
RESEARCH Open Access

A Steiner tree-based method for biomarker
discovery and classification in breast cancer
metastasis
Md Jamiul Jahid1, Jianhua Ruan1,2*

From IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS) 2011
San Antonio, TX, USA. 4-6 December 2011

Abstract

Background: Metastatic breast cancer is a leading cause of cancer-related deaths in women worldwide. DNA
microarray has become an important tool to help identify biomarker genes for improving the prognosis of breast
cancer. Recently, it was shown that pathway-level relationships between genes can be incorporated to build more
robust classification models and to obtain more useful biological insight from such models. Due to the
unavailability of complete pathways, protein-protein interaction (PPI) network is becoming more popular to
researcher and opens a new way to investigate the developmental process of breast cancer.

Methods: In this study, a network-based method is proposed to combine microarray gene expression profiles and
PPI network for biomarker discovery for breast cancer metastasis. The key idea in our approach is to identify a
small number of genes to connect differentially expressed genes into a single component in a PPI network; these
intermediate genes contain important information about the pathways involved in metastasis and have a high
probability of being biomarkers.

Results: We applied this approach on two breast cancer microarray datasets, and for both cases we identified
significant numbers of well-known biomarker genes for breast cancer metastasis. Those selected genes are
significantly enriched with biological processes and pathways related to cancer carcinogenic process, and,
importantly, have much higher stability across different datasets than in previous studies. Furthermore, our selected
genes significantly increased cross-data classification accuracy of breast cancer metastasis.

Conclusions: The randomized Steiner tree based approach described in this study is a new way to discover
biomarker genes for breast cancer, and improves the prediction accuracy of metastasis. Though the analysis is
limited here only to breast cancer, it can be easily applied to other diseases.

Background
The identification of marker genes involved in cancer is
a central problem in system biology. Many studies have
used gene expression data for marker identification in
breast cancer and other diseases [1,2]. However, noisy
data, small sample sizes, and heterogeneous experimen-
tal platforms make the marker selection procedure diffi-
cult and dataset-specific. As a result, different studies on

the same disease often have very few gene markers in
common. For example, two studies [3,4] identified 70
and 76 gene marker for breast cancer, which were also
validated later by two other studies [5,6], but they have
only three genes in common.
To improve the stability of marker selection, other

complementary genomic information such as pathways
has been used [7-9]. The problem of pathway-based
approach, however, is that the majority of human genes
are not assigned to a specific pathway [10]; therefore
there is a strong possibility that a true marker may be out
of consideration for not being assigned to a pathway.
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To circumvent this problem, [10] proposed to incorpo-
rate protein-protein interaction (PPI) networks for disco-
vering small sub-networks, which may represent novel
pathways, as potential markers. They found that such
subnetwork-based markers can both improve classifica-
tion accuracy and increase cross-dataset stability. Other
studies have attempted to use gene co-expression net-
works or hybrid networks developed from various
sources instead of PPI networks [11,12]. Recently several
studies also paid much attention to the association
between PPI network topology and disease. For example,
[13] found that inter-modular hubs are more associated
with breast cancer than intra-modular hubs; [14] used
pair-wise shortest paths between differentially expressed
genes to identify candidate markers, [15] used probabilis-
tic activity inference method to identify diagnostic
subnetworks.
In this study we propose a network topology-based

approach to identify candidate biomarker genes, motivated
by the key observation that disease genes play a role in
connecting differentially expressed (DE) genes in PPI net-
works [10]. For example, breast cancer biomarkers P53
and KRAS are not differentially expressed in metastatic
breast cancer but they connect many DE genes in the
human PPI network and play a central role in carcinogenic
process [10]. The main idea of our approach is to find a
small number of genes that can connect DE genes into a
singly connected component in a PPI network, which
maps to the well-known Steiner tree problem in graph
theory and is solved using a heuristic algorithm. In addi-
tion, we combine multiple suboptimal Steiner trees to
increase the chance of finding the optimal solution and to
capture alternative pathways. Applying our approach on
three breast cancer datasets, we found that the candidate
markers selected by our method are highly enriched in
pathways that are well-known to be dysregulated in breast
cancer metastasis, and cover a significant number of
known breast cancer susceptibility genes. Remarkably, the
markers identified from multiple datasets have much
higher reproducibility than in previous studies, and signifi-
cantly increase the cross-datasets classification accuracy.

Methods
Datasets and PPI networks
In this study we used two microarray datasets herein
referred as van de Vijver and Wang dataset [4,5] respec-
tively. The two datasets have 295 and 286 breast cancer
patients where 78 and 106 patients have distant metastasis
within five years of follow-up visit respectively. The micro-
array platform used for van de Vijver et al was Agilent
Hu25K and for other dataset was Affymetrix HG-U133a.
The first dataset was downloaded from the Netherland
Cancer Institute website (http://bioinformatics.nki.nl/
index.php) while the other dataset was obtained from

GEO with the accession number GSE2034 [16]. SAM (Sig-
nificant Analysis of Microarray) [17] was used to select
genes that are significantly differentially expressed between
metastatic and non-metastatic tumors (DE genes). We
controlled the delta parameter in SAM to select a similar
number of DE genes from each dataset. As a result a total
of 333 and 319 DE genes were selected for van de Vijver
and Wang datasets, corresponding to FDR 0.7% and 8.2%
respectively. Varying the number of DE genes between
200 and 1000 only slightly changed the percent of overlap
while the significance of the overlap is essentially not
affected (data not shown).
Two human protein-protein interaction networks were

used by this study. The first network was obtained from
Protein Interaction Network Analysis (PINA) and contains
10,920 genes and 61,746 binary connections [12]. The sec-
ond network was compiled by [10] from six different
sources, and contains 57,235 interactions among 11,203
genes. In this study we only considered the largest con-
nected component in each PPI network, which contains
10,794 genes and 56,864 connections for Chuang PPI net-
work and 10,770 genes and 61,658 connections for PINA
PPI network.

Randomized Steiner tree approach
The main idea of our approach (see Figure 1) is to identify
a small number of genes that connect all DE genes in a PPI
network. In graph theory this problem is known as Steiner
tree problem. The Steiner tree for an edge-weighted graph
G= (V, E, w) and a subset of vertices R ⊆ V is a minimum-
weight connected tree T, with vertices U ⊆ V and edges
S ⊆ E that spans all vertices in R. Here the vertices in R are
known as terminal vertices and U\R as Steiner vertices. For
an unweighted graph G, the problem then becomes to find
the minimum number of vertices that can connect all the
vertices in R through a tree in G. The Steiner tree problem
is NP-hard [18]. We implemented a slightly improved ver-
sion of a polynomial-time 2-approximation shortest path
heuristic algorithm [19]. This algorithm starts with a forest
(T

′
) comprising the terminal vertices R. Then in each

iteration it finds the two vertices in T
′ that are closest in

distance and adds the intermediate vertices to T
′ . This pro-

cedure is repeated until T
′ becomes connected. Finally, a

minimum spanning tree of those selected vertices are built
and all leaf vertices that are not in R are removed. The run-
ning time of this algorithm is O(|V|3). The pseudocode is
given below.

Steiner tree algorithm
Input: Weighted PPI network, G = (V,E,w); DE genes, R
Output: Tree, T, that spans R

1. Start with a forest (T
′
) comprising the DE genes,

R, but no edges
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Figure 1 Overview of our approach. (a) A overview of our approach is given. Differentially expressed genes were selected from the dataset
and then used with the protein protein interaction network to identify markers using Steiner tree approach. (b) A Steiner tree for van de Vijver
dataset with Chuang PPI network is shown. (c) A larger figure for the highlighted part of the tree is shown. The ids of the vertices are in entrez
gene id. (d) After 200-300 iterations the number of STM saturates to 1047 genes.
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2. While T
′ is not a tree do Connect two shortest-

distance disconnected vertices u, v Î T
′ and add

vertices on the path to T
′

3. Build a minimum spanning tree (T) with the sub-
graph of G induced by the vertices in T

′

4. Delete any leaf node in T that is not in R

In a Steiner tree the intermediate vertices (both Stei-
ner vertices and non-leaf DE genes) play important roles
in connecting DE genes together. We consider all the
intermediate vertices as potential biomarkers (Steiner
Tree-based Markers or STMs) for breast cancer metas-
tasis, as it is known that disease related genes play an
important role in connecting DE genes in PPI network
[10]. For example, for van de Vijver dataset with
Chuang-PPI network, a single Steiner tree uses 136 ver-
tices to connect 333 DE genes (Figure 1B-C). Among
the DE genes, 264 are leaf nodes (degree = 1 in the
tree) and the other 69 are internal nodes (degree > 1 in
the tree). As these internal DE genes are important in
connecting the remaining DE genes, we combine the
Steiner vertices with these internal DE genes as potential
biomarkers for breast cancer metastasis. Thus for this
single tree we consider those 205 internal genes as
potential biomarker (Figure 1B-C).
Next, we proposed a simple strategy to obtain multiple

Steiner trees. The motivation is two-fold. First, as the
heuristic algorithm does not guarantee optimality, by
obtaining multiple solutions we increase the chance of
finding the optimal Steiner vertices. Second, multiple
solutions with similar qualities may represent alternative
or redundant pathways that cannot be covered by a
single Steiner tree. To obtain alternative Steiner trees
without any modification to our Steiner tree algorithm,
we assign to each edge in PPI network a random weight
between 0.99 to 1 and run the standard Steiner tree
algorithm. These random weights effectively break ties,
so that if there are two paths with the same weight
in the original network, one path will be chosen ran-
domly. This procedure was repeated multiple times with
different random weights from 0.99 to 1, until the total
number of unique STMs converges approximately.
Depending on the PPI network and microarray data, the
rate of new coming STMs reduced significantly after
200-300 iterations (for example, see Figure 1D). After
that, we take union of all internal nodes (or genes) of
those trees and consider them as potential biomarkers.
As previously mentioned, we called these genes as
Steiner Tree-based Markers (STMs). We obtained 1047
and 1100 STMs for Chuang PPI network and, 932 and
1135 STMs for PINA PPI network for van de Vijver and
Wang dataset respectively (see Additional file 1 for com-
plete gene list).

Statistical test of overlap significance
Let N be the number of genes in the largest connected
component of a PPI network, m and n the sizes of two
gene sets, o the size of the overlap, the percent overlap
between the two gene sets is calculated as 100 × o/(m +
n - o), and the statistical significance (p-value) of the
overlap is calculated using Fisher’s exact test:

p = 1 −
o−1∑

i=0

C(m, i)C(N − m,n − i)/C(N,n), (1)

where C(n, k) is the binomial coefficient.

Classification
To evaluate the prediction ability of different features
(STMs and DEs), we built logistic regression and sup-
port vector machine (SVM) classifiers to distinguish
breast cancer patients who developed metastasis within
five years after the date of the initial diagnosis from
those who did not. We used the implementation in
WEKA (version 3.6.3) and default parameter settings for
this classification purpose [20]. To avoid overfitting and
provide a realistic evaluation, we concentrated on cross-
data classification where features obtained from one
dataset were used to construct classifiers for the other
dataset, because DEs were selected using the complete
dataset and very specific to that particular dataset. Clas-
sification performance was estimated 100 times using
10-fold cross validation where iteratively one-tenth of
the data were used for testing and nine-tenth were for
training. Performance was measured by AUC (area
under ROC curve).

Results
Stability of STMs
We first examined the stability of STMs across differ-
ent datasets. For this we find the common genes in
STMs for the two datasets with two PPI networks and
compare with previous studies. The stability of STM
and markers selected by previous studies are shown in
Table 1. As can be seen, the overlap of STMs for the
two datasets is 23.6% (p-value < 6.2E-159, Fishers ’
exact test) and 21.8% (p-value < 7.7E-138) for Chuang
and PINA PPI respectively, while the overlap is 12.7%
(p-value < 6E-54) in Chuang et al [10] and only 2% (p-
value < 0.027) for the markers selected in the original
studies [4,5]. The overlap between DE genes is 7.8% (p-
value <1.3E-019). Thus for both networks the Steiner
tree based markers have significantly better stability
than the markers selected by other methods and the
DE genes. Furthermore, the STMs selected from differ-
ent datasets using different PPIs show similar level of
stability as can be seen in Table 2.
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Functional enrichment and pathway analysis of STMs
To reveal the biological functions of the candidate bio-
markers we used online bioinformatics resource DAVID
[21] to analyze the enriched gene ontology biological
processes and KEGG pathways for STMs and DEs. We
used the genes in the largest connected component of
the PPI network as the background gene list in DAVID.
This analysis showed that genes selected by our method
are significantly enriched in functional terms that are
well known to be involved in cancer carcinogenic pro-
cess, including cell cycle, apoptosis, DNA repair as well
as MAPK, ErbB and P53 signaling pathways. A list of
the enriched terms and their enrichment scores are
listed in Figure 2. These enriched functional terms and
pathways have strong consistency with several previous
studies [10,22,23]. DE genes clearly have much lower
significance compared to STMs. For example, for van de
Vijver dataset and Chuang PPI network DE genes are
only weakly enriched in DNA repair (p-value<1.1E-1 vs
1.1E-10 in STMs) and apoptosis (p-value<4.2E-2 vs
3.0E-8 in STMs), and not significantly enriched in cell
growth, ErbB, MAPK and P53 signaling pathways. A
similar trend is found in Wang dataset (Figure 2). Using
PINA PPI network for these two datasets we also have
similar and significant results for STMs compared to DE
genes (see Additional file 2). Thus starting with the DE
genes with low significance our method is able to find a
set of genes which are overrepresented in many known
pathways involved in breast cancer metastasis.

STMs correspond to novel biomarkers of cancer
Next, to demonstrate that our method is able to identify
cancer susceptibility genes, we compare our results with
Chuang et al [10]. In that study they collected 60 known
breast cancer marker genes from Online Mendelian
Inheritance in Man (OMIM). As shown in Figure 3, for
both datasets STMs have higher percentage of overlaps

with those known markers than the genes selected by
previous studies [4,5,10]. Also, DE genes cover a smaller
portion of known cancer susceptibility genes than STMs.
The enrichment of known breast cancer markers in
STMs (p-value < 1.32E-09 and 5.28E-04, for van de
Vijver and Wang datasets respectively, Fishers’ exact test)
are also more significant than in DE genes and genes
selected by previous studies [4,5,10]. Some well-known
biomarkers covered by STMs are BRCA1 (breast cancer
1, early onset), BRCA2 (breast cancer 2, early onset),
ATM (Ataxia telangiectasia mutated), TP53 (tumor pro-
tein p53), ErbB2 (a.k.a. HER2, Human Epidermal Growth
Factor Receptor 2), TFN (tumor necrosis factor) and Esr1
(Estrogen receptor 1) (for a complete list see Table 3). As
the STMs are enriched in breast cancer related pathways
and cover a significant number of known susceptibility
genes, the rest of the STMs that are not known biomar-
kers can be considered as novel potential biomarkers for
breast cancer metastasis.
We also collected 288 breast cancer susceptibility

genes from Genetic Association Database of Disease
from DAVID. STMs covered 26.39% and 26.04% of
those known breast cancer susceptibility genes for
Wang and van de Vijver datasets, respectively. For both
datasets, genes selected by our method clearly outper-
formed DE genes (5.55% and 5.28% for Wang and van
de Vijver datasets respectively). Evaluation results using
PINA PPI show similar results.

Steiner tree-based markers improves the cross-dataset
classification accuracy
We tested whether the STMs can be used to improve the
prediction accuracy of breast cancer metastasis. To this
end we use the STMs as features to train logistic regres-
sion and support vector machine (SVM) classifiers
[20,24] to separate metastatic from non-metastatic
patients (see method section). For comparison, we also

Table 1 Stability of STMs

van de Vijver dataset Wang dataset Number of common genes (% of overlap) p-value

Chuang-PPI (STM) 1047 1100 410(23.6%) 6.16E-159

PINA-PPI (STM) 932 1135 370(21.8%) 7.67E-138

DE genes 333 319 47(7.76%) 1.32E-019

Result in [10] 618 906 175(12.7%) 5.57E-054

Result in [4,5] 70 76 3(2.09%) 0.0274

The percentage of overlap and p-values between van de Vijver and Wang datasets in different methods are given.

Table 2 Cross PPI stability of STMs

van de Vijver dataset Wang dataset Number of common genes (% of overlap) p-value

Chuang PPI vs PINA PPI 1047 1135 306(16.6%) 6.67E-072

PINA-PPI vs Chuang PPI 932 1100 283(16.2%) 2.14E-073

DE genes 333 319 47(7.76%) 1.32E-019

The percentage of overlap and p-values between cross datasets and cross PPI network.
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constructed classifiers using only DE genes and DE+STM
genes. To evaluate the power of the candidate markers in
predicting metastasis in an unbiased fashion, we focused
on cross-dataset tests, where the genes selected from one
dataset were used to construct classifiers for the other

dataset. Figure 4 shows the classification accuracy, mea-
sured by AUC (area under ROC curve), achieved by dif-
ferent feature sets for logistic regression and support
vector machine classifier. As can be seen, STMs resulted
in better accuracy than DEs for both cases. On van de

Figure 2 Enrichment of STMs and DEs. Enriched biological processes and pathways of STMs and DE genes for van de Vijver and Wang
datasets for Chuang PPI network is shown. PINA PPI shows similar results.

Figure 3 Known breast cancer susceptibility genes covered by STMs. Overlap of know breast cancer susceptibility genes with STMs, DEs
and genes selected from previous studies are shown.
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Vijver dataset, STM-based logistic regression classifier
performed better than DE-based classifiers in 79 of the
100 runs (p-value = 4E-12, paired t-test), and STM-based
SVM classifier outperformed DE-based SVM in 87/100
of runs (p-value = 6E-20). For Wang dataset, the corre-
sponding numbers are 99/100 (p-value = 7.7E-44) and
86/100 (p-value = 5.5E-17). On the other hand, STMs
performed better than STM+DE feature set in all cases
except in van de Vijver dataset for SVM classifier. In that
case STM+DE sets performed slightly better than the
STMs. For all cases STM+DE set performed better than
DEs. Thus STMs have better classification accuracy on
predicting breast cancer metastatic potentials than DE
genes.
Next we compared our classification results with [10].

In table 4 the classification results for [10] and our
method are summarized. From the table it can be seen
that for van de Vijver dataset the percentage of increase
of AUC for [10] is 7.5% based on their subnetwork mar-
kers compared to single gene markers (DEs). For our
case we observe a 5% increase of AUC for STMs com-
pared to DEs. For Wang dataset [10] subnetwork markers
have 3% increase in AUC while STMs have 15% increase
in AUC. For the overall classification accuracy, STMs
have similar discriminative power as [10] in Wang

dataset and slightly lower accuracy for van de Vijver data-
set. This deviation may be due to the fact that [10] used
feature selection for classification purpose and we used
all selected genes to build the classifier. For this case fea-
ture selection may increase classification accuracy which
not necessarily reflects the actual discriminative power of
the overall selected genes by a certain method. As our
main focus is to identify biomarkers and to see their
overall classification performance to validate the repro-
ducibility across different datasets, classification model
that contain the overall features (genes) selected by our
method(STMs) is a valid way for doing that.

Conclusions
In this article we proposed a randomized Steiner tree-
based approach that integrates a PPI network and gene
expression microarray data for biomarker discovery in
breast cancer metastasis. The genes selected by our
method are significantly enriched in functional cate-
gories and pathways that are known for cancer develop-
ment. Furthermore, a significant portion of selected
genes by our method are already known for breast can-
cer susceptibility. We applied the method to three dif-
ferent breast cancer microarray data and two different
PPI networks. For all combinations of microarray and

Table 3 Breast cancer genes in STMs

Breast cancer known genes in STMs (van de Vijver dataset) Breast cancer known genes in STMs (Wang dataset)

RAD54L HRAS

HRAS ITGA2

ERBB2 BRCA2

BRCA2 BRCA1

PGR APC

XRCC1 KRAS

BRCA1 ITGB3

PHB ESR1

TYMS TP53

TNF TGFB1

APC VDR

ESR1 AR

TP53 RAD51

PIK3CA TSG101

TGFB1 CDH1

GSTP1

GSTT1

LOC651610

ATM

RAD51

TK1

CYP1A1

TSG101

CHD1

Known breast cancer susceptibility genes covered by STMs from van de Vijver and Wang datasets for Chuang PPI network.
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PPI datasets our approach has similarly significant
results. The reproducibility across different datasets also
increases significantly in both genomic and pathway
level compared to previous studies. Finally, Steiner tree-
based markers, significantly increase cross-dataset classi-
fication accuracy. Thus the method proposed in this
article validates the hypothesis that disease causal genes
play a role in connecting differentially expressed genes,
and opens a new possibility to identify the inner
dynamics and biomarker of breast cancer progression.

Additional material

Additional file 1: This excel file contains the entrez ids of the
Steiner tree-based markers (STMs) selected by this approach for
van de Vijver and Wang datasets using Chuang and PINA PPI
networks. Besides this, differentially expressed (DE) genes for the two
datasets are also given.

Additional file 2: This pdf file contain the figure of enrichment of
STMs and DEs. Enriched biological processes and pathways of STMs and
DE genes for van de Vijver and Wang datasets for PINA PPI network is
shown here.

Figure 4 Classification results. Classification accuracy of DE and STM genes based on AUC metric with logistic regression and Support Vector
Machine are shown. The dataset label represents features taken from the other dataset and applied to the labeled dataset.

Table 4 Classification accuracy of STMs

Chuang et al [10]method Steiner tree based method

Single gene marker Subnetwork marker % increase of AUC DEs STMs % increase of AUC

van de Vijver dataset 0.67 0.72 7.5% 0.59 0.62 5%

Wang dataset 0.6 0.62 3% 0.53 0.61 15%

Comparison of classification results with [10] method.

Jahid and Ruan BMC Genomics 2012, 13(Suppl 6):S8
http://www.biomedcentral.com/1471-2164/13/S6/S8

Page 8 of 9

http://www.biomedcentral.com/content/supplementary/1471-2164-13-S6-S8-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-S6-S8-S2.pdf


Abbreviations
PPI: protein protein interaction; DE: differentially expressed; STM: Steiner tree-
based marker; ROC: receiver-operating characteristic; AUC: area under ROC
curve.
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