAs vary as well,
from simpler structures in Hammerhead type III and
Intron Group II to more sophisticated tRNAs and some
P4P6 sequences containing the inserted 3-way junction
and a GAAA tetra-loop [1].
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Table 1 Sensitivity based on the number of correctly predicted base pairs

ncRNA Num. of sequences Avg len. Min len. Max len. Sensitivity (RNAcoast) Sensitivity (RNAfold)
Hh3 84 55 40 82 85.04% 95.71%
tRNA 95 74 66 93 81.67% 64.59%
Intron-gli 98 87 42 154 81.94% 83.71%
P4P6 30 126 58 191 57.42% 64.62%
HCV 79 112 85 116 83.01% 7843%

Performance comparison between RNAcoast and RNAfold measured by the number of correctly predicted base pairs.

Performance in secondary structure prediction

We conducted two types of evaluations on the predicted
structures. One is to consider the percentage of base
pairs correctly predicted by the programs. The other is
to consider the number of sequences whose overall
structure topology is correctly predicted. Shown in the
next section, we also evaluated the capability of RNA-
coast in predicting coaxial stacks.

Table 1 summarizes the performance of RNAcoast vs
RNAfold with reference to the original annotated con-
sensus structures for the tested ncRNAs. The sensitivity
is computed as

Sensitivity = v x 100%
TP + FN

where TP is the number of true positives (i.e. correctly
predicted base pairs) and FN the number of false nega-
tives (i.e. missed base pairs). The results show that for
short sequences of simpler secondary structures, i.e.,
Hammerhead type III and Intron Group II, both RNA-
coast and RNAfold performed well, with RNAcoast
slightly less accurate than RNAfold. Also, for longer
sequences in HCV IRES domain III dataset, both pro-
grams performed well, with RNAcoast slightly more
accurate than RNAfold.

Test results on the tRNA data set demonstrates the
true advantage of incorporating coaxial stacking into pre-
diction of ncRNAs that may contain coaxial stacking
motifs. RNAcoast outperformed RNAfold by more
than 17% accuracy, a significant leap from the average
performance (i.e., 60-70%) achievable by previous energy
based models on tRNAs. The coaxial stacking rules suc-
cessfully narrowed down a possibly large number of alter-
native structures within 5-10% of the predicted minimum
energy, which would otherwise be difficult to distinguish
[12].

Table 2 shows that the performance of RNAcoast was
actually even better when the real structure of these
tRNA sequences were examined against the consensus.
RNAcoast captured the secondary structure topology
correctly for more than 72% of sequences. We carefully
examined those sequences whose topologies were not
predicted correctly and were able to identify that half of
them actually have a long variable loop (see Figure 1)

which contains an extra helix, some correctly predicted
by RNAcoast and RNAfold. Therefore, the percentage
of correctly predicted topologies for RNAcoast was
actually 86%, consistent with the sensitivity calculated
based on correctly predicted base pairs. Since these
tRNAs were randomly sampled from 967 sequences of
the seed alignment in Rfam, the test results demonstrate
the effectiveness of our method.

We point out that the relatively low sensitivity for
RNAcoast on Hammerhead ribozyme type III shown in
Table 2 was due to the extra stem-loop it predicted
within the three-way junction, much as the situation of
the variable loop of tRNAs.

For longer sequences of P4P6, counting correctly pre-
dicted base pairs appeared to distance RNAcoast a lit-
tle more from RNAfold; but neither programs achieved
a satisfactory sensitivity. The underperformance may be
explained by the nature of the P4P6 sequences and the
reference consensus structure from Rfam. Out of the
thirty sequences tested, 12 of them have lengths exceed-
ing 150 (but under 191), 6 sequences have lengths
below 90, and another 12 have lengths in between. The
consensus structure from Rfam was based on the smal-
lest group of short sequences, leaving a long inserted
region for others. Though both programs were able to
predict the substructure formed in the inserted region,
but the small number of base pairs annotated in the
consensus made them easy to be missed by both pro-
grams. However, in spite of the low number of base
pairs correctly predicted by RNAcoast, the program
was able to achieve an adjusted 67% sensitivity in topol-
ogy prediction.

Table 2 Sensitivity based on the number of correctly
predicted topologies

ncRNA Topology sen. (%) Adjusted topology sen. (%)
RNAcoast RNAfold RNAcoast RNAfold
Hh3 75 92.86 N/A N/A
tRNA 7263 24.21 86.32 27.37
Intron-gll 7551 84.69 N/A N/A
P4P6 30 56.67 66.67 86.67
HCV 74.68 75.95 N/A N/A

Performance comparison between RNAcoast and RNAfold measured by
the number of correctly predicted secondary structures.
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parallel fashion). Figure modified from Rfam [28].

acceptor

Variable loop

Figure 1 The general tRNA tertiary structure (and the secondary structure in the box). Four helices (in acceptor, D-arm, Tg,C arm, and
anticodon arm) enclose loops, including the variable loop (orange), possibly long in some tRNAs. The helix of acceptor (purple) and the helix of
TeC arm (green) coaxially stack (in the nested fashion); the helix of D-arm (red) and the helix of anticodon arm (blue) coaxially stack (in the

Performance in coaxial stacking prediction

To evaluate the performance of our method in coaxial
stacking prediction, we computed both the sensitivity
and positive predictive value (PPV) on the number of
correctly predicted coaxial stacks. The PPV is defined as

PPV = x 100%
TP + FP

where FP stands for false positive, the number of
incorrectly predicted coaxial stacks.

Table 3 shows both PPV and sensitivity for RNA-
coast to predict coaxial stacks on tRNA, Hammerhead
Type III, and HCV IRES domain III sequences, where
coaxial stacks are present. There were 190 coaxial stacks
in the 95 tRNAs, with two for each, 84 coaxial stacks in
Hammerhead type III, with one in each, and 158 coaxial
stacks in HCV, with two for each. The program was
more specific on tRNAs, achieving a PPV of 75%, com-
pared to 61% on Hammerhead type III, and 66% on
HCV IRES domain III. It had the lowest sensitivity, 47%,

on HCV IRES domain III compared with the other two
families where sensitivity was around 70%.

We compare these results with a previous work by
Tyagi and Mathews who tested the idea of coaxial stack
prediction using the energy minimization with nearest-
neighbor parameters [22] on 31 ncRNAs (with known
secondary structures and crystal tertiary structures). We
notice that there were 17 tRNA sequences among these
31 sequences, for which the average PPV and sensitivity
reported in the literature [22] were 58% and 66%,
respectively on k = 0 and k = 1, where k is the number

Table 3 PPV and sensitivity based on the number of
correctly predicted coaxial stackings

FP PPV(%)

ncRNA  Num of sequences TP Sensitivity(%)

tRNA 95 130 44 7471 6842
Hh3 84 59 37 6145 7023
HCV 79 74 38 66.07 46.83

Performance of RNAcoast in prediction of coaxial stackings.



Shareghi et al. BMC Genomics 2012, 13(Suppl 3):57
http://www.biomedcentral.com/1471-2164/13/S3/S7

of unpaired nucleotides at the point of backbone joining
of the two coaxially stacked helices.

Discussion

While our program, RNAcoast, produced comparable
predictions as the state-of-the-art program RNAfold on
all cases, it outperformed the latter on tRNAs, where
coaxial stacks are present, by more than 17% accuracy, a
significant leap from the average performance (i.e., 60-
70% of the number of correct base pairs) achievable by
previous energy based models on tRNAs. Furthermore,
RNAcoast predicted 86% of secondary structure topol-
ogies correctly, while RNAfold only predicted 27% of
topologies correctly. Our coaxial stacking rules can suc-
cessfully pick out the most plausible one from a possibly
large number of alternative structures within 5-10% of
the predicted minimum energy, which would otherwise
be difficult to distinguish [12]. Such a performance is
encouraging to solving the problem of RNA tertiary
structure prediction.

We point out the small differences in performance
between RNAcoast and RNAfold on Hammerhead
type III and Intron Group II were most likely due to the
simple strategy to exclude loop energies which was built
into the current version RNAcoast. This was a little
more of an issue for long sequences in the P4P6 dataset,
which became serious when the consensus structure did
not include a long inserted region. While improving the
performance of RNAcoast can be achieved by incorpor-
ating the dismissed loop energies, a strategy different
from evaluating predictions against the consensus struc-
ture may help as well.

We did not use the positive predictive value (PPV) to
measure the performance in the correctly predicted base
pairs. This was because some base pairs not belonging to
the consensus structure but predicted by the programs
may be valid if they fall in inserted regions of the consen-
sus structure. Counting such base pairs as false positives
would be bias against sequences substantially longer than
the consensus. The situation was evident by our tests on
these sequences, typically tRNAs where the variable loop
may contain an extra stem-loop.

We have also examined the coaxial stacking prediction
on the P4P6 sequences by RNAcoast. In contrast to
RNAfold that predicted 8 three-way junctions in the
long inserted region, our program predicted 5 three-way
junctions in that region, with the same left nested coaxial
stack predicted for 3 out of the 5 three-way junctions.
Such a predicted coaxial stack has yet to be verified as it
was counted as a real motif in one work [25] while was
not by another [22].

The outcome of the tests on tRNAs is most interest-
ing. The secondary structures of tRNAs were difficult to
predict from individual sequences with energy-based
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methods, in spite of the conserved native structure
across types and species. This is because a tRNA may
have many alternative structures with free energies
within 5-10% of the minimum free energy.

Conclusions

This work introduced a new method for simultaneous pre-
diction of RNA secondary structure and coaxial stacking
between helices. The aim of the incorporation of coaxial
stacking detection included improving the performance of
energy-based ab initio secondary structure prediction. Our
research identified sequential, energetic, and geometric
rules for helix coaxial stacking to apply to a dynamic pro-
gramming algorithm for secondary structure prediction.
Results from testing the implemented program RNA-
coast on five ncRNA datasets obtained from Rfam
demonstrated the effectiveness of our method.

The significant leap of performance on tRNAs in this
work suggests that a breakthrough to a higher perfor-
mance in RNA secondary structure prediction may lie in
understanding contributions from tertiary motifs critical
to the structure, as such information can be used to con-
strain geometrically as well as energetically the space of
RNA secondary structure. Since coaxial stacking is still a
local tertiary motif, incorporating information of tertiary
motifs of higher orders, such junctions, may further
improve the prediction performance.

Methods

In the secondary structure, canonical base pairs form
double-stranded stems (called helices in tertiary struc-
ture) that join and enclose unpaired, single-strand loops.
Figure 1 shows the secondary and tertiary structure of
tRNAs in general, which consist of four helices enclosing
loops. Two neighboring helices joined by a contiguous
single-strand loop coaxially stack if they share the same
axis in the tertiary structure with the two terminal base
pairs of respective helices stacking on each other at the
joining point. Figure 2 gives a schematic illustration of
two coaxially stacked helices. Depending on where the 5’
and 3’ ends of the sequence are connected to, the coaxial
stack can be nested or parallel (see definition in the sec-
tion below). Figure 1 shows two pairs of coaxial stacks in
the four-way junction of the tRNA tertiary structure. We
introduce a new method for simultaneous prediction of
RNA secondary structure and coaxial stacks. Our strategy
is to reward each potential coaxial stacking with the
amount of negative energy incurred by the stacking and
to incorporate both the energetic and geometric rules
into the secondary structure prediction process. The
energy of coaxial stacking is calculated as that contribu-
ted by the two stacked terminal base pairs of the coaxial
helices (see Figure 2). This is an approximate quantity as
the full mechanism for coaxial stacking to stabilize the
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formed by two separated backbones, the stacking is parallel.

5’ Terminal

Figure 2 Coaxial stacking of helices. A secondary structure illustration of a coaxial stacking between two helices that share the same
contiguous single-strand loop, in which unpaired nucleotides may be present. The terminal base pairs from both helices stack each other,
resulting in an extra energy reduction calculated as if they were contiguous base pairs (shown in the callout). A, B, C represent the three
substructures connected to the two helices, where exactly two substructures can be formed each by one contiguous backbone, and exactly one
substructure by two separate backbones. If substructure A or B is formed by two separated backbones, the coaxial stacking is nested; if C is

unpaired nt
D—€€@— -

—O—€0— 3

Base pairs

involved structure is still to be fully understood due to
additional tertiary interactions often detected at multi-
way junctions where coaxial stacking usually occurs.

Coaxial stacking rules

Previous investigations on three-way junctions [25] and
junctions of higher orders [22,26,27] have revealed the
small number k of unpaired nucleotides present at the
joining loop between the two helices involved in a coaxial
stacking. To verify this phenomenon for a wider spec-
trum of ncRNAs, we conducted a survey on the 51 sets
of ncRNA seed alignments from Rfam [28], which had
been used by software Infernal [18] as benchmarks. We
computed the thermodynamic free energy of every helix
instance using the RNAeval component of the Vienna
RNA Package [9,29].

Based on this survey, we were able to identify two
energy thresholds: less than -2.5 Kcal/mol for semi-stable
helices, and less than -3.7 Kcal/mol for stable helices [30].
Both require at least three base pairs in which at least
one is a G-C pair. We discovered that semi-stable helices
are overwhelmingly very close to other helices in back-
bone positions. This confirms our conjecture that semi-
stable helices interact with other helices on a contiguous
strand, i.e., through coaxial stacking [30]. This also sug-
gests a small distance k between coaxial stacked helices,
consistent with the findings by others [22,25-27]. In this
preliminary work, we used k < 1 as a necessary condition
for two neighboring helices to coaxially stack. In our
method, coaxial stacking may occur in a two-way junc-
tion consisting of two helices sharing both connecting

loops or in a multi-way junction joined by multiple
helices.

Definition. We denote (X, Y) to be a coaxial stack
between helices X and Y. Let L(X) be the set of indexes
of nucleotides in the 5’-end base pair region of helix X;
also let H(X) be the set of indexes of nucleotides in the
3’-end base pairing region of helix X.

1. Coaxial stack (X, Y) is nested if max L(X) <min L
(Y) and max H(Y) < min H(X).
2. Coaxial stack (X, Y) is parallel if max H(X) <min

L(Y).

In particular, coaxial stacks in two-way junctions are
always nested. In multiple-way junctions, coaxial stacks
may be either nested or parallel (see Figures 1 and 2).
For example, Figure 1 shows two coaxial stacks: a paral-
lel stack between the D helix and the anticodon helix,
and a nested stack between the TyC helix and the
acceptor helix.

The amount of reduced energy, attributed to a coaxial
stack, is defined as the free energy contributed from the
two stacked base pairs on the interface (see Figure 2).
The amount of energy, thus computed via software
RNAeval, ranges from -0.9 Kcal/mol to -3.4 Kcal/mol.
This is close to the parameter used by Tyagi and Math-
ews [22].

Geometric constraints
We applied additional constraints on coaxially stacked
helices based on geometric feasibility. This is to consider
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when two or more coaxial stacks may occur simulta-
neously, and they all involve some helix. In particular,
we identified the following rules to ensure consistency
in geometry. Assume helix X coaxially stacks with two
other helices Y and Z, then exactly one of the following
situations must occur:

1. Stacks (X, Y) and (Z, X) are nested stacks,

2. Stack (X, Y) is nested and stack (X, Z) or (Z, X) is
parallel,

3. Stack (Y; X) or (X, Y) is parallel and stack (X, Z) is
nested.

Figure 3 illustrates the above compound coaxial stacks
1, 2, and 3, respectively from left to right.

Algorithm

We developed our method into an algorithm for ab initio
and simultaneous prediction of secondary structure and
coaxial stacks. There are two major phases: preprocessing
and prediction. Given a query RNA sequence, the prepro-
cessing step finds all semi-stable, stable, and ultra-stable
helices (see the Algorithm overview section below), and
also all potential coaxially stacked helix pairs. The
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computed information is then passed onto the prediction
phase, which uses a dynamic programming algorithm in
the spirit of Nussinov’s algorithm. However, our algo-
rithm is established at helix-level instead of nucleotide-
level for the purpose of incorporating coaxial stacking.
Since helices cannot be sorted in a linear order, the
dynamic programming algorithm design became a non-
trivial task.

Preprocessing of helices

The preprocessing step picks up helix candidates and
identifies potential coaxial stacks. A semi-global align-
ment algorithm is used for searching helix candidates
[30]. In a helix candidate, either backbone is allowed to
contain at most one unpaired nucleotide. The free
energy of helix candidates is measured using RNAeval,
a component of the Vienna RNA Package [9,29].

Two helices are recognized as a potential coaxial stack if
they share a contiguous single-strand backbone with at
most one unpaired nucleotide. Potential coaxial stacks are
classified into parallel and nested stacks based on the con-
ditions given in the section above about Coaxial stacking
rules. The extra energy reduction of a coaxial stacking is
computed from the two terminal base pairs of the helices

|

Figure 3 Compound coaxial stacks. An illustration for the three general situations of compound coaxial stacks, where 5" and 3" indicate the
backbones from the 5" end and to the 3" end of the sequence, respectively. In the left structure, the stacks (X, ¥) and (Z X) are nested stacks. In
the middle structure, the stack (X, ) is nested while (Z, X) is parallel. In the right structure, the stack (X, Y) is parallel while (X, 2) is nested.
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as if they were two contiguous base pairs (see the same
section).

Prediction via dynamic programming

We adopted the idea in Nussinov’s algorithm [7] to
develop a dynamic programming algorithm for simulta-
neous prediction of secondary structure and coaxial stacks.
Nussinov’s algorithm and alike [9,11] use a simple dynamic
programming approach, at the nucleotide level, to predict
the secondary structure of an RNA. For each subsequence
from position i to j, Nussinov’s algorithm computes the
substructure with the maximum number of base pairs. In
contrast, however, our algorithm works at the helix level in
order to incorporate coaxial stacking information. Since
helix candidates cannot be sorted in a linear order, the
dynamic programming is not straightforward. We
addressed this issue by employing partial orderings.
Candidates and orderings

A helix consists of two base pairing regions; each region is
a contiguous backbone consisting of a number consecutive
nucleotides. A helix found by the preprocessing step can
be viewed as two base pairing regions. Throughout this
section we will refer to candidate regions simply as
candidates.

On an RNA sequence x; ... x,, for each subsequence
from position x, to x;, our algorithm goes through every
pair of candidates i and j, where i starts at position x,
and j ends at position x,. The preprocessing may gener-
ate several candidates that start at the same position or
end at the same position. Therefore, the order in which
we visit such overlapping candidates is important to
ensure that we always move from smaller subproblems to
larger ones. In other words, for the mentioned subse-
quence, we want to consider the longest candidate i and
the longest candidate j before considering shorter ones.
Hence, we assign two different indices to each candidate
according to Starting Position Order (SPO) and Ending
Position Order (EPO), i.e., for two candidate regions r
and s, assuming b(r) gives the starting position of region
r, and e(r) gives its ending position, we have:

e 7 < spo S, if b(r) < b(s), or if b(r) = b(s) &e(r) < e(s).
e 17 < ppo S, if e(r) < e(s), or if e(r) = e(s) &b(r) < b(s).

If two candidates occupy the exact same region on the
sequence, then one of them gets the lower index in a
consistent manner throughout the algorithm.

The recurrence relations in our dynamic programming
algorithm have the general form F(;, j), where F is a recur-
sive function defined with specific semantic constraints; it
gives the maximum score for the optimal substructure
(following the mentioned constraints) of the subsequence
that starts from the beginning of the candidate with SPO
index i and ends at the end of the candidate with EPO
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index j. Henceforth, for convenience, i always refers to an
SPO index, and j always refers to an EPO index.

Algorithm overview

Similar to Nussinov’s algorithm, four different cases can
happen when finding the optimal structure of the subse-
quence spanned from candidate i to j:

+ Region i forms a helix (or pairs) with region ;.

+ Region i does not participate in the optimal
structure.

+ Region j does not participate in the optimal
structure.

+ The optimal structure is formed by putting
together the optimal substructures of the subse-
quence from region i to region k, and of the subse-
quence from region k + 1 to region j, for some k.

Our algorithm can recursively generate the following
types of topological constructs:

1. An m-way junction or a single helix not enclosed
by any other helix. Such an m-way junction is with-
out a coaxial stacking.
2. An m-way junction enclosed by a helix:
(a) an m-way junction, without coaxial stacking,
(b) a 2-way junction where the helices coaxially
stack,
(c) an m-way junction, m > 2, with left or right
nested coaxial stacking,
(d) an m-way junction, m > 2, where two of the
helices form a parallel stacking.

Each of the three types of helices, defined earlier (see
the Preprocessing section), contributes differently to
building the above topological constructs. A semi-stable
helix can appear in the predicted structure only if (a) it
coaxially stacks with a stable helix and does not enclose
any other helices, or (b) it participates in a 2-way junc-
tion and the two helices together are strong enough to
act as a stable helix. The only restriction for a stable
helix is that it cannot immediately enclose an m-way
junction. In addition to semi-stable and stable helices,
we also have ultra-stable helices. An ultra-stable helix
has a free energy level lower than -4.6 Kcal/mol and
has more than 5 base pairs. For an m-way, m > 2, junc-
tion to exist, it needs to be enclosed by an ultra-stable
helix. An exception to this rule is when two helices
involved in a 2-way junction, put together, are strong
enough to act as an ultra-stable helix, then they also
can enclose an m-way junction. We define different
types of recurrences for generating an optimal second-
ary structure made of the above topological constructs
such that the geometric constraints are met and the
coaxial stacking rules are followed as well.
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o M (i, j) in which the substructure for the subse-
quence from region i to j is not enclosed by any
helix; it generates construct 1,
+ Functions of the form M,, (i, j) where it is
assumed that the structure is enclosed by a helix
outside the mentioned subsequence; henceforth,
referred to as the enclosing helix. Such recurrences
do not immediately cause a bifurcation, therefore,
they do not immediately enclose an m-way, m > 2,
junction. Instead they may form a helix between i
and j, or ignore i and/or j in order to move to a
smaller subproblem. The subscript xy is used to
determine the type of the recurrence, and it can be
any of
- 2W: i and j form a helix, and together with the
outside enclosing helix they form a 2-way junc-
tion that may or may not involve a coaxial
stacking.
- @e: the left-most helix of the substructure
coaxially stacks with the enclosing helix.
- €@: the right-most helix of the substructure
coaxially stacks with the enclosing helix.
- € ||: the right-most helix of the substructure
forms a parallel coaxial stack with a helix to the
right of the subsequence from region i to region
j.
- || € the left-most helix of the substructure
forms a parallel coaxial stack with a helix to the
left of the subsequence from region i to region j.
- ee: none of the helices in the substructure
coaxially stack with any outside helices.
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« d (a, b) is the distance between candidate regions a
and b. It is the shortest nucleotide distance between
the end of candidate a and the beginning of candi-
date b, assuming a ends before where b starts.

+ i + 1 is the candidate region after (and possibly
overlapping with) i in the SPO.

« j - 1 is the candidate region before (and possibly
overlapping with) j in the EPO.

¢ 8 5 » (i) is the first non-overlapping successor of i
in SPO at a distance greater than or equal to x.

+ P > 4 (j) is the first non-overlapping predecessor of
j in EPO at a distance greater than or equal to .

+ s'_,(i) represents any non-overlapping successor of
i in SPO at distance at most 2 from i.

+ P-,(j) represents any non-overlapping predecessor
of j in EPO at distance at most 2 from j.

+ Aj; is the weight of any helix (semi-stable, stable, or
ultra-stable) formed by i and j, or - « if no such
helix exists.

+ §;; is the weight of a helix i, j that is stable or ultra-
stable, or - o if no such helix exists.

+ Uy is the weight of a helix j j that is ultra-stable,
or - o if no such helix exists.

+ CS is the reward for a coaxial stacking. Its value
depends on the terminal base pairs of the helices
involved.

+ In rules of the form F(i, j) = A; + max; ;{Myw (7,
7))} the requirement is that the helices formed by
candidates i < i’ < j' < j do not coaxially stack, |d(;,
7)-di,j)| <4 dG i) <11, d(f, j) < 11, and that d
(¢ ©) and d(f’, j) cannot both be 0.

Recurrences

Assuming that the preprocessing step results in N can-
didate regions, the score of the optimal structure for the
whole sequence is equal to M(1, N), where

S;
M(i+1,j)

M(i,j) = max § M(i,j — 1)
max; << {M(i, k) + M(s>1(k), j)}
ST(i.5)

« Functions of the form M} (i, j), where B stands for
bifurcation, and different cases of the subscript xy
are defined similar to the ones above. Here the
important assumption is that the structure is sur-
rounded by an ultra-stable helix outside the men-
tioned subsequence. If the outside enclosing helix is
not strong enough, but when put together with the
possible i, j helix they can act as an ultra-stable
helix, that is also acceptable. In these recurrences,
the substructure predicted for the subsequence from
region i to region j will be an m-way junction, m >
2, that may or may not be enclosed by a possible
helix formed by i and j. The main difference
between a function M,, (i, j) and a function

The function ST(i, j) gives the score of the optimal
structure for the subsequence from region i to region j,
where i and j form a helix.

ng(i, j) is that the latter may immediately cause a Ay maxey s (), Ay Ay is stable
bifurcation, whereas the former may not e WD st lable
’ y ’ Ajj + maxy_,(; {Mow (s <2 (i), p'- +CS}), Ajj + Ayj + CS is stable
. i ()0 ) (s'=2(1), P 2(7) ij + Airj
Notation A+ maxe )My (§<2(0), p25()) + CS), Aj + Ary + CS is ultra-stable
We use the following notation throughout this section: Uy + max,_ (M5, (S 2(0) p=2(0)) + CS)
ST = max | U+ M35 Ml (52200 £/ 50)) + C5)
« i and /" are used for referring to indices of candi- O T
dates in the Starting Position Order (SPO). +max(Me, (5210, P22 (), ML (1 (), o))
« j and j” are used for referring to indices of candi- Uy R a0 )
. . .y 1 (822 (), 1), Mo (8=2(0). K]
dates in the Endlng Position Order (EPO) :g;a)X(Mus(s <2(k), p=2(1)), M (5 <2(R), p=2(7)))
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In the above function, the first case, with M,y is only
allowed when A; and A;; put together are strong enough
to act as a stable helix. The second case, with M5, is
only allowed when A;; and A;; put together are strong
enough to act as an ultra-stable helix. The situation is
similar for cases 3 and 4 where we have 2-way junctions
with coaxial stacking. In case 5, with M5 _, helix Uj;
forms a left nested coaxial stack with a helix that it
encloses, but since the enclosed structure is an m-way
junction, m > 2, helix Uj; has to be ultra stable. Cases 6
is defined and constrained similarly for a right nested
coaxial stack. In cases 7 and 8, the helix U/;; encloses an
m-way junction, m > 2, that may either immediately or
later on include a coaxial stacking, therefore it has to be
ultra-stable. Case 7 results in an m-way junction that
may later on include a coaxial stacking, whereas case 8
results in an m-way junction with a parallel coaxial
stacking. Similar constraints are applied to the recur-
rences below.

The following recurrence is used for generating a helix
that does not coaxially stack with any helix outside of
the current subsequence.

S;
M. (i+1,]

Mec(i,]) = max | Mee(+ 1)
M (i,j—1)
ST(i,j)

The following recurrence is used for performing bifur-
cations such that no helix in the substructure coaxially
stacks with any helix outside the current subsequence.

max;{
max{M. (i, k), ME. (i, k)}
+ max{Mee (s=1(k), ), ME (521 (k). )}
MZ(i,j) = max —
max{Me (i, k), MEH (i k)}
+max{Mye(s' <2 (k), j), M (s' <2 (k). )}
+CS}

The following recurrence is used for the case that
helix A;; forms a left nested coaxial stack with a helix
that encloses the subsequence from region i to region ;.

Mee(i,j) = max {max{Aj, ST(i, k)} max{Mce(s>1 (k),j),Mf6 (s=1(R), )1}

Similarly, the following recurrence is used for the case
that helix Ay forms a right nested coaxial stack with a
helix that encloses the subsequence from region i to
region j.

Page 10 of 11

Mia (i f) = max{max(Mee (i p=1(k)), ME (i, p1 (k) + max{Ay;, ST(k, j)})

The following recurrence is used for the case that
helix A; forms a 2-way junction with an outside enclos-
ing helix, and it may also form a 2-way junction with a
helix in the substructure it encloses.

A‘]

Ajj + maxy (Mzw[i’lj:']
i

L Ajj + Ayj is stable
Ajj + maxy p {MBy, (i, 1)},

Mow(i,j) = max Ajj + Ay is ultra-stable

A+ maxy_, (i), ) IMaw (5 <2(1), ' 5 (7)) + CS), Ajj + Ay j + CS s stable
Ajj +maxy_, (i)p_, ) M5y (5'<2(1), ' 5 (j)) + CS}, Ajj + Ay j + CS is ultra-stable

The following recurrence is used for the case that
helix A; forms a 2-way junction with an outside enclos-
ing helix, but unlike the case for My, it immediately
encloses an m-way junction, where m > 2.

Ajj + maxg_, ) {Me (s <2(i), p22(j)) + CS}
A+ maxy_){MEa (522(0), ' (7)) + CS}

Ajj + max{
max{Mee(s>2(i), k), Mg (s22(1), k)

M3y (i, ) = max + max{Mee (s21(k), p<2 (7)), Mé (521 (k). p<2 (}))}}

Ajj + max;maxy _, (1) {
max(Me (s22(i), k), M) (s2(i), b))
+max{Mye (s’ <2 (k), p<2 (7)), ME (5 <2 (k). p<2 ()
+ CS}

The following recurrence is used for generating a helix
with the assumption that it forms a parallel coaxial
stacking with a helix to the right of the subsequence
from region i to region j.

Me(i+1,5)
ST (i)

My (i,j) = max

The following recurrence is used for performing bifur-
cations such that the right-most helix of the resulting
substructure forms a parallel coaxial stacking with a
helix to the right of the subsequence from region i to
region j.

M3 (i +1,5)
max{

max{Mc. (i, k), ME_(i, )}
+ max{Me (s>1(k), j), M5 (521 (k) )1}

M5, (i, j) = max

Similarly we define the recurrences M) and M]Hi for

the cases that the left-most helix of the resulting sub-
structure forms a parallel coaxial stack with a helix to
left of the subsequence from region i to region j.



Shareghi et al. BMC Genomics 2012, 13(Suppl 3):57
http://www.biomedcentral.com/1471-2164/13/S3/S7

Mye(i,j— 1)
ST (i,j)

Me (i, j) = max

Mﬁe (l'] - 1)
maxy{
max{Mc (i, k), M{}. (i, k)}

+ max{Mee (521 (k). j), MZ. (s=1 (k). j)}}

MP(i,j) = max
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