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Abstract

Background: Non-synonymous coding SNPs (nsSNPs) that are associated to disease can also be related with
alterations in protein stability. Computational methods are available to predict the effect of single amino acid
substitutions (SASs) on protein stability based on a single folded structure. However, the native state of a protein is
not unique and it is better represented by the ensemble of its conformers in dynamic equilibrium. The
maintenance of the ensemble is essential for protein function. In this work we investigated how protein
conformational diversity can affect the discrimination of neutral and disease related SASs based on protein stability
estimations. For this purpose, we used 119 proteins with 803 associated SASs, 60% of which are disease related.
Each protein was associated with its corresponding set of available conformers as found in the Protein
Conformational Database (PCDB). Our dataset contains proteins with different extensions of conformational
diversity summing up a total number of 1023 conformers.

Results: The existence of different conformers for a given protein introduces great variability in the estimation of the
protein stability (ΔΔG) after a single amino acid substitution (SAS) as computed with FoldX. Indeed, in 35% of our
protein set at least one SAS can be described as stabilizing, destabilizing or neutral when a cutoff value of ±2 kcal/mol
is adopted for discriminating neutral from perturbing SASs. However, when the ΔΔG variability among conformers is
taken into account, the correlation among the perturbation of protein stability and the corresponding disease or
neutral phenotype increases as compared with the same analysis on single protein structures. At the conformer level,
we also found that the different conformers correlate in a different way to the corresponding phenotype.

Conclusions: Our results suggest that the consideration of conformational diversity can improve the discrimination
of neutral and disease related protein SASs based on the evaluation of the corresponding Gibbs free energy
change.

Background
Human single nucleotide polymorphisms (SNPs) are the
most frequent type of genetic variation in humans. Less
than 1% variations are associated with non-synonymous
coding SNPs (nsSNPs). About 64,971 nsSNPs are pre-
sently listed as human polymorphisms and disease single
amino acid substitutions, SASs, (http://www.uniprot.org/

docs/humsavar) and approximately 40% of these SASs
are disease related.
It has been documented that in proteins a single amino

acid substitution (SAS), can produce the loss of function
in different ways. Although the less frequently found [1],
the most obvious mechanism at the disease origin is due
to change of key residues participating directly in protein
function. This is the case when residue substitution occurs
at the active site or in binding-sites for substrate and/or
allosteric regulators [2-4]. When the biological functional
unit is a complex, SASs at the subunit interface may also
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hamper the activity [4,5]. A second possible mechanism is
related with the perturbation of protein stability. Residue
substitution can indeed destabilize the native protein fold
[1,6]. Also stabilizing residue changes have been reported
to be associated with diseases [7,8]. Furthermore, related
with protein stability alteration, the origin of pathogenesis
was also related with anomalous post-translational modifi-
cations [9] and aggregation [10]. The correlation among
protein SASs and their involvement in human diseases has
been proven to be moderate [11], suggesting that change
in protein stability is not the only source of diseases.
Protein stability can be estimated measuring the varia-

tion of Gibbs free energy (ΔΔG) between the folded and
unfolded state of the protein. Most of the experimental
data reported in literature are contained in ProTherm
[12], a thermodynamic database of proteins and their var-
iation in different organisms. Alternatively, several com-
putational methods have been developed to estimate
stability changes caused by substitution of lateral side
chains in proteins (ΔΔG=ΔGwild-ΔGmutated). Most of
them rely on the analysis of the energetic and/or struc-
tural perturbation introduced by the variations in the
protein native structure. Although computationally
intensive, early methods used all atom models to estimate
ΔΔG [13]. Soon later, simplified potentials coupled with
limited conformational searches [14,15] and the use of
different types of potentials, like those based on hydro-
phobic interactions [16], secondary structure [17], inter-
residue contacts [18] and knowledge-based [19], allowed
to study the effect of different mutations in proteins in a
reasonable computational time. Recently machine learn-
ing based approaches have been implemented for the
prediction of ΔΔG in proteins upon residue substitution
taking as input either the protein structure or sequence
(for a recent review see [20]). The discrimination among
disease related and neutral SASs can be investigated by
determining ΔΔG upon residue change in the protein.
This analysis is based on the notion that most harmful
SASs are related to protein stability perturbation above a
certain threshold ΔΔG (±1 kcal/mol). Most methods sui-
ted to predict free energy changes have been recently
benchmarked in relation to their ability to discriminate
disease from neutral SASs based on the corresponding
ΔΔG value and their performance has been proven to be
rather poor [20].
In most methods, predictions of SASs effects are com-

monly estimated using a single structure of the corre-
sponding protein [21-24]. This approach apparently
underestimates the well established concept that the native
state of a protein is better represented by an ensemble of
conformers [25-27]. The conformational ensemble is a key
concept to explain essential properties of proteins like
function [28-30], enzyme and antibody promiscuity
[31,32], enzyme catalytic power [33], signal transduction

[34], protein-protein recognition [35] and the origin of
new functions [36]. Conformers describing the native state
of a protein exist in a dynamic equilibrium which changes
in response to the presence of ligands such as substrate or
allosteric modulators that shift the relative conformational
population [37,38]. From a practical perspective, confor-
mational diversity could be described using experimentally
available structures of the same protein obtained in alter-
native conditions. As these different structures for the
same protein have been obtained under different condi-
tions (for example presence of substrate, inhibitors or
allosteric activators) they can be taken as snapshots of pro-
tein dynamics and then characterize putative conformers
belonging to the native ensemble [39,40]. In this way, the
description of the native ensemble of the protein will be
more or less complete depending on available experimen-
tal data. A way to describe the extension of conformational
diversity could be the estimation of the maximum RMSD
measured between the available conformers. The distribu-
tion of the structural diversity extension measured in this
way in the protein space was recently studied [41]. The
analysis involves an all vs. all comparisons between struc-
tures of the same sequence deposited in PDB database
[42]. Conformer distribution exhibits a peak at 0.3 Å
RMSD with a large skew that ends at about 24 Å RMSD.
In the present work we investigated how the presence

and extension of conformational diversity affect the esti-
mation of ΔΔG in proteins with neutral and disease
related SASs. Like protein function relies on the exis-
tence and preservation of the dynamic ensemble of con-
formers, the study of the effect of a SAS in each
conformer of a given protein could help to understand
the loss of function. We used a set of 803 SASs (482 dis-
ease related and 323 neutral) in 119 proteins showing dif-
ferent extension of conformational diversity. These
proteins were taken from the Protein Conformational
Database (PCDB) [43] a redundant collection of protein
structures linked with biological information. ΔΔG for
each SAS in each conformer for a given protein was esti-
mated using FoldX [44]. We found that the ΔΔG esti-
mated value for a SAS highly depends on the conformer
used in the estimation. In 35% and 58% of the studied
proteins we found that at least one SAS could be classi-
fied as neutral, stabilizing or destabilizing depending on a
ΔΔG threshold value of ±2Kcal/mol and ±1 Kcal/mol
respectively. We also found that the consideration of
conformational diversity increases the performance of
the prediction of disease related SASs based on ΔΔG ana-
lysis. Our results show that the different conformers cor-
relate in different ways with the phenotype (disease or
neutral) and that, in most cases, one conformer per pro-
tein correlates perfectly with the corresponding pheno-
type. Our results indicate that the use of conformational
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diversity may be important to understand the effects of
neutral and disease related SASs on protein stability.

Results
Extension of protein conformational diversity
The 119 proteins studied in this work were linked to the
PCDB database [43]. All conformer coordinates con-
tained in PCDB for each protein were derived from the
PDB database (http://www.rcsb.org). The structures
were obtained under different conditions, mainly in the
presence of different ligands that shift the population
equilibrium of the different conformers in the ensemble
[37,45]. Our dataset has an average maximum root
mean squared deviation (RMSD) between conformers of
2.51 Å and an average number of conformers per pro-
tein of 8.6. The distribution of the maximum RMSD
(the maximum RMSD displayed between all conformers
of a given protein) is shown in Figure 1. Considering
that the average RMSD for a protein crystallized under
the same condition ranges from 0.1 and 0.4 Å [42] and
from the distribution shown in Figure 1, we concluded
that our dataset contains proteins with moderated to
extreme conformational diversity (for details on confor-
mational diversity per protein see additional file 1). We
also computed the relative accessible surface area (ASA)
of the positions involved in SASs (neutral and disease
related) as described in Methods. We found changes in
the maximum Δ(ASA) between conformers, with a max-
imum value of 98.6 Å2 and an average value of 12.0 Å2

(Figure 2). This distribution reflects the structural
changes at the SAS positions between conformers. In
fact, using Δ(ASA) values, 33% of the proteins have at
least one position that, depending on the chosen confor-
mer, can be classified as buried (ASA<20Å2) or solvent
exposed (ASA>20Å2). Previous observations suggested
that ΔΔG values upon residue substitution inversely

correlate with the corresponding ASA values [46]. We
therefore can expect large variations in the ΔΔG estima-
tion upon changes on the different conformers consider-
ing the large ASA variation.

Variation of ΔΔG estimation using conformational
diversity
For each of the 803 SASs a ΔΔG estimation was per-
formed for all the conformers of each protein using FoldX
[44]. The accuracy of FoldX to predict stability changes
has been discussed before [20,46]. For each mutation we
registered the maximum and minimum ΔΔG values and
the maximum difference of the ΔΔG values among differ-
ent conformers of the same protein (maximum Δ(ΔΔG)).
The distributions of maximum and minimum ΔΔG values
and the distribution of the maximum difference of ΔΔG
values (max. Δ(ΔΔG)) are shown in Figures 3 and 4,
respectively, for both disease related and neutral SASs. We
found that maximum and minimum values of ΔΔG of dis-
ease related SASs have higher (destabilizing) values com-
pared with those of neutral SASs. The distributions of
minimum ΔΔG values have average values of 1.47kcal/mol
and of 0.38 kcal/mol for disease related and neutral SASs,
respectively. This distribution difference is significant (Kol-
mogorov-Smirnov test with P-value < 1 10-5). In turn,
average maximum ΔΔG values for disease and neutral
SASs are 4.63 and 1.86 kcal/mol respectively (Kolmo-
gorov-Smirnov test with P-value < 1 10-5). Considering the
distributions of maximum variation of the Δ(ΔΔG), most
of the values (69%) are below 1kcal/mol. This value can be
regarded as a typical standard error in the estimation of
ΔΔG [44] (Figure 4). However, 31% of the SASs have max-
imum Δ(ΔΔG) above the standard error and a significant
difference between the ΔΔG estimations of the different
conformers.

Figure 1 Distribution of maximum RMSD between conformers
corresponding to the 119 proteins in the dataset used in this study.

Figure 2 Distribution of ΔASA (Å2) for substituted positions derived
from the analysis of the conformational ensemble for each of the
119 proteins in the dataset.
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When each SAS is mapped into its corresponding pro-
tein, we found that in 35% of the cases there is at least one
SAS that can be classified as neutral and stabilizing or neu-
tral and destabilizing depending on the considered confor-
mer. It is interesting to note that for this 35%, the average
of the maximum RMSD between conformers is 3.78 Å
compared to 2.38 Å for proteins without ambiguous pre-
dicted stability changes. The discriminative threshold of
ΔΔG was set at ± 2 kcal/mol, as it was previously discussed
by Worth and coworkers (Worth, Preissner, and Blundell
2011). However, other works have defined different thresh-
olds to classify the stability changes of a SAS [47-49].
When we analyzed the data distribution for ΔΔG values
using a threshold of ±1 kcal/mol, the number of proteins
with at least one ambiguous prediction was even higher
(58%) (these calculations can be done using the data and
information included as additional file 1). Thus, the exten-
sion of conformational diversity measured by the maxi-
mum RMSD between conformers increases the variability

of the stability prediction of SASs generating certain ambi-
guity in the prediction. It is noteworthy that this ambiguity
is manifested in the same proportion respect to the total
population of SASs in disease-associated SASs as in poly-
morphic SASs. That is, the proportion of neutral SASs
with respect to the total number of SASs is similar to the
proportion of neutral SASs with ambiguous prediction
with respect to the total number of SASs with ambiguous
predictions (almost 29%). From this we can conclude that
the uncertainty in the evaluation of the thermodynamic
effect of a SAS equally affects neutral and disease related
SASs.
In order to explore the effect of changes in ASA among

conformers, we compared Δ(ΔΔG) and ΔASA values for
disease and neutral SASs (Figure 5). It is interesting to
note that at decreasing ΔASA (<0), Δ(ΔΔG) values indi-
cate protein destabilization for disease related SASs
(Δ(ΔΔG)>2kcal/mol) and remain unaffected in the case of
neutral SASs (Δ(ΔΔG)<2kcal/mol). On the contrary, when
positions become more exposed to solvent (ΔASA >0) the
ΔΔG turns to stabilizing values. However, in this last con-
dition, the neutral and disease related SASs present almost
the same behavior. Most of the values between ±50 Å2 of
ΔASA (64%) involve differences between exposed posi-
tions which explains the low variation in Δ(ΔΔG)
(approximately ±2kcal/mol) as it is derived from the analy-
sis of the distributions shown in Figure 5.
Summing up, all the observations indicate that there is

a large spread of estimated ΔΔG values for the different
conformers due to their structural differences. The
spread and, eventually, the corresponding ambiguity in
the prediction of ΔΔG, can blur the correlation among
ΔΔG values and the SAS type (disease related or neu-
tral) when only one protein structure is used, as it is
routinely the case.

Prediction of disease related SASs using ΔΔG
In order to explore how well the explicit consideration of
conformational diversity could improve the estimation of
disease related variants using stability measurements, we
calculated the Mathews Correlation Coefficient (MCC)
among ΔΔG computed values and the classification of
the SASs as disease related or neutral. When conforma-
tional diversity is taken into account for each protein, a
given SAS will result in a different number of ΔΔG esti-
mated values (the number of values is equal to the num-
ber of conformers belonging to this protein). We first
calculated MCC for all the data (14297 ΔΔG values for
119 proteins with an average number of conformers per
protein of 8.6). Secondly, we characterized the change in
the stability after a SAS using the minimum, maximum
and average of the ΔΔGs obtained from the set of corre-
sponding conformers for a given protein and a given
SAS. Finally, to contrast our hypothesis (that could be

Figure 3 Distributions of maximum and minimum values of ΔΔG
obtained for the different conformers for each protein in the
dataset. Disease and neutral SASs are shown as separate
distributions.
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convenient to consider the conformational diversity) we
also estimated MCC using a random selection of ΔΔG
values derived from those obtained for each SAS in the
set of corresponding conformers. The results, including
the corresponding sensitivity, specificity and accuracy
values are reported in Table 1 and indicate a significant
difference between MCC corresponding to maximum
values per conformer compared to random (P-value=
0.02). Random gives an estimation of the performance of
the use of the stability changes to predict disease related
mutations using only one structure per protein in our

dataset. Our results for random selection of single ΔΔG
values agree with the performance reported in recent
works [47]. The higher values of MCC using the maxi-
mum ΔΔG agree with the averaged maximum values for
disease related (4.62 kcal/mol) and neutral SASs
(1.86kcal/mol) shown in Figure 3. All the results are in
agreement with previous work highlighting difficulties to
discriminate disease related SASs on the basis of protein
stability criteria [24].
As a final consideration, we observed that for each SAS

in a given protein, and considering all conformer derived
ΔΔG values, in 763 out of 803 SASs (94.8%) there is at
least one conformer whose ΔΔG value correlates perfectly
with the disease or neutral phenotype (at a given/fixed
ΔΔG discriminative threshold). For some proteins in our

Figure 4 Distribution of maximum Δ(ΔΔG)(kcal/mol) for the 803 SASs studied. Bars represent the frequency and dots the cumulative frequency.

Figure 5 Scatter plot of average differences of Δ(ΔΔG) (kcal/mol)
among conformers as a function of averaged ΔASA (Å2) and their
respective error bars. Dots represent the average derived from
ranges of 10 units of ΔASA and are represented in the centre of
each interval.

Table 1 Scoring the capability of discriminating among
disease related and neutral SASs on different set of
conformers.

MCC Accuracy Specificity Sensitivity

Global* 0.19 0.54 0.76 0.44

Minimum° 0.23 0.54 0.85 0.34

Maximum° 0.36 0.68 0.69 0.68

Average° 0.25 0.62 0.80 0.5

Random^ 0.25 0.60 0.68 0.55

*Global uses all data neglecting the correspondence between proteins and
their conformers. °Minimum, Maximum and Average characterize the values of
ΔΔG per SAS taking into account the conformers for each protein. ^Random
MCC was calculated as an average over 50 independent selections of a
randomly taken one ΔΔG value per SAS and per protein. In all the cases the
threshold is ± 2kcal/mol. The difference between MCC values for Maximum
and Random is significant at P-value=0.02. For definition of the different
scoring indexes see text.
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dataset, well populated with disease as well as with neutral
SASs (25 proteins), we computed the conformer specific
MCC to find the best conformer associated to disease or
neutral phenotype. Interestingly most of these proteins
show a different extent of variability of MCC values for
the corresponding conformers. MCC values range from
0.67 to 1 for adenine phosphoribosyltransferase (P07741,
with 4 conformers and 5 disease related and 1 neutral
SASs), from 0.37 to 0.72 for fructose-biphosphate aldolase
B2 (P05062, 2 conformers with 13 disease related and 3
neutral SASs) from 0.068 to 0.33 for the uroporphyrinogen
decarboxylase (P06132, 7 conformers, 34 disease related
and 6 neutral SASs) and from -0.04 to 0.27 for the trans-
thyretin (P02766, 71 conformers, 74 disease related and 9
neutral SASs). In Figure 6 we show an example of how
conformational diversity affects the estimation of ΔΔG
and their correlation with disease. Cartoon representations
for the two conformers considered for fructose-bipho-
sphate aldolase B (P05062) are shown at the top; the cen-
tral panel includes the values of ΔΔG and at the bottom
the corresponding MCC. Structural changes among con-
formers promote different local arrangements of variants
resulting into different ΔΔG values. It is then expected

that different conformers correlates in a different way with
the occurrence of disease or neutral SASs. In order to
obtain a further understanding on the role of the different
conformers and the occurrence of disease or neutral SASs,
we have mapped the occurrence of ligands in each confor-
mer to detect bound and unbound states for each protein.
We found that in 69% of the proteins the conformer with
the maximum ΔΔG corresponds to the bound state of the
protein. However this result should be taken with care. As
explained in the Methods section we have detected the
presence of ligands using Procognate database. In this pro-
cedure we just detected the presence of ligands that can be
substrates, inhibitors, cofactors or allosteric effectors.
Since different ligands change the population of confor-
mers in different ways, the “bound” state could contain
different conformers per protein. Considering the paucity
of conformers available as compared to the protein uni-
verse, further work is necessary to completely elucidate
their relevance to the disease related phenotype.

Conclusions
The elucidation of the effect that a single amino acid sub-
stitution (SAS) has in a specific phenotype is a central

Figure 6 Example showing how conformational diversity affects ΔΔG estimation and MCC values. The protein fructose-biphosphate aldolase B
(P05062) is shown in the example. Two conformers were found for this protein with a RMSD = 1.3 A. At the top of the figure there are cartoon
representations of the two conformers with the mutated amino acids represented in stick (in yellow). Bars graphics represent ΔΔG values (red for
disease associated mutations and blue for neutral mutations) and finally the corresponding MCC for each conformer. Black arrows indicate
wrong predictions based in the reference interval of ±2kcal/mol. As structural changes produce variations in ΔΔG the different conformers have
different MCC values.
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problem in different areas of research. Particularly, in
protein computational biology it is very challenging to
understand the mechanisms that lead to disease [50].
Estimation of protein stability and its perturbation after
single SAS have played a key role to predict the effects of
SASs [1,6,11,51]. Notwithstanding important advances in
the area, the estimation of stability in proteins is still pro-
blematic and its correlation with disease or neutral var-
iants highly depends on the dataset considered [24].
Here, we improved the correlation between the perturba-
tion of protein stability and the classification of SASs as
disease related or neutral. This improvement was
obtained by considering maximum values of ΔΔG com-
puted taking into account conformational diversity. As
the native state is not unique, the conservation of the
biological activity of a protein relies on the different con-
formers of the ensemble. It has been found that the dif-
ferent conformers for a given protein constraints in
different way the substitution pattern of proteins [52].
Then it is expected that the different conformers should
have different robustness to SASs. Although the correla-
tion is still far from being perfect, our results suggest that
the effect of each SAS should be studied in all the protein
conformers in order to obtain a better understanding of
protein function perturbation and the disease origin. Our
results also suggest that conformational diversity could
add value to new computational tools for predicting SAS
effects and play a key role to obtain a deeper understand-
ing of the relationship among protein structure and
function.

Methods
Data set collection
A list of proteins with disease and polymorphic SASs was
extracted from http://www.uniprot.org/docs/humsavar.
This list was linked with PCDB (http://pcdb.unq.edu.ar)
database [43]. PCDB contains a collection of redundant
protein structures obtained in different conditions (for
example presence of ligands, change in oligomerization
state, etc.). These structures can be considered as snap-
shots of protein dynamism, assumption validated by pre-
vious works that have proved the correspondence between
structural deformations detected under different crystallo-
graphic conditions and conformational changes related to
the flexibility of the native state [39,40]. The description of
the conformational ensemble of the protein native state is
limited to the information deposited in PCDB and PDB
databases. The maximum RMSD (RMSDmax) between
alpha carbon coordinates of the different conformers, cal-
culated with MAMMOTH [53], is taken as a measure of
the conformational diversity of the protein. From this
cross linking, a dataset containing 119 proteins with differ-
ent number of conformers was defined (8.6 conformers in
average per protein, with a minimum of 2 and a maximum

of 73). The length of all the structures in this dataset cov-
ers more than 70% of the length of the corresponding pro-
tein sequence. The dataset contains 803 SASs with 482
disease related and 323 neutral.
The presence of cognate ligands in each structure was

determined using the Procognate database [54]. The
cognate ligands deposited in this database are those
involved in the biological function of the proteins. After
this filtering we found that 35 proteins have bound/
unbound states in our dataset.

Stability and structural measurements
For each SAS and for each protein and conformation,
we estimated ΔΔG values using the program FoldX [44].
FoldX uses an empirical potential calibrated to fit in
vitro ΔΔG values. Area exposed to solvent was calcu-
lated with Naccess program (http://www.bioinf.manche-
ster.ac.uk/naccess/).

Statistical analysis
To study the performance to predict disease or neutral
variants using estimated ΔΔG values, we calculated the
accuracy, specificity, sensitivity and also the Matthew’s
correlation coefficient (MCC). The equations used were:

Accuracy
tp tn

tp tn fp fn
 

  

Specificity
tn

tn fp




Sensitivity
tp

tp fn




Mcc
tptn fnfp

tp fn tp fp tn fn tn fp
 

   ( )( )( )( )

A value of MCC=1 defines the best possible predic-
tion, while a value of MCC=-1 indicates the worst possi-
ble prediction. A value of MCC=0 corresponds to
predictions made by chance.

Additional material

Additional file 1: List of SASs mapped on the corresponding
structures. List of proteins, structures and corresponding
conformers.
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