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Abstract

Background: Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low
sampling rates often employed in biological studies prevents the inference of detailed models from experimental
data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series
data with limited time points.

Results: We present an inference approach for a Boolean Network (BN) model of a GRN from limited
transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on
attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on
Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a
BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to
compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various
paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN
inference algorithms.

Conclusions: Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited
time series data with plausible biological structure using random connectivity and absence of structure in data. The
framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs
with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of
our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the
connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not
unique.

Introduction
Technological advances in the last two decades have
provided numerous approaches to measure various
aspects of the regulome in a cell. However, the data
generated for specific conditions are still limited both in
terms of number of time points and number of samples.
Models of genetic regulatory network (GRN) are regu-
larly being inferred from limited time series data on
average tissue expression as measured by technologies
such as microarray. Selection of a mathematical model
to represent a GRN and its inference from limited noisy

time series data remains an important problem in sys-
tems biology.
The foremost aspect of inference of a mathematical

model for explaining a regulatory process is selection of
the model. A comprehensive model can provide an accu-
rate picture of the regulation assuming that the parameters
of such a model can be correctly inferred. However, we are
often faced with limitations on the experimental data
which motivates us to design simpler models with the abil-
ity to capture the coarse-scale dynamics of the GRN. In
this paper, we consider cases where there are only one set
of time series transcriptomic or proteomic data generated
from a cell line after a specific perturbation. Here, we are
considering cell population averaged data as measured by
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techniques such as microarrays and thus we will start with
a deterministic model explaining the average behavior of
the system. For a deterministic model, common choices
will be Differential Equation (DE) or Boolean Network
(BN) type of models. Inference of the parameters of a DE
model from minimal data can produce unreliable models
as was observed when we tried to infer commonly used
linear and non-linear DE models [1] from experimental
data of 6 time points (results not shown). A least square
cost function was considered and gradient descent was
used to optimize the parameters [1]. The inferred DE
models were unable to capture any rhythmic behavior pre-
sent in the experimental data and produced models with
significantly different transient and steady-state behaviors
for different runs of the parameter optimization proce-
dure. To capture the rhythmic behavior, specific DE mod-
els such as Goodwin Models [2] were employed but
optimization procedures were unable to infer stable rhyth-
mic models from the 6 data points. The primary reason
for the inability of the inferred Goodwin Model to produce
a rhythmic behavior was the limited amount of data used
for inference. Even though, we interpolated the data, the
number of full cycles in the data still remained limited.
Thus, we focused on BN types of model. The BN model
has yielded insights into the overall behavior of large
genetic networks and can be used to model many biologi-
cally meaningful phenomena [3,4]. Inference and genera-
tion of BNs with specific structure is an open area of
research [5].
Our goal in this paper is to provide a BN inference

approach from limited time series data and prior biological
knowledge on connectivity. The proposed framework can
also be applied to optimize the connectivity of a GRN
from experimental data when the prior biological knowl-
edge on regulators is limited or not unique. Our analysis
will reveal that the chances of generating a BN with small
length attractor cycles and satisfying the observed tran-
sitions with constraints on connectivity is extremely rare if
the regulators of a gene are selected randomly and the
data itself lacks structure. We apply our inference
approach on time series transcriptomic data of 6 genes
and 6 time points from an HMEC cell line following appli-
cation of epidermal growth factor (EGF) and were able to
generate a BN with a biologically plausible singleton
attractor structure and satisfying the experimentally
observed transitions. The theoretical analysis shows that
the generation of such a network from 6 random state
transitions and random selection of 3 regulators of every
gene is extremely low which in turns suggests that there is
structure in the biological data that is exploited by our
inference algorithm to arrive at a biologically plausible BN.
We next set up an experimental design to compare syn-
thetic BNs with BNs generated through our framework
based on state transitions from the synthetic BNs. The

results illustrate the capability of the proposed inference
technique to generate BNs that are similar to the original
BNs by using few state transitions when the connectivity is
known.
The paper is organized as follows: The ‘methods’ sec-

tion contains (a) a review of BNs and the biologically
motivated assumptions and constraints that will be
imposed during inference, (b) theoretical analysis of the
search space for the inverse problem and (c) Inference
Algorithm. The ‘results’ section contains the results of
applying the framework to experimental HMEC data and
synthetic BNs; results of comparison with 2 other
approaches is also discussed in this section. Further ana-
lysis of the results are included in the ‘conclusions’
section.

Methods
GRN model and modeling assumptions
A Boolean network (BN) B = (V, F) on n genes is defined
by a set of nodes/genes V = x1, ..., xn, xi Î (0, 1), i = 1, ...,
n, and a vector of Boolean functions, F = (f1, ..., fn), fi : {0,
1}n ® {0, 1}, i = 1, ..., n. Each node xi represents the
state/expression of the gene xi, where xi = 0 means that
the gene is OFF and xi = 1 means that the gene is ON.
The function fi is the predictor function and a subset of
the genes Wi ⊆ V determining the value of the gene xi at
next time step, is called the predictor set for gene xi.
The biologically motivated assumptions and con-

straints that we will impose are:
(i) Biological networks usually have sparsity in their con-

nectivity structure. Thus we will restrict our connectivity
to k where k will be typically 3. The initial connectivity
structure will be based on prior biological knowledge
available from public databases such as KEGG (http://
www.genome.jp/kegg/), pathway commons (http://www.
pathwaycommons.org) and String (http://string-db.org/).
However, the prior biological knowledge is often incom-
plete to provide an exact connectivity for a gene and thus
the available experimental data will be utilized to narrow
down the choices.
(ii) Biological networks are usually robust to perturba-

tions and can produce a reproducible trait under changing
conditions. The robustness of an inferred model will be
measured in terms of coherency of the BN [6] which is the
probability that a single gene perturbation of any state in
the BN will not alter the basin of attraction of that state.
The coherency js of an individual state s in a BN will be |
sb|/|sn| where sn denotes the states that differ from s by a
hamming distance of 1 and sb denotes the states among sn
that lie in the same basin of attraction as s. The coherency
of the BN will be denoted as the mean of the coherencies
of the individual states. Among two equally feasible
inferred networks, the one with higher coherency will be
preferred.
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(iii) GRNs usually have small attractor cycles and thus
any oscillation observed in our data should be reflected
in the Boolean model as a limited state attractor cycle.
(iv) Among two feasible functions, the one with lower

inconsistency will be selected. Here, inconsistency refers
to same state of the predictor state producing different
target output. Let us consider that we have L distinct
transition from states Si to Si+1 for i = 1, ..., L. Each
state Si is a n length binary vector x1(i), x2(i), ..., xn(i).
Let ygi (0) and ygi (1) denotes the number of 0’s and 1’s
respectively observed in the time series data for gene g
when the decimal value of the state of the k length pre-
dictor set in the previous time step is i where 0 ≤ i ≤ 2k

- 1. The measure of inconsistency for gene g is
(1/L)

∑2k−1
i=0 min(ygi (0), y

g
i (1)).

Search space analysis
In this section, we will analyze the size of the search
space for the inverse problem of inferring a Boolean
model of a GRN from time series data based on connec-
tivity and structural constraints.
Let us consider the case of experimental data of L

transitions (i.e. L + 1 time points) and n genes. The
total number of possible BNs from n genes is
(2n)2

n
= NNwhere N = 2n is the number of states. This

is equivalent to possible ways of filling a n × 2n truth
table with 1’s and 0’s. This can be explained through the
illustration in table 1 where n is assumed to be 3. For
example, the value (let’s call it v1,1) of 1st cell in table 1

states that if X =

⎡
⎢⎣
0

0

0

⎤
⎥⎦at time = t, then the value of x1 is

v1,1 at time = t + 1. Since there are 23 × 3 possible
places in the truth table that can be filled with either 1
or 0, the total number of distinct truth tables is 23×23.
When we restrict the connectivity to k: let’s assume

that X ¬ R denotes X is regulated by R; i.e.

⎡
⎢⎢⎢⎢⎣
x1
x2
.

.
xn

⎤
⎥⎥⎥⎥⎦ ←

⎡
⎢⎢⎢⎢⎣
R1

R2

.

.
Rn

⎤
⎥⎥⎥⎥⎦ where Rn is the regulator set of xn

which has k elements. There are

(
n

k

)
possible ways to

select each Rn. So, the total number of possible ways to

construct R is

(
n

k

)n

. For each selection of a regulator

set, we have to fill up a truth table of size n × 2k with
0’s or 1’s. So the total possible number of BNs is(
n

k

)n

× 2n×2k. For example if n = 3 and k = 2, table 2

shows that for a specific regulator set R, there are 3 × 22

cells to fill with 0 or 1 to find a BN. So there are 23×22

number of possible BNs for a specific regulator set. As

the total number of regulator sets is

(
3

2

)3

, the total num-

ber of possible BNs is

(
3

2

)3

× 23×22.

Without restriction on connectivity, knowledge of L
distinct transitions will fill nL places and thus the num-
ber of possibilities satisfying the L distinct transitions is
2n(N-L). Next, we will consider the case when our con-
nectivity is restricted to k. Recall that, in this case, there

can be

(
n

k

)n

number of regulator sets each with a truth

table of dimension n × 2k. Knowledge of 1st state transi-
tion will fill up n cells (1 cell in each row) of each truth
table. Thus, after 1st transition, there are (n2k - n)
unfilled cells in each truth table. Following the first

transition, the search space reduces to

(
n

k

)n

× 2n×2k−n.

Each transition will try to fill up 1 place in each row of
a truth table. The probability of hitting an already filled
entry in one row on the 2nd transition can be expressed

Table 1 Illustration of the number of possible BNs with
no constraints on connectivity

X ®

⎡
⎣0
0
0

⎤
⎦

⎡
⎣0
0
1

⎤
⎦

⎡
⎣0
1
0

⎤
⎦

⎡
⎣0
1
1

⎤
⎦

⎡
⎣1
0
0

⎤
⎦

⎡
⎣1
0
1

⎤
⎦

⎡
⎣1
1
0

⎤
⎦

⎡
⎣1
1
1

⎤
⎦

x1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

x2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

x3 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Here n = 3 and X =

⎡
⎣x1
x2
x3

⎤
⎦denotes the state of the 3 genes

Table 2 Illustration of number of possible BNs with
constraints on connectivity

Rn ®

[
0
0

] [
0
1

] [
1
0

] [
1
1

]
x1 0/1 0/1 0/1 0/1 ¬n = 1

x2 0/1 0/1 0/1 0/1 ¬n = 2

x3 0/1 0/1 0/1 0/1 ¬n = 3

Here n = 3 and k = 2; Rn denotes the state of 2 corresponding regulator
genes
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by 1
2k = 1

m where m = 2k. So, the expected number of

entries filled in the second transition is n × (1 − 1
m). To

estimate the probability of filling a unique entry on the
3rd transition, we take following approach: Let P(X)
denote the probability to fill a unique position on the
3rd transition; E1 denote the event that no new entry of
a row was filled in the 2nd transition and E2 denote the
event that a new entry of a row was filled in the 2nd
transition. Then,

P(X) = P(X|E1)P(E1) + P(X|E2)P(E2) = m−1
m × 1

m + m−2
m × (1 − 1

m) = (1 − 1
m)

2

Similarly it can be shown that the probability of hit-
ting a unique place at the 4th transition is (1 − 1

m)
3, at

the 5th transition is (1 − 1
m)

4 and so on.
In general, we can say that the probability of hitting a

unique place at the Lth transition is (1 − 1
m)

L−1. This
statement can also be proved in another way. There are
2k = m number of places in each row of a truth table.
Let us consider the analogous situation where transition
will be considered as putting balls in the places of the
truth table and each place can hold more than one ball.
To find an empty place at the Lth transition, previous
L - 1 balls has to go to (m - 1) or less places leaving 1

place definitely empty all the time. There are
(
m
1

)
ways

to choose the empty place. And then we can arrange
L - 1 balls in (m - 1) places in (m - 1)L-1 ways with no
constraint on the number of balls in each of (m - 1) places.
Thus, the total number of ways to put a ball in an empty

place on the Lth transition is

(
m
1

)
× (m − 1)L−1. As the

total number of ways to put L balls in the m places is mL,
the probability of filling an empty place on the Lth transi-

tion as

⎛
⎝m
1

⎞
⎠×(m−1)L−1

mL = (m−1)L−1

mL−1 = (1 − 1
m)

L−1
.

From L distinct transitions, the expected number of
distinct places that will be filled in the n × 2k truth table

is n ×
(∑L−1

i=0
(1 − 1

m)
i
)
= n × m(1 − (1 − 1

m)
L) = n2k(1 − (1 − 2−k)L).

Thus, the expected search space of possibilities follow-
ing the constraint on connectivity and knowledge of L

distinct transitions is
((

n
k

))n

2n2
k(1−2−k)

L

. The number

is still huge, for instance for our biological example pre-
sented later n = 6, k = 3 and L = 5,((

n
k

))n

2n2
k(1−2−k)

L ≈ 1.65 × 1015. The size of the

search space for the inverse problem remains huge if
the connectivity structure is assumed to be unknown.
We next consider the expected number of distinct

transitions required to fill up (m - 1) places in each row
(consisting m places) of a truth table with random

connectivity. Earlier, we proved that the expected num-
ber of distinct places that will be filled from L transi-
tions is n × m(1 − (1 − 1

m)
L). The number approaches

n × m when L ® ∞. To get a reasonable idea of the
transitions required to almost fill the truth table, we will
equate the expression to n × (m - 1) (i.e. (m - 1) in each

row). Based on that, our desired Lex =
log( 1m )

log(m−1
m )

. For k =

3 i.e. m = 8 the number Lex equates to 15. In our
experimental data, we have n = 6 and k = 3 which
denotes that the expected number of distinct state tran-
sitions required to fill up n × (2k - 1) entries of the
truth table will be 15. Unfortunately, we have only 5 dis-
tinct transitions in the experimental data and that would
require some prior knowledge of the actual connectivity
and further constraints to arrive at a plausible BN
explaining the data transitions.
Another characteristic of a BN that is desirable from a

biological perspective is lack of large length attractor
cycles [7]. The ratio of BNs with singleton attractors
among all BNs with N states is given by (N + 1)N-1/NN

[7]. Furthermore, the ratio of BNs with only one single-
ton attractor among all BNs with N states is given by
NN−1/NN = 1

N[7]. Thus, if we randomly generate BNs
with 26 = 64 states, there is a 1 - 1/64 = 0.98 probability
that the attractor structure of the BN will not consist of
a single attractor. Thus, if our inference approach can
produce a BN of 26 = 64 states with only a singleton
attractor, there is a high probability that it is not due to
a random event but it might reflect on the use of prior
biological connectivity and structure present in the
experimental data.

Inference algorithm
Our propsoed BN inference algorithm is as follows:
Step 1: Select k regulators for each mRNA/protein.

The regulators are selected from prior biological knowl-
edge on connectivity available from public databases. If
k direct neighbors are not available from the pathway
diagram, the remaining ones are selected randomly from
the other genes/proteins.
Step 2: The entries of the truth table corresponding to

the experimental distinct transitions are filled. Here, it is
assumed that states of regulators in a single time point
determine the state of the next time point of the target
gene. In case of inconsistencies, if ygi (0) = ygi (1) the
value of gene g at steady state (i.e. at time point L + 1)
is selected. If ygi (0) �= ygi (1), then the state with the maxi-
mum value is selected. The remaining unfilled entries
are filled with the steady state value of the genes/
proteins.
Step 3: The score of the generated BN is measured

and the number of inconsistencies calculated. The score
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measures the number of observed transitions in the
experimental data reflected in the generated BN. The
method of calculating the score is presented in algo-
rithm 1.
Step 4: If the score is significantly lower than the max-

imum possible score (L(L+1)/2) and the number of
inconsistencies is higher, return to Step 1 to change the
regulators that were undetermined from the prior path-
way knowledge. Run the process for a predefined num-
ber of steps and pick the one with the highest score and
minimum inconsistency.
Algorithm 1 Algorithm for Calculating the Score of a

BN
Score = 0
Experimental Transitions: S1 ® S2 ... ® SL+1
for i = 1: L do

Calculate the transitions in the generated BN
from state Si and remove the ones that are not in the
experimental transition data. The truncated transitions
in the generated BN will look like Si → A1 · · · → Aai

where Al Î [S+1, ... , SL+1] for l = 1, 2 ... ai.
Score = Score + ai

end for

Results
We used transcriptomic and proteomic time series data
generated by Rogers et. al [8] on the human mammary
epithelial cell line (HMEC, strain 184A1) [9] following
application of EGF. The transcriptomic data has micro-
array measurements of 542 genes at 6 time points (1 hr
4 hr 8 hr 13 hr 18 hr 24 hr). The mRNA expressions
were binarized using Otsu’s method of thresholding
[10]. Next, we’ve searched the literature to locate speci-
fic genes involved in the control of mammary cell func-
tions. The initial condition of the original HMEC data
suggests that EGFR plays an important role in stimulat-
ing the gene/protein expressions. There is evidence in
literature [11] stating that EGFR stimulation activates
the RNA Binding Protein CUG - BP1 and increases
expression of C/EBPb - LIP in Mammary Epithelial
Cells. C/EBPb is expressed as several distinct protein
isoforms (LAP1, LAP2, and LIP). And it is found that
ITGB4 gene is an activator or interactor of LAP2. As we
have the data for ITGB4 in our HMEC dataset, we’ve
checked other genes which are related to ITGB4 and
also present in the data. We’ve found 5 genes closely
connected to ITGB4: ITGB1, ITGA6, ITGA3, YWHAQ
and CD151. After careful observation of the linkages
between these six genes from the String database, we’ve
arrived at the connectivity pathway shown in Figure 1.
The selection of the connectivity from prior biological
knowledge is similar to the approach presented in [12]
but the regulatory functions in our approach is found
from experimental data.

For the 6 genes ITGB4, ITGA6, ITGA3, YWHAQ,
CD151 and ITGB1, the binarized experimentally
observed transcriptomic transitions are 000000 ®
000000 ® 010000 ® 010000 ® 111000 ® 111001. In
decimal representation, the biologically observed transi-
tions are 0 ® 0 ® 16 ® 16 ® 56 ® 57. The inferred
BN using our proposed inference approach and starting
with the connectivity structure of Figure 1 is shown in
Figure 2. The transitions observed in our inferred net-
work for the states 0, 16, 56, 57 are 0 ® 16 ® 48 ® 56 ®
57, 16 ® 48 ® 56 ® 57, 56 ® 57 and 57 ® 57 producing
a score of 11. The maximum possible score considering
only distinct transitions is also 11. The inconsistency in
the experimental data for the current predictor set is 3 out
of 30. The inferred BN has a singleton attractor and no
other spurious attractor. As our earlier analysis shows, the
number of such structured networks among all BNs of 6
genes is quite low (1/64 = 0.015). Furthermore, the
inferred BN has a robust structure with a coherency of 1
as to be expected from a biological network. This shows
that our inference algorithm was able to utilize the prior
biological knowledge of connectivity and limited experi-
mental data to arrive at a biological plausible robust BN.
To show the importance of the prior biological connectiv-
ity, we considered a random connectivity structure for
gene1 (ITGB4) and inferred a BN from the same experi-
mental data which is shown in Figure 3. The BN shown in
Figure 3 has a low score of 4, has multiple spurious attrac-
tors and has a lower coherency. Thus generation of a
robust network with most of the data transitions being
reflected in the BN is primarily possible when the correct
predictors are selected. Trying out all possible regulatory
combinations is computationally expensive as there are((

6
3

))6

= 64 × 106 sets of possible regulator combina-

tions. Use of prior knowledge reduces the search space
tremendously.

Validation with synthetic network models
In the previous section, we showed the result of our
inference approach when applied to experimental data.
Since the true structure of the Boolean Network for the
ITGB4 network is not known, we could not exactly
compare our results to the original network generating
the data. The validation of the generated network was
based on the low probability of arriving at a robust
structured BN explaining the observed transitions if ran-
dom connectivity is assumed and there is no biological
structure in the experimental data. In this section, we
use synthetic BNs to generate data for our inference
algorithm and compare the inferred BN with the actual
synthetic BN. We took an existing BN (BN1) and used a
path of this BN as our synthetic data (it’s the experi-
mental data in our inference algorithm) and applied
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Figure 1 Pathway of the 6 genes generated from literature search.

Figure 2 State transition diagram of the inferred BN.
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steps 1 to 3 (inference algorithm) to create a new BN
(BN2) to compare the similarities with BN1. For step 1,
we’ve used the regulator set of BN1 (which is known) as
our regulator set for the synthetic data. We defined a
new similarity measure to compare two BNs that is
shown in algorithm 2. For comparison, we have to
locate all individual paths in BN1 which starts with a
distinct state and ends with an attractor. The ratio of
similarity score (similarity ratio, R) and maximum simi-
larity score is 1 if BN2 perfectly matches with BN1. It
should be less than 1 for mismatch.
Algorithm 2 Algorithm for Calculating Similarity

Measure of Two Different BNs
SimilarityScore = 0
MaxSimilarityScore = 0
NumPath = Total Number of Paths in BN1

for i = 1:NumPath do
L = Number of Transition in Path(i)
Path(i): S1 ® S2..® SL+1
Score(i) = 0
for j = 1: L do

Calculate the transitions in the generated BN2

from state Sj and remove the ones that are not in Path
(i). The truncated transitions in the generated BN2 will
look like Sj → A1 · · · → Aaj where Al Î [Sj+1, ..., SL+1]
for l = 1, 2 ... aj.

Score(i) = Score(i)+ aj
end for
MaxScore(i) = (L(L + 1))/2
MaxSimilarityScore = MaxSimilarityScore + Max-

Score(i)
if Score(i) == MaxScore(i) then
SimilarityScore = SimilarityScore + Score(i)

else
SimilarityScore = SimilarityScore + 0.25 * Score

(i)
end if

end for
For example, if we take Figure 2 as our BN1 and one

of its path that starts from the bottom most level as syn-
thetic data, then we get BN2 with R = 1. For instance,
using synthetic data = 32 ® 24 ® 49 ® 56 ® 57, we
get Figure 4 as BN2 which is an exact match of BN1. If
we reduce the number of transitions, then the similarity
ratio R decreases but we still have some structure in the
inferred BN similar to the original network. For
instance, if we use synthetic data = 6 ® 56 ® 57, we
get Figure 5 as BN2 that has a similarity ratio R =
0.4214.
If we analyze the structure of Figure 2, we note that it

has a singleton attractor and thus a single path of more
than four or five transitions is sufficient to reverse

Figure 3 State transition diagram of the BN inferred using random connectivity.
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Figure 4 BN2: an exact match of BN1 in Fig 2.

Figure 5 BN2 has R = 0.4214 for synthetic data = 6 ® 56 ® 57 taken from a path in BN1 in Fig 2.
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engineer the network using the proposed algorithm.
Thus, the algorithm fares well for networks with one
attractor. However, when we use a network with multi-
tude of attractors, the similarity ratios are much lower if
we use a single path of transitions from one basin of
attraction. This is quite expected as the algorithm is
unable to get an estimate of the other attractors for
which we have we no transition data from their basins.
Thus for synthetic networks with multiple attractors, we
considered transitions from multiple paths of BN1 as
synthetic data and combine them to find the truth table
of the Boolean functions. The modifications of our
inference algorithm for use of h different paths are illu-
strated next:
Step 1: h different paths from BN1 are selected and set

as synthetic data (SD1,SD2...SDh). SD1 will be the path
which has greater transition length. If h1 ≤ h paths have
the same transition length, then the one with singleton
attractor is set as SD1. If all of them have doubleton/sin-
gleton attractors, then SD1 is chosen randomly among
those n1 paths. The other paths are set as SD2, SD3....
SDh randomly. Note that the attractors of SD1,SD2...SDh

cannot be same. Set of regulators are the same as BN1.
Step 2: The entries of the truth table corresponding to

the distinct transitions of SD1,SD2...SDh are filled. Here,
it is assumed that the state of regulator in SD1,SD2 ...

SDh in a single time point determine the state of the
next time point of the target gene of SD1,SD2...SDh

respectively. If ygi (0) �= ygi (1), then the state with the
maximum value is selected. In case of inconsistencies, if
ygi (0) = ygi (1), the value of gene g at steady state of SD1

is selected. The remaining unfilled entries are filled with
the steady state value in SD1.
Step 3: BN2 is generated based on the truth table and

the regulator set. Then BN2 and BN1 are compared
according to algorithm 2 and similarity score is
measured.
For example, if we use Figure 6 as BN1 and use one sin-

gle path of BN1 as synthetic data, we get BN2 (Figure 7)
with R = Rmax= 0.1558 (Here Rmax refers to the BN with
the highest similarity score from the BNs generated using
every possible combination of SD1,SD2...SDn that com-
plies with the condition of step 1). But if we use 2 paths
as synthetic data, we get BN2 (Figure 8) with R = Rmax =
0.5731. We should note that the BN2 in Figure 7 gener-
ated from the single path could capture only 3 of the
attractor states (22, 54, 46) and could not capture the
other 2 attractor states. Whereas, the inferred network
using two paths shown in Figure 8 has 4 of the attractors
(22, 54, 46, 65) out of 5 of BN1 and has a high similarity
ratio. As we would expect, combining 3 paths resulted in
Figure 9 which is the exact match of Figure 6 with

Figure 6 BN1 with multiple attractors including a doubleton attractor.
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Figure 7 BN2 where single path is used. R = Rmax = 0.1588 as compared to BN1 in Fig 6.

Figure 8 BN2 where 2 paths are used. R = Rmax = 0.5731 as compared to BN1 in Fig 6.
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R = Rmax = 1.0. This implies that the performance of our
algorithm increases with the availability of higher number
of transitions.
Since Rmax is dependent on having the best set of

path transitions, we also considered the expected value
of R when we used at least 4 and 5 transitions for all
the paths we are combining. Table 3 contains the sum-
mary of the results using Figure 6 as the synthetic BN
(BN1).
We also considered numerous other BNs with at least 4

attractors as the BN1 to generate the synthetic data. The
details of the experiment is available in the website
http://cvial.ece.ttu.edu/ranadippal/tsbn/. The website also
contains the state transition diagrams for maximum simi-
larity ratios for 1 path (BN2/1path), 2 paths (BN2/2path) and
3 paths (BN2/3path) corresponding to each BN1.

For the results reported in Figures 7, 8, 9, table 3 and
the website, the regulator structure used for inference
was the same as the original BN (BN1). The gradual
increase of values of Rmax and Rmean with additional
transitions from different paths indicates the reliability
of our algorithm. If we have prior biological knowledge
on the connectivity of the network with even compli-
cated attractor structures, we can infer a network very
similar to the original one with state transitions data
from around 2-3 different paths. To further illustrate
the importance of prior biological knowledge of connec-
tivity on the success of the inference algorithm, we’ve
randomly changed the predictor set of the BN (BN1) in
Figure 6 and observed the corresponding values of Rmax

and Rmean-n in table 4 (figures are not shown). We note
that the similarity ratios are significantly lower as com-
pared to the values of table 3.

Figure 9 BN2 where 3 paths are used. R = Rmax = 1.0 as compared to BN1 in Fig 6.

Table 3 Similarity ratios for BNs inferred from data
generated from Fig 6

Rmax Rmean-4 Rmean-5

1 path 0.1588 0.0904 0.1010

2 paths 0.5731 0.2486 0.3040

3 paths 1.0 0.4243 0.5390

Rmax denotes the maximum achieved similarity ratio. Rmean-n denotes the
expected value of the similarity ratio R where at least n transitions are present
in all the paths.

Table 4 Similarity ratios for BNs inferred from data
generated from Fig 6 with random predictor set

Rmax Rmean-4 Rmean-5

1 path 0.1132 0.0635 0.0678

2 paths 0.1643 0.0662 0.0681

3 paths 0.2570 0.1088 0.1129
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Comparison with existing BN inference approaches
We compared the performance of our proposed algo-
rithm with (a) Liang et al. REVEAL [13] and (b) Zhao et
al. MDL approach [14].
Comparison with REVEAL
REVEAL is a well-known reverse engineering algorithm
for inference of genetic regulatory architectures pro-
posed by Liang et al. [13]. The REVEAL algorithm
receives time series data of n genes as input and returns
possible regulating genes for each gene along with the
regulation function. The set of the regulating genes is a
subset of n genes.
We’ve implemented REVEAL algorithm in MATLAB.

For convenience of comparison between our approach
and REVEAL, we’ve used synthetic BN where the original
regulators and functions are known. We’ve used our algo-
rithm to infer the BN with maximum similarity ratio (R =
Rmax). Here, each path of the synthetic network was taken
as a time series data for our algorithm; and the BN
inferred by our algorithm using the same connectivity as
the synthetic network was compared with the original one
and similarity ratio between these two networks calcu-
lated. The path which results in the highest similarity ratio
was used as the input time series data for REVEAL algo-
rithm. The BN found from REVEAL was then compared
against the original synthetic network and also similarity
ratio (Rreveal) was calculated for it. The similarity ratio

found by using our algorithm was better than the similar-
ity ratio of the network found by REVEAL. For example,
the network BN1 in Figure 6 was used as synthetic net-
work for generating BN2 in Figure 7 using our algorithm
with Rmax = 0.1558; and BN2 in Figure 10 was found using
REVEAL with Rreveal = 0.0035 which is much lower than
the Rmax = 0.1558. Also, Figure 10 does not have any
attractor common with the attractors of the original syn-
thetic BN in Figure 6. We have also conducted compari-
son with 25 other synthetic networks and the results are
reported in the website http://cvial.ece.ttu.edu/ranadippal/
tsbn/. The results show that there are single paths from a
synthetic BN that will result in high similarity ratios for
inferred networks using our proposed algorithm as com-
pared to REVEAL.
Comparison with MDL approach
Zhao et al. [14] proposed an algorithm for inference of
genetic regulatory networks from time series data based
on minimum description length (MDL) principle. Apply-
ing MDL principle, they generate a set of predecessors
(or regulators) for each gene and a conditional probabil-
ity table for each gene. The conditional probability table
contains probabilities of a gene to be ‘expressed’ (1) and
‘not expressed’ (0) for a given expression combination of
the predecessors.
As we’re trying to find a deterministic Boolean net-

work, we’ve binarized the gene expression based on a

Figure 10 BN2 inferred using REVEAL. R = Rreveal = 0.0035 as compared to BN1 in Fig 6.
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conditional probability threshold of 0.5. For example,
let’s assume that there are 3 genes (g1, g2 and g3) in a
network and regulators for g1 are g2 and g3. If the condi-
tional probability P (g1 = 1|g2g3 = 00) >0.5, we’ll take g1
= 1 if g2g3 = 00. Similarly, the value of g1 for other com-
bination of g2g3 is found using the conditional probabil-
ity table derived by the MDL approach. For the
parameter Γ in equation 5 of [14], we used a value of
0.2 which is one of the values used by Zhao et al. in
their simulations.
Similar to the comparison technique with REVEAL,

we’ve used the same path from BN1 in Figure 6 which
gave BN2 with maximum similarity ratio (Rmax) (using
our approach; Figure 7) as time series data for MDL
approach. MDL approach gave the regulators for each
gene and the conditional probability table from which
the regulation functions are derived using the approach
described in previous paragraph. Using the regulator set
and the regulation functions, BN2 in Figure 11 has been
inferred with similarity ratio (Rmdl) of 0.012 which is sig-
nificantly lower than Rmax = 0.1558 generated using our
approach. None of the attractors of the BN in Figure 11
is common with the attractors of the original synthetic
BN in Figure 6. The results of the comparison of our
proposed algorithm, REVEAL [13] and MDL approach

[14] using several synthetic networks can be found in
the website http://cvial.ece.ttu.edu/ranadippal/tsbn/.
Other than the performance with respect to similarity

ratio, our approach performs better than both of
REVEAL and MDL approaches in elucidating the attrac-
tors. Our results also support the claim in Zhao et al.
[14] regarding the better performance of their algorithm
as compared to REVEAL.

Conclusions
In systems biology, we are often faced with the issue of
reverse engineering a GRN model from limited time series
data. This article proposes an inference approach utilizing
prior biological knowledge of connectivity to generate a
BN with biologically plausible state transition structure
and explaining the observed transitions in the data. The
proposed framework can also be applied to optimize the
connectivity of a GRN from experimental data when the
prior biological knowledge on regulators is limited or not
unique. We validated our algorithm based on experimen-
tal data of HMEC cell line and data generated from
synthetic BNs with known state transition structure.
Through theoretical analysis and simulations, we were
able to illustrate that inference of a BN from limited time
series data with constraints on connectivity that explains

Figure 11 BN2 inferred using MDL approach. R = Rmdl = 0.012 as compared to BN1 in Fig 6.
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the observed state transitions, is extremely rare if we con-
sider random connectivity. High performance of our pro-
posed algorithm as compared to existing BN inference
algorithms that depend on inference of connectivity from
the data, further support the advantage of using prior bio-
logical knowledge on connectivity. Thus, for cases of lim-
ited experimental data, the prior biological knowledge of
connectivity should be utilized to arrive at robust BNs
with biologically plausible state transition structures. For
future research, we will consider combining transcrip-
tomic and proteomic data to reduce the inconsistencies in
the data. One of the significant challenges in combined
analysis will be the different degradation times for mRNA
and proteins.
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