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Abstract

Background: Molecularly targeted agents (MTAs) are increasingly used for cancer treatment, the goal being to
improve the efficacy and selectivity of cancer treatment by developing agents that block the growth of cancer cells by
interfering with specific targeted molecules needed for carcinogenesis and tumor growth. This approach differs from
traditional cytotoxic anticancer drugs. The lack of specificity of cytotoxic drugs allows a relatively straightforward
approach in preclinical and clinical studies, where the optimal dose has usually been defined as the “maximum
tolerated dose” (MTD). This toxicity-based dosing approach is founded on the assumption that the therapeutic
anticancer effect and toxic effects of the drug increase in parallel as the dose is escalated. On the contrary, most MTAs
are expected to be more selective and less toxic than cytotoxic drugs. Consequently, the maximum therapeutic effect
may be achieved at a “biologically effective dose” (BED) well below the MTD. Hence, dosing study for MTAs should be
different from cytotoxic drugs. Enhanced efforts to molecularly characterize the drug efficacy for MTAs in preclinical
models will be valuable for successfully designing dosing regimens for clinical trials.

Results: A novel preclinical model combining experimental methods and theoretical analysis is proposed to
investigate the mechanism of action and identify pharmacodynamic characteristics of the drug. Instead of fixed
time point analysis of the drug exposure to drug effect, the time course of drug effect for different doses is
quantitatively studied on cell line-based platforms using system identification, where tumor cells’ responses to
drugs through the use of fluorescent reporters are sampled over a time course. Results show that drug effect is
time-varying and higher dosages induce faster and stronger responses as expected. However, the drug efficacy
change along different dosages is not linear; on the contrary, there exist certain thresholds. This kind of preclinical
study can provide valuable suggestions about dosing regimens for the in vivo experimental stage to increase
productivity.

Introduction for every new drug brought to market [1-3]. In aggre-

Drug development is currently an expensive and pro-
longed process with high attrition rate. The rate of new
drug approvals in the U. S. has remained essentially
constant since 1950, while the costs of drug develop-
ment have soared [1]. Industry analysts estimate that it
takes $1 billion to $4 billion in R&D and 10-15 years
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gate, the industrial average rate of attrition measured
from first trials in humans to registration seems to be
locked at ~85-90% [4,5]. The situation in oncology drug
development is even worse [3,6,7]. By contrast, the over-
all clinical success rate for new anticancer agents (~5%)
is much lower than other therapeutic areas (e.g. success
rate for cardiovascular diseases is ~20%) [8]. As a result,
the American Cancer Society’s 2005 statistical report
shows that cancer is now the leading cause of death for
Americans under age 85 [9]. One common explanation
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for the recent shrinking of oncology drug pipelines is
that discovery is moving into more complex areas of
human health [10,11], such as cancer, which is more
likely to result from the interaction of several different
genes/pathways [12,13]. The conundrum confronting
the cancer research community is twofold: first, the
pharmaceutical industry is facing difficult times owing
to low productivity and spiraling cost [4]; second, on
consumers front, patients await better treatments and
cancer drugs are an unaffordable luxury for many con-
sumers [14]. To move ahead, scientists realize that they
need some fresh thinking in basic, translational and clin-
ical research [15] to improve R&D productivity and
reduce attrition rates, and such efforts calls for joint col-
laboration from different disciplines [5,16-20].

The focus of anticancer drug development in recent
years has shifted from cytotoxic drugs to targeted therapy
[16,19,21-23]. The goal of this target-based approach is to
improve the efficacy and selectivity of cancer treatment by
developing agents that block the growth of cancer cells by
interfering with specific targeted molecules needed for car-
cinogenesis and tumor growth [21,22]. This approach is
different from traditional cytotoxic anticancer drugs,
where most compounds are targeted against molecules
required for the maintenance of structural and genetic
integrity of rapidly dividing cells. However, despite
advances in understanding of the molecular mechanisms
of cancer, the promise of targeted cancer therapy remains
largely unfulfilled [8,24], with only a few well-known
examples, such as imatinib [25] and trastuzumab [26], cur-
rently approved [27]. Many promising candidates prove
ineffective or toxic owing to a poor understanding of the
molecular mechanisms of biological systems they target.
Different reasons have been proposed to explain this
limited effectiveness of anticancer drug development,
including insufficient translational research and lack of
adequate preclinical models that recapitulate disease com-
plexity and molecular heterogeneity [8,16,28,29]. Ideally,
preclinical models should validate the target, provide
information about the mechanism of action of the drug,
and identify pharmacodynamic markers of activity. Once
the target and mechanism of action have been identified
using in vitro models, experiments should be undertaken
to ensure that inhibition of the target can be achieved at
tolerated doses in vivo and to identify possible biomarkers
of response. Improved preclinical evaluation of com-
pounds has the potential to augment the detection of
activity and toxicity, and to reduce the high attrition rate.

While the lack of specificity of the traditional cytotoxic
anticancer agents allows a relatively straightforward,
well-established approach, developing a paradigm to bet-
ter analyze the efficacy of molecularly targeted agents
(MTAs) is substantially more complex [18,22,30-32].
Many targets are involved in cell signaling pathways,
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which are most often not linear, but connected and
redundant [33]. Control strategies typically involve a
higher multiplicity of inputs and a multiple layer of feed-
back [34]. As a result, strategies traditionally applied to
the development of cytotoxic drugs may not be appropri-
ate for MTAs [32]. Current treatment plan and efficacy
evaluations are usually designed empirically for MTAs,
without adequate knowledge of the optimal dose and the
appropriate schedule [32]. A novel preclinical model
combining experimental methods and theoretical analysis
is proposed in this study to investigate the mechanism of
action and identify pharmacodynamic characteristics of
the drug. It is expected that through such preclinical
study, valuable suggestions about dosing regimens could
be furnished for the in vivo experimental stage to
increase productivity. We consider several challenges for
MTA dosing.

Firstly, the optimal dose has usually been defined as the
“maximum tolerated dose” (MTD) for conventional cyto-
toxic anticancer drugs rather than the dose that produces
a quantifiable therapeutic effect. This toxicity-based dos-
ing approach is founded on the assumption that the ther-
apeutic anticancer effect and toxic effects of the drug
increase in parallel as the dose is escalated [22]. Such an
assumption is sound if the mechanisms of action of the
toxic and therapeutic effects are the same, as is often the
case with cytotoxic agents. However, most MTAs are
expected to be more selective and less toxic than conven-
tional cytotoxic drugs [23]. As a result, the maximum
therapeutic effect may be achieved at a dose, defined as
the “biologically effective dose” (BED), which could be
substantially lower than the traditionally established
MTD as discussed by Johnston [31]. A hypothetical dose-
effect curve is shown in Figure 1. In addition, the toxic
effect may not parallel the therapeutic effect and not be
predictive of the therapeutic effect [22]. Hence, the dos-
ing study for MTAs should be based on both drug effi-
cacy and toxicity considerations. Enhanced efforts to
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Figure 1 A hypothetical dose-effect curve for targeted therapy.
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molecularly characterize the drug efficacy for MTAs in
preclinical models will be valuable for successfully esti-
mating the BED for clinical trials.

Secondly, the pharmacodynamics (PD) of drugs have
been extensively investigated in vitro and in vivo; however,
most analyses have reported the relationship of drug expo-
sure to drug effect at a fixed time point. When drug effect
is examined at a fixed time point, the drug concentration-
effect relationship can be characterized through well estab-
lished models, such as the Hill equation [35], also called
the sigmoidal E,,,,, model [36]. However, characterization
of the entire time course of drug effect may provide addi-
tional information [37]. For example, it may help to design
the optimal schedule for drug administration.

Thirdly, traditional design of the dosing regimen to
achieve some desired target goal such as relatively con-
stant serum concentration may not be optimal because
MTA targets mostly sit in interacting complex dynamical
regulatory networks and such complex target contexts
pose significant challenges for assessing mechanisms of
action for MTAs [30]. For example, Shah and co-workers
[38] demonstrate that the BCR-ABL inhibitor dasatinib,
which has greater potency and a short half-life, can
achieve deep clinical remission in CML patients by
achieving transient potent BCR-ABL inhibition, while
traditional approved tyrosine kinase inhibitors usually
have prolonged half lives resulting in continuous target
inhibition. A similar study of whether short pulses of
higher dose or persistent dosing with lower doses have
the most favorable outcomes has been carried out by
Amin and co-workers in the setup of inactivation of
HER2-HERS3 signaling [39].

In sum, it is difficult and expensive to optimize dosing
regimens using strictly empirical methods for MTAs. A
novel preclinical model combining experimental methods
and theoretical analysis is proposed in this study to investi-
gate the mechanisms of action and identify pharmacody-
namic characteristic of MTAs. As a first step, the time
courses of drug effect for different doses are quantitatively
studied on cell line-based platforms using system identifi-
cation, where a tumor cell’s response to investigational
drugs through the use of fluorescent reporters is sampled
frequently over a time course. A dynamic model is pro-
posed to study the time course of drug efficacy for MTAs
and then the experimental data are analyzed by our pro-
posed model using a Kalman filter. Through such preclini-
cal study, valuable suggestions about dosing regimens may
be furnished for the in vivo experimental stage to increase
productivity.

Methods

The proposed approach is an integration of experiment
and theory to investigate regulatory process dynamics by
combining multiple complementary disciplines,
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including: (i) using fluorescent reporters in molecular
technology to study cells’ transcriptional activities under
drug perturbation; (ii) these being captured by an auto-
matic epifluorescent microscope over a time course; and
(iii) such data being processed by large-scale image pro-
cessing for dynamic analysis. A truly multi-dimensional
dynamics of tumor cell response to drugs can be charac-
terized through systematic perturbations to test different
combinations of cell types, reporters, and drugs/dosages,
augmented by iterative systematic theoretical analysis.
This methodology differs from high-throughput techni-
que like RNA expression profiling with microarrays,
which provide a snapshot of an aspect of the system at
one time point.

Experimental methodology

Understanding cell response to a drug requires experimen-
tal designs that ask very specific questions about what is
happening in a cell in the absence of a drug and how the
cell activities change when the drug is present. The objec-
tive of the experimental protocol is to efficiently capture
cell process dynamics in response to drugs and thereby
obtain a deeper understanding of the genetic regulatory
mechanisms, the point being to make preclinical research
more predictive. Fluorescent reporters have long been
used in molecular technology to study cells’ transcriptional
activities or the cellular localization of components, either
in a population of cells or a single cell [40-42]. In this
study, we track the transcriptional activities of particular
genes. A fluorescent reporter to serve this purpose can be
constructed by fusing the promoter region of a gene of
interest with the coding sequence of a fluorescent protein,
most commonly a green fluorescent protein (GFP). By
delivering a single cassette bearing the promoter/GFP
reporter into the genome of each cell in a population of
cells, any change in the expression levels of the native cod-
ing sequence driven by that promoter will be reflected in
the transcriptional activity of the cassette. This allows the
estimation of the total fluorescence of the reporter in the
cell, captured by imaging with an epifluorescent micro-
scope, which is then used as a relative measure of the tran-
scriptional activity of the native gene. Because this
procedure is non-invasive to the cell, it allows tracking of
the same cell population for an extended period of time by
imaging the same site repeatedly. The recent introduction
of automated digital microscopes allows researchers to use
multi-well microtiter plates and sequentially capture the
transcriptional activities in all wells. In our experimental
protocol, a single assay is carried out by epifluorescent
imaging of a site at the bottom of each well in a 384 well
plate, producing an image of the cells in that region
(~200-400 cells) bearing fluorescent reporters. The ima-
ging speed of automated systems easily accommodates
sampling an entire 384 well plate at hourly intervals. If
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needed, the experiment can be extended to multiple plates
to cover a wider range of cell types and reporters.

In this experimental set-up, using different wells to test
different combinations of cell type, GFP reporter and
experimental condition allows this approach to provide a
multi-dimensional examination of the cells’ responses to a
variety of stimuli. Not only can it follow multiple genes
simultaneously, but it can also compare cellular activities
under various conditions. Furthermore, it captures the
dynamics of transcriptional regulation. This produces data
on ~200-400 individual cells per well that can be analyzed
both individually, as a distribution, or in aggregate, as an
average. Fluorescent intensity data can be extracted from
these images using specialized image analysis tools devel-
oped for this application [43]. This image processing pro-
cedures include finding cells, identifying individual cells,
and quantifying the fluorescence associated with each cell.
The objective is to extract gene expression levels from the
fluorescent image and track them over the time course.
We approach this goal through morphology-based image
processing methods.

Image processing

Typical fluorescent images are shown in Figure 2 (left
panels), where nuclei are detected in the blue channel and
promoter reporters to study cells’ transcriptional activities
are detected in the green channel. With a 384-well plate
there will be at least 384 videos for evaluation and the
number can be much higher if the experiment requires
multiple plates to cover all experimental conditions. Visual
evaluation is unreliable when one needs to quantitatively
compare different conditions and the high-throughput
nature of the green fluorescent protein reporter approach
calls for a more automatic and quantitative solution to
efficiently extract gene-expression levels from the fluores-
cent images and track them over the time course.

To facilitate automatic processing of the experiment
results, the transcriptional levels of the fluorescent images
need be properly extracted, quantized, and saved and the
image processing algorithm should be fast with good bal-
ance between performance and robustness [43]. An algo-
rithm based on morphological image processing [44], in
particular, the watershed transformation [45] is currently
adopted in our study. Overall, the image processing breaks
down into three major components: (i) nuclei channel seg-
mentation, (ii) reporter channel segmentation, and (iii)
measurement of cell-by-cell promoter activity levels.
Figure 3 shows the segmentation results of a typical fluor-
escent image pair, where only a portion of the full image is
shown in order to show the segmentation details. Once
the individual cells are identified, the transcriptional activ-
ity represented by the reporter is extracted for every cell
by summing up the background subtracted pixel intensity
of the whole cell area and taking a log, transform before
being exported.
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Experimental set-up for the dosing study

The dosing study is carried out on the colon cancer cell-
line HCT116 with a reporter for the MKI67 gene, a
nuclear antigen tightly correlated with proliferation
[46,47], with responses to lapatinib treatment with 6
dosages (1 to 32 uM). First we infect the HCT116 cell
lines with the desired packaged reporter (packaged as
lentiviral particles). Then plate cells/reporter pair in a
media containing a live-cell nuclear stain. The cells are
allowed to attach to the plate and grow overnight.
Drugs are added to the appropriate wells (we have 6
wells [biological duplicates] for each dosage). In order to
remove environmental effects, such as growth factor
depletion, there are 6 control wells for each dosage (no
drug added, total 36 wells). We image the plate once an
hour for 48 hours to characterize the response of each
cell/reporter pair to the drug over time. Note that the
fluorescence intensity of cells without a GFP reporter
expressed is not zero, since cells have numerous small
molecules which fluoresce in the same wavelengths as
GFP when excited with 488 nm light. This defines the
minimum fluorescence, which is approximately 2'*. One
of the time courses from experiment (dosage = 8uM) is
shown in Figure 2. The left panels of Figure 2 show two
fluorescent images sampled for the same site in a 48
hour lapatinib treatment for 8 uM dosage. The right
panels of Figure 2 show the log,(GFP) intensity histo-
gram for each time point.

Since MKI67 is turned on during proliferation and off
when the cells are not cycling, it is expected to show a bin-
ary, switch-like histogram of cell intensities, rather than a
graded transition. This behavior is observed in Figure 2.
We have the readout of the GFP intensity level for each
individual cell/dosage pair with 48 time points. These can
be compared with a threshold value to determine whether
that cell is shifted or not [37,43]. Such a reporter assay
allows one to determine the dynamics of drug responses
for different dosages. Consequently, we propose a time-
varying model for the cell shifting process where the drug
effect coefficient is assumed changing with time. This is in
contrast to many existing approaches where the drug
effect coefficient is treated as a constant and the experi-
ment just provides one reading rather than time-series
characterization.

Mathematical model formulation

The experimental results provide information on the per-
centage of cells shifted as a consequence of the drug
activity. The measurements facilitate asking important
questions in drug development. For instance, does dosing
alter the extent of response, the timing of response, or
both? In addition to qualitative questions, we are inter-
ested in modeling the drug effect quantitatively, which
requires a novel mathematical model that is biologically



Li et al. BMC Genomics 2012, 13(Suppl 6):S11
http://www.biomedcentral.com/1471-2164/13/S6/S11

Page 5 of 13

Pre-Drug

Figure 2 Time course response to lapatinib by HCT116 with reporter for MKI67: Left panels show 2 typical fluorescent images (nuclei:
blue, GFP: green) sampled for the same site in a 48-hour lapatinib treatment. a) The upper panels show the case before any drug is applied. b)
The lower panels show the case 48 hours after lapatinib was added. The right panels show the log2(GFP) intensity histogram for each time
point. The fraction of the total population having a particular intensity is shown on the y-axis and the log2 intensity of the eGFP fluorescence
measured for the cell is shown on the x-axis. The distribution before drug is shown as a thick yellow line at the upper right panel. The lower
right panel shows the profile that is color-coded with time, starting with red, changing to yellow and then green, and ending with blue. The

profile at the ending time points is shown with bold yellow line.

(b)

HCT116 MKI67 (1000)
Well A19

HCT116 MKI67 {1000)
Well A19
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Figure 3 Segmentation Results: a) left panel: nuclear channel, where red lines are the identified nuclei boundaries; b) right panel: reporter
channel, where green lines are identified cell boundaries, while the red objects are the nuclei used as markers.

sound and fits the experimental setup. Our experiments
and the proposed modeling has two important features:
(i) Our experiment is based on the readout of the inten-
sity level of each individual cell, which is compared with
a threshold value to determine whether that cell is shifted
or not. Although we count the number of shifted cells at
each sampling time point, the proposed model is not a
population model merely giving the average readout of
all the cells. (ii) Our experiment collects time-series data
under drug perturbation for 48 hours, with one sample
per hour. A time-varying model is proposed for the cell
shifting process, where the drug effect coefficient is
assumed changing with time.

Because there are different numbers of cells in differ-
ent wells (the range is about ~200-400 cells per well),
we perform normalization to calculate the percentage of
cells shifted. Since there are many factors including
drug effect that contribute to the cell shifting, calibra-
tion is performed by comparing to the control group to
exclude other contributing factors. The notations used
in this work are listed below

+ N: total number of cells

« Ni(t): number of shifted cells at time ¢ after apply-
ing drug

« p1(t) = N1(t)/N: percentage of cells shifted at time ¢
after applying drug

« N_: total number of cells in the control group (no
drug applied)

o N;.(t): number of shifted cells at time ¢ in the con-
trol group

o p1.(t) = Ny (£)/N,: percentage of cells shifted at
time ¢ in the control group

o p(t) = p1(2) = p1.(t): calibrated percentage of cells
shifted at time ¢ after applying drug

e pu(t) = E[p(£)]: mean of the calibrated percentage
of cells shifted at time ¢ after applying drug

+ X;(2): state of cell i at time ¢ after applying drug
(either shift-ready or not)

We justify Ni(¢) being modeled as a Gaussian process
when the number of cells per well is sufficiently large.
Then a model is proposed for the cell shifting process,
where the calibrated percentage of shifted cells follows a
Gaussian process.

N;(t) is a Gaussian process when the number of cells per
well is large enough

In general, N is a random variable since N may be dif-
ferent from well to well in the experiment; however, N
can be treated as a known constant for each specific
well, as can N,. At any given time point #; in the experi-
ment, X;(¢;) can be considered as either shift-ready or
not. Thus, the experiment of drug effect on each cell
can be treated as a Bernoulli trial and X,(¢;)) can be mod-
eled as a Bernoulli random variable, i.e., the Probability
Mass Function (PMF) of X(¢)) is given by

p xi=1
1—px=0 1)
0 otherwise

Pxi(xi) =

where 0 < p < 1 and ¢ is dropped for simplicity of
presentation. Under this definition, N; = Zﬁlxi‘

Assuming that all cell states are independent, N; has the
binomial PMF given by

Prstm) = ()1 =N ®

When the number of cells per well is large, say N >
100, the PMF of N; at any given time instant can be
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accurately approximated by the Gaussian distribution
due to the central limit theorem. Next we show that
N, (2) is a Gaussian process.

Proposition 1. The random process Ni(t) is approxi-
mately Gaussian when the number of cells per well is
large.

Proof. At the beginning of the experiment, £y, Ni(Z) is
a Gaussian random variable. For any sampling point, at
time ¢, N;(f) can be expressed as

N1(4) = Ni(t-1) + AN () (3)

where N;(¢;_;) is the total number of shifted cells at
time ¢;_;, and the additional number of shifted cells in
the time interval [¢;_y, £] is given by

N—-N; (lj—l)

ANi(f) = Y X (4)
i=1

If N - Ni(t_1) is sufficiently large, N - Ny(t;_,) > 32,
then AN (%) is well approximated by a Gaussian random
variable. Since N;(fp) is Gaussian, N;(¢) is Gaussian as
well by mathematical induction. D
Modeling the cell shifting process
From our previous experimental observation, the cell
shifting process on colon cancer cell-line HCT116 with a
reporter for the MKI67 gene under lapatinib treatment
shows a binary shifting characteristic. It is assumed that
the number of shifting cells is related to: (i) the drug
effect corresponding to different dosages; and (ii) the
number of proliferating cells (non-shifted cells, N — Nj).
Since N;(¢) is Gaussian process when the number of cells
per well is large and N is a constant, the percentage of
cells shifted at time ¢ after applying drug, p,(f) = N1(t)/N,
is a Gaussian process normalized to 0[1]. Similarly, for
the control group, p;.(£) = N1.(t)/N,, is also a Gaussian
process normalized to O[1]. Then p(t) = p1(¢) - p1.(£), the
calibrated percentage of cells shifted at time ¢ after apply-
ing drug, is a Gaussian process too. We are interested in
the distribution of p(t), specifically, how the mean value
of p(£), p..(t), changes along time under different dosage.
Based on the above discussions, we propose the following
model for cell shifting:

d;);w = (ylu + Ml)(l - pav) - (:3 + M2)pav +V (5)
where y{ is the drug effective coefficient depending on
the dosage d, and > 0 is a balancing factor. p,,(¢)
changes along time since the corresponding random pro-
cess p(t) is non-stationary, thus its mean changes with
time. Specifically, the change of p,, () follows a linear dif-
ferential equation (Eq.(5)) that reflects the fact that the
change would be positively affected by the product of
drug effectiveness and the percentage of cells not shifted
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(1st term in Eq.(5)), and negatively affected by the per-
centage of cells already shifted (2nd term in Eq.(5)), thus
the term “balancing factor” for 3 since more shifted cells
mean less non-shifted cells that the drug may affect.

In this model, we assume that both y;* and 8 change
along time, thus the proposed model is a time-varying
system. It is also assumed that the number of non-
shifted cells, N — Nj, decreases exponentially with the
factor y{'. 1 =[u;u2|" and v are independent Gaus-
sian white noise processes. u represents the process
noise. Its covariance matrix is

CIOTRCIE e o

y is the measurement noise. Its covariance matrix is

CEORCIES e

The noise terms account for the various uncertainties
introduced by the experiment. For instance, the cells
may not be at the same cell cycle during the experi-
ments, and thus may not be affected by the drug if
some of the cells are actually dormant. This kind of
uncertainties are modeled by process noise y. There
also exists another type of uncertainty due to measure-
ment procedures, such as the imperfect photographic
device and the image processing software. This type of
uncertainty is modeled by measurement noise v.

To observe the relationship between the drug effect
coefficient y;' and the dosage d, we need to estimate
vi for each dosage. Since this is a time-varying model,
vi changes with time.

System identification from time-series data using Kalman
filter

Kalman filtering [48] provides minimum-mean-square-
error estimation of the state of a stochastic linear system
disturbed by Gaussian white noise. In our proposed
scheme, a Kalman filter is applied to estimate the coeffi-
cients, y{ and f3, of the proposed cell shifting model.
The corresponding state and measurement equations are

w(n)=whn—1)+pn—1) (6)

8(n) = C(n)w(n) + v(n) (7)

where the 2-dimensional state vector (containing the
parameters to be estimated) is w = [y{*8]. 6 can be cal-
culated as §(n) = "“V(””A)l_”“”(”). C=[1— pw— pal]-

The implementation of the Kalman filter is given by
the following equations [48]:

W (n)=w'm-1) ®)
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P (n)=P"(n—1)+Q(n—1) )
w*(n) =w"(n) + K(n)[d(n) — C(n)iv™(n)] (10)
K(n) = P~ (n)C" (m)[C(m)P~ (n)C(n) + R(m)| ™ (11)
P*(n) = P~ (n) — K(n)C(n)P~ () (12)

where K(n) is the Kalman filter gain and P is
the covariance matrix of the error. The superscripts -
and " indicate the a priori and a posteriori values of
the variables, respectively. jp— and g are the prior
and posterior estimates, respectively. Q and R are the
covariance matrices of the parameter noise and exter-
nal noise, respectively. The initial conditions are
(0]80) = E[@(0)] and Py = E[w(0)w’(0)].

In general, a Kalman filter may be interpreted as a one-
step predictor with an appropriate gain calculator [49].
Specifically, Eq.(10) is the one-step predictor, Eq.(11) cal-
culates the Kalman filter gain, and Eq.(12) solves the cor-
responding Riccati equation.

Convergence of the Kalman filter is an important issue
[48]. The rate of convergence is defined as the number
of iterations to obtain the optimum estimates. The con-
vergence of the Kalman filter includes the convergence
of the estimates i(n)and the convergence of the estima-
tion error e(n). Convergence will be studied in detail in
the simulations.

In practice, noise statistics (such as the covariance
matrices) may not be known and need to be estimated.
The Kalman filter is sensitive to the estimation error of
noise statistics. Poor estimates of the noise covariance
can result in filter divergence. An alternative would be
using an H., filter [50,51].
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Results

Two-step analysis is performed to evaluate the drug
effect study for different dosages. Firstly, we performed
a proof-of-concept experiment using Monte Carlo simu-
lation to demonstrate that the proposed model can
mimic experimental observation. Secondly, we analyzed
the time-varying drug effect for different dosages based
on real experimental data from Dr. Bittner’s lab at
Translational Genomics Research Institution (TGen).

Proof-of-concept experiment using Monte Carlo
simulation

It is assumed that a group of 200 cells has mean GFP
intensity at 2'®. When the drug is applied, each cell
determines whether to shift to a lower intensity or not
individually by flipping a coin (Bernoulli trial) at each
time point, as we assumed in the theoretical model. The
histograms of percentage of cells at intensity in the
range of [2'% 2'°] along time are shown in Figure 4. It
is observed that the resulting histograms from the
Monte Carlo simulation of the theoretical model match
the measurement results from the TGen experiments
performed on the cell-line. This demonstrates that the
cell shifting is probably a binary decision, which lays the
ground for our proposed theoretical model where a
group of cells’ decision can be modeled as binomial and
can be closely approximated by Gaussian distribution
when the number of cells is large.

Drug effect analysis for the dosing study performed at
TGen

For the experiments performed on the cell-line at TGen,
there are 6 different dosages tested for the drug laptinib,
from 1uM to 32uM. There are 6 biological duplicates
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Figure 4 The change of histogram of percentage of cells at intensity [2'%, 2'9] under drug intake along time using Monte Carlo
simulation.
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for each dosage and each biological duplicate contains
200 to 400 cells. The obtained experimental data set
contains time-series data of the intensity readings for
each cell per hour along a 48-hour period. There are
also corresponding experimental data set of the control
group (without drug) for the purpose of calibration. The
calibrated percentage of shifted cells is used as measure-
ment data in the proposed algorithm using Kalman fil-
tering. The obtained estimates of the drug effect
coefficient (y{') and the balancing factor () along 48
hours for 6 different dosages are shown in Figure 5 and
Figure 6, respectively.

It is observed from Figure 5 that in general the drug
effect coefficient (¥]') increases with the applied dosage,
as expected. It seems that there exist certain thresholds
for y;'. For instance, ;' is much bigger with the
dosages above 8uM. It is also observed that y/
increases with time as well. This reveals the time varying
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nature of the drug effect. Furthermore, Figure 5 shows
that higher dosage corresponds to faster response time,
e.g., Vi increases earlier and faster for higher dosage
starting at ~10 hour. It is worth pointing out that, ide-
ally, the percentage of shifted cells should be more than
that in the control group without drug input, ie., 0 < p
() < 1. However, due to uncertainties and noise in the
experiments, we actually observe that p(£) may be nega-
tive, especially during the first ~10 hours, before the
drug is in effect.

Unlike y{', it is observed in Figure 6 that 3 remains
roughly flat along time for a given dosage, because f is
the balancing factor and should not change with time.
However, f3 is different for different applied dosage, since
higher dosage requires a higher balancing factor to main-
tain stability of the system. Again, the uncertainties and
noise may dominate the system during the first ~10
hours (before the drug is in effect).
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Figure 5 The estimate of the drug effect coefficient along time for 6 different dosages.
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Figure 6 The estimate of the balancing factor along time for 6 different dosages.
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Figure 7 shows the convergence of the Kalman filter.
It converges in a few iterations in all cases.

Post data processing for the dosing study performed at
TGen

From Figure 5 and Figure 6, it is observed that drug
effect (') and the balancing factor (B) is very “jittery,”
especially for the initial ~10 hours. Such a phenomenon
may result from experimental noise, or that the cells
may need certain “commitment time” after the drug is
added. In order to better compare the drug effect for
different dosages, we smooth the results and only take
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into account data after the first 10 hours. We apply a
moving-average filter with filter coefficients determined
by an unweighted linear least-squares regression and a
2nd-degree polynomial model. The span for the moving
average is 5. Figure 8 shows the smoothed drug effect
coefficient (y;') along time for 6 individual dosages. It
can be observed that the drug effect is more jittery for
small dosages, such as 1uM. The smoothed y{' along
time for 6 dosages are compared in Figure 9. It is
observed that there exists a “plateau” (y{ ~ 0.01) for
higher dosages above 8uM. The plateau is reached at 38
hours, 30 hours, and 24 hours, for dosages 8uM, 16uM,

squared error

4uM
SuM
164 M

{ 1uM
2uM
I—.\zpm

I i L J

3 4 5

Number of Iterations

Figure 7 The Convergence result of the the proposed algorithm using Kalman filter.
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Figure 8 The smoothed drug effect coefficient along time for 6 individual dosage.
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Figure 9 The smoothed drug effect coefficient along time for 6 different dosages.

and 32uM, respectively. The smoothed balancing factor
(B) for individual dosage can be found in Figure 10, and
the smoothed f for 6 dosages are compared in Figure 11.

Conclusions and future work

The ultimate goal of target-based cancer drug develop-
ment is to improve the efficacy and selectivity of cancer
treatment by exploiting the differences between cancer
cells and normal cells. The current cancer drug develop-
ment process is confronting huge challenges, such as how
to better understand the target in context and develop pre-
dictive preclinical models to better understand the mole-
cular mechanisms of the biological systems they target and
hence reduce the attrition rate. An integrated experimental
and theoretical approach is proposed to assess the efficacy
of molecularly targeted agents based on cell-line platforms.
As a first step, drug efficacies for different dosages are

characterized along time. Specifically, tumor cell’s
responses are analyzed through the use of fluorescent
reporters sampled frequently over a time course; quantifi-
cation is done by microscopic scanning of cells in culture
in multi-well plates using the automated epifluorescent
imager; fluorescent intensity data are extracted from these
images using specialized large-scale image analysis tools
developed for this application; the dynamics of drug effi-
cacy for different dosages are studied using dynamic mod-
eling; and time-varying parameters are estimated using
system identification techniques. It is observed that the
drug efficacy is time and dosage dependent. The objectives
are two-fold: (i) The dosing study for MTAs should be
based on both efficacy and toxicity consideration to find
the biologically effective dose (BED) instead of the maxi-
mum tolerated dose (MTD) for cytotoxic agents. The time
course of drug effect for different dosages can provide

B
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Figure 10 The smoothed balancing factor coefficient along time for 6 individual dosage.
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Figure 11 The smoothed balancing factor coefficient along time for 6 different dosages.

information on the gradient of drug effect vs. dosage, and
thus on the BED. (ii) Instead of a fixed time point pharma-
codynamics study of MTA, characterization of the entire
time course of drug effect provides insight into designing
an optimal schedule for drug administration.

Based on a similar experimental set-up and measure-
ments to follow the cell/drug (dosages) dynamics, a truly
multi-dimensional dynamics of tumor cell responses to
drugs can be characterized through systematic perturba-
tions to test different combinations of cell types, reporters,
and drugs/dosages, augmented by iterative systematic the-
oretical analysis. Such an approach would facilitate the
study of optimal dose and schedule, such as whether short
pulses of higher dose, persistent dosing with lower dose,
or some other regimen would have the most favorable
outcomes. Moreover, the complex target context can be
inferred with multi-dimensional cell response dynamics
with the help of advanced system identification methods.
In sum, better intervention strategies can be designed.
Such topics are either currently being pursued or will be
in future projects.
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