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Abstract

Background: Researches have been conducted for the identification of differentially expressed genes (DEGs) by
generating and mining of cDNA expressed sequence tags (ESTs) for more than a decade. Although the availability
of public databases make possible the comprehensive mining of DEGs among the ESTs from multiple tissue types,
existing studies usually employed statistics suitable only for two categories. Multi-class test has been developed to
enable the finding of tissue specific genes, but subsequent search for cancer genes involves separate two-category
test only on the ESTs of the tissue of interest. This constricts the amount of data used. On the other hand, simple
pooling of cancer and normal genes from multiple tissue types runs the risk of Simpson’s paradox. Here we
presented a different approach which searched for multi-cancer DEG candidates by analyzing all pertinent ESTs in
all categories and narrowing down the cancer biomarker candidates via integrative analysis with microarray data
and selection of secretory and membrane protein genes as well as incorporation of network analysis. Finally, the
differential expression patterns of three selected cancer biomarker candidates were confirmed by real-time gPCR
analysis.

Results: Seven hundred and twenty three primary DEG candidates (p-value < 0.05 and lower bound of confidence
interval of odds ratio 2 1.65) were selected from a curated EST database with the application of Cochran-Mantel-
Haenszel statistic (CMH). GeneGO analysis results indicated this set as neoplasm enriched. Cross-examination with
microarray data further narrowed the list down to 235 genes, among which 96 had membrane or secretory
annotations. After examined the candidates in protein interaction network, public tissue expression databases, and
literatures, we selected three genes for further evaluation by real-time gPCR with eight major normal and cancer
tissues. The higher-than-normal tissue expression of COL3A1, DLG3, and RNF43 in some of the cancer tissues is in
agreement with our in silico predictions.

Conclusions: Searching digitized transcriptome using CMH enabled us to identify multi-cancer differentially
expressed gene candidates. Our methodology demonstrated simultaneously analysis for cancer biomarkers of
multiple tissue types with the EST data. With the revived interest in digitizing the transcriptomes by NGS, cancer
biomarkers could be more precisely detected from the ESTs. The three candidates identified in this study, COL3AT1,
DLG3, and RNF43, are valuable targets for further evaluation with a larger sample size of normal and cancer tissue
or serum samples.
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Background

One of the key aspects in the study of cancer is to under-
stand the principles and mechanisms of gene expression
variation contributing to cancer genesis and progression.
The identification of genes differentially expressed
between normal and cancer cells/tissues is not only helpful
for designing diagnostic and therapeutic procedures, but
also for understanding cancer biology as a whole. In this
regard, DNA microarrays have been the dominating plat-
form in the high-throughput study of cancer transcrip-
tomes since their emergence in the mid-1990s [1,2].
However, there are several drawbacks, which include: high
background level signals resulting from cross-hybridiza-
tion [3,4]; difference in hybridization properties due to dif-
ferent probe sequences; limited dynamic range due to
background level and saturation, and difficulty in detecting
splicing isoforms and unknown genes. For these reasons,
with the advancement of the next generation sequencers,
we are seeing high-throughput transcriptome mapping
and quantifying method, also known as RNA-Seq, to begin
to supersede microarray in expression profiling. However,
RNA-Seq experiments are relatively demanding in terms
of time, cost, and computation equipment. Experimental
differences between different sequencing platforms may
complicate transcriptome analysis with multiple tissue
sources. Since exploring meta-analysis from traditional
digital expression data such as EST derived from cDNAs
[5-8] is more feasible, this study may serve as a precursor
to more complicated experiments.

Originally primarily aimed for cataloging of transcript
repertoire, ESTs from large-scale cDNA sequencing pro-
jects such as Cancer Genome Anatomy Project (CGAP),
Human Cancer Genome Project (HCGP), and Cancer
Genome Project (CGP) also allow searching for differen-
tially expressed genes (DEGs) in specific tissue types or in
whole genomes [9-11]. Several in silico analysis tools such
as NCBI Unigene cDNA xProfiler [12], CGAP Digital
Differential Display (DDD) [13], and CGAP Digital Gene
Expression Displayer (DGED) [14] are available online
allowing the analysis of publicly available data. While stan-
dard statistical methods such as Fisher’s exact test for find-
ing DEGs in two-class problems (e.g. cancer vs. normal) or
Pearson’s correlation are commonly used [9], there are
also specially developed methods for finding DEGs in the
landscape of digital signals for two-library problems
[15,16] or for multiple libraries [17]. The online tools as
well as the statistical methods remain useful to this day in
EST or even RNA-Seq projects [18-23]. Aside from
searching for DEGs, the searches for gene transcript iso-
forms specific to particular libraries were also demon-
strated and many of these attribute differentially expressed
isoforms to human cancers [24-31].

In spite of the successful applications, these tools or
methods are not without limitations. xProfiler reports
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differential expression in an all-or-none manner where
only a list, but not statistical quantification, of candidates
is reported. DDD allows quantification using Fisher’s exact
test. However, the nature of the test dictates that compari-
sons of three or more libraries involve multiple pair-wise
comparisons, and thus there are no easy comparisons of
library specific genes. DGED uses a Bayesian approach to
find DEGs, but it is also pair-wise. The reported “odds
ratio” is perhaps better described as “relative risk” and
may be biased with unequal sampling. Another popular
and useful Bayesian-based method originally developed for
EST analysis by Audic and Cleverie [15] is also popular for
RNA-Seq data. It is less conservative than Fisher’s exact
test, but it also does not apply to multi-class problems.
The multi-class comparison method established by Stekel
et al. [17] finds specificity in one condition out of all and
is useful in application such as finding DEGs in multi-
tissue libraries. However, in the search for cancer DEGs, a
subsequent analysis of differential expression between can-
cer and normal libraries of the tissue of interest may not
yield fruitful results due to the possible scarcity of EST
sampling in the particular tissue type. On the other hand,
the naive method of pooling all data into the two-class
problem of normal versus cancer when searching for dif-
ferentially expressed genes or differentially splice variants
[27] risks introducing bias. In extreme cases, one may
encounter the fallacy of Simpson’s paradox [32] where
genes in reality more active in the normal condition
appear to be more so in the cancer condition (discussed
later in this paper).

We now report on the application of a computational
and integrative approach to analyze cancer differentially
expressed genes (DEGs). The statistical method we
employed is Cochran-Mantel-Haenszel statistics (CMH)
[33] and to the best of our knowledge has not been applied
in this context. Instead of pooling all normal and all can-
cer ESTs from different tissue types to fit into a two-class
problem as by using the 2 by 2 contingency % test or the
Fisher’s exact test, CMH allows original stratification of
libraries in their respective tissue types, yet exhaustively
analyzes expression between cancer and normal condi-
tions across all tissue types. The method is an extension to
x> test which, in our application, measures the association
between cancer and gene expressions, adjusting for the tis-
sue confounding factor. This approach allows one to find
genes that are overall differentially expressed in cancer, or
multiple-cancer genes, irrespective to a specific tissue type.
The method is demonstrated in this paper to exhaustively
analyze ESTs from the dbEST database [34]. To the best
knowledge of the authors, such an all-inclusive, whole-
transcriptome analysis has not been redone in recent years
now that more EST's than ever are available.

Our filtering of EST libraries was also more rigorous
than many previous studies. Notably, we excluded the
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ORESTES (open reading-frame EST sequencing) libraries
[35] on which a normalization procedure had been
applied. Libraries from cell line were also excluded own-
ing to their unrepresentativeness of primary cancer cell
transcriptomes. Our analysis pipeline further focused on
enrichment of the DEGs by cross examination with
expression data of a different platform, i.e. the microarray
data, and selecting for membrane and secretory asso-
ciated protein genes since we intend to find therapeutic
targets or biomarkers, and conducting STRING (The
Search Tool for the Retrieval of Interacting Genes) net-
work analysis to show the cancer enriched clusters [36].
With real-time qPCR validation, we have identified three
candidates that are inclined to express in cancer across
more than one tissue types. We hope such a meta-analy-
tical and multiple-tissue comparison can serve as an
exploratory experiment for future multi-library or multi-
tissue study of other digital sources such as RNA-Seq.

Methods

Overview

Our approach was to exploit the entire collection of
human EST sequences from dbEST [34] to obtain tran-
scripts from different type of cells/tissues/organs. The
assumption was that the activities of the genes can be
represented by their transcripts, and also reflected by the
number of representing ESTs in the NCBI dbEST data-
base, given that a large number of mRNAs (cDNAs) were
sequenced. Pertinent sequences from different sources
were matched to genes and tallied together. Through the
annotation of each EST record, we obtained the tissue
type and condition type (normal or cancer) from which it
was derived. With the information, we then had the entire
gene transcription profile for all the tissues and conditions.
Next, cross examining data of other sources including
microarray data, secretory and membrane associations as
well as analyzing protein associations with STRING [36]
allowed us to narrow down the list of candidate genes.
The process is illustrated in Figure 1.

Human gene reference sequence preparation

The NCBI Reference Sequences (RefSeq Release 38,
November 11, 2009) [37] were downloaded from its ftp
site [38]. Homo sapiens RefSeq records were selected and
subjected to repeat masking via RepeatMasker [39].

Human EST sequence preparation and library filtering

Human EST data (Released on December 11, 2009) and
their cDNA library information were downloaded from
NCBI dbEST database [34] and CGAP [40]. Program in
Python language was written to mark for discard the
unsuitable libraries when the keywords such as “enrich-
ment”, “subtract”, “pcr”, and “normalized” were found in

the DESCR, UNIQUE_PROTOCOL, or KEYWORDS
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fields of the library information. An arbitrary cutoff of
> 400 was chosen to the highly unrepresentative libraries
(approximately 7,000 libraries constituting approximately
650,000 ESTs were discarded as a consequence). To curb
from incorrect inclusions or exclusions, we finalized the
process with manual curation. Libraries made from mixed
tissues or cell lines were also discarded. The final libraries
from CGAP were manually classified into 48 different tis-
sue types and two different conditions, normal and cancer.

EST to gene assignment

The BLAT alignment tool was used to align ESTs to
RefSeqs as a mean to assign ESTs to genes [41]. The cri-
teria of having an identity of 95% or above and the mini-
mum length of 100 nucleotides were set for a match. The
RefSeq match with the highest identity was assigned for
the EST. If two RefSeq matches shared exactly the same
identity, the program chose the first encountered.

EST count and summarization

The procedure attributes each transcript represented by
RefSeq its expression profile across different tissue and
condition types based on EST assignment counts. Each
EST has its corresponding tissue type and condition type
classification, based on its source clone library. For exam-
ple, a transcript with an aligned EST from a lung cancer
clone library is one expression count each in tissue type
lung and condition type cancer. This way, after all ESTs
were counted, each transcript has a profile of expression
across various libraries and conditions. Expressions from
different transcript variants of the same gene were pooled
to obtain a single gene expression. The raw counts were
thus made into transcription profile for each gene for
further statistical analysis.

Statistical evaluation of cancer candidates

Cochran-Mantel-Haenszel statistics (CMH) was applied
to evaluate cancer differential expression of each gene.
To evaluate each gene, other genes were pooled as
“other genes” to create a 2 x 2 x k table consisting of
data from tissue-condition cross, where k was the num-
ber of tissues x 2 (two conditions). A contrived example
of 2 x 2 x k table where k is 2 is shown in Table 1.
Gene A is the gene under study while other genes are
pooled together as “other genes”. Only Tissue I and Tis-
sue II columns are calculated in CMH. The pooled ones
are not part of the analysis. Akin to Fisher’s exact test,
the test assumes that “other genes” should consist
mostly of genes not differentially expressed between
normal or cancer conditions. Or, some of them are
DEGs for one condition, but they are at least partly can-
celed out by DEGs for the other. In any case, the imbal-
ances of cancer counts to normal counts in the second
row is regarded as owning to sample bias and it serves
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Figure 1 The basic steps in searching for differential expression genes. EST library selection involves selection of suitable EST clone libraries,
EST to gene assignment, counting the results, remove tissue categories with low counts, statistical analysis with CMH and the narrow-down of
differentially expressed genes (DEGs). The narrow-down procedures includes cross referencing with public microarray data, annotating
membrane and secretory proteins, analyzing with String network, and for a few selected genes, validate the expression in different tissues by RT-
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Table 1 A hypothetical EST count table demonstrating
CMH analysis and also a contrived example of Simpson’s
paradox.

Tissue | Tissue Il Pooled

Normal Cancer Normal Cancer Normal Cancer

Gene A 280 580 20 20 300 600
20,000 80,000 380,000 620,000 400,000 700,000

Other genes

This hypothetical case serves both as an example of how Cochran-Mantel-
Haenszel (CMH) is applied as well as the occurrence of Simpson’s paradox. Gene A
is the gene under investigation. Expressions from all other genes are pooled into
the “other genes” row. Bold typeface indicates columns showing higher cancer vs.
normal propensities. CMH is applied on the stratified tissue columns (but not on
the pooled data). A casual observation involving only the pooled data would
suggest Gene A as having higher expression in cancer (X? test p-value close to 0
when analyzing only the pooled). However, a closer inspection on each of the
tissue columns reveals otherwise. The observed difference between cancer and
normal of the “other genes” is theoretically mostly due to sampling bias.

as a metric against which Gene A is measured. By con-
tinuously isolate values for gene currently under study
while pooling all other genes to the second row, an
odds ratio and a confidence interval is calculated for
each gene. Genes with a p-value < 0.05 and an lower
bound of confidence interval of odds ratio 2 1.65 are
selected for further analyses.

Microarray cross reference

Human U133 Plus 2.0 GeneChip array CEL data were
downloaded from Gene Expression Omnibus (GEO) [42].
When computing power allows, the data were processed
with AffyPLM [43] using its three-step procedure of pro-
cessing background signals with GCRMA, normalizing sig-
nals with quantile normalization, and summarize probe
signals with medium polish. For large experimental data-
sets that were computationally infeasible for us, we used
justRMA from the Affy package [44]. For experimental
dataset without raw CEL data, we obtained the pre-
processed matrix files via GEOQuery [45]. Regardless of
the source of array signal processing, we analyzed the
genes for differential expression with Limma [46]. Differ-
entially expressed gene candidates with p-value < 0.05 and
logFC > 1.0 were selected and crossed with genes from
EST profiling with statistical evaluation. For each array,
the significant genes were crossed with our EST profiling
results. The union of these intersecting genes was selected
for further evaluation.

Annotation of secretory proteins

To identify our differentially expressed genes with secre-
tory annotation, a list of 3,975 proteins with secretory
annotation originated from the conglomeration of data
from Uniprot (1,632 unique proteins) [47], Human Plasma
Proteome Organization (HUPO) (889 proteins), and
Secreted Protein Database (SPD) (4,142 proteins) [48].
This list was matched against DEGs to give them secretory
annotation.
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Annotation of membrane proteins

Membrane protein annotations were gathered from five
sources - TOPDB (283 proteins) [49], LOCATE (2629
proteins) [50], PDB_TM (41 proteins) [51,52], OPM (107
proteins) [53], and MPDB (23 proteins) [54] - to generate
a unique list of 2,767 membrane proteins. Any DEGs on
this list would confer it a membrane annotation.

Validation of tissue expression profiles of candidate
genes

TissueScan™ Cancer Survey Panel 96-1 qPCR array panel
(Origene Technologies, Rockville, MD) containing the
c¢DNAs of 3 normal and 9 cancer tissues each from 8
organs (breast, colon, kidney, liver, lung, ovarian, prostate,
and thyroid) was used to examine the expression profiles
of selected cancer differentially expressed gene candidates.
Real-time qPCR analyses with the Tagman® Gene Expres-
sion Assay kits (Applied Biosystems, Foster City, CA) and
FAM- and VIC-labeled target genes and HPRT1 internal
control primers, respectively, were performed according to
the manufacturer’s suggested procedure on an Applied
Biosystems Prism 7500 system. Relative specific gene
expression was quantified by normalization against the
HPRT1 with the ACT method. Gene expression changes
were quantified as 2 - (€T gene - CT control)

Results

Human ESTs selection and tissue distribution

The basic steps of our analysis are illustrated in Figure 1.
A total of 8,296,089 human EST sequences (Dec. 11, 2009
release) were downloaded from the NCBI. Despite the size
of the data, not all ESTs are relevant for our gene expres-
sion analysis. After screening the 8,907 EST libraries as
described in the methods section above, 8,447 unsuitable
libraries, the preparation of which involved PCR amplifica-
tion, normalization, subtraction, etc. or originated from
cell lines, were discarded. The remaining 460 libraries con-
sisted of 2,386,536 EST sequences representing approxi-
mately a third of all the downloaded human ESTs.

After BLAT alignment of the 2,386,536 ESTs to 44,513
gene transcripts from RefSeqs, approximately 1,644,960
(68.92%) ESTs with at least 100 nucleotides matched to
RefSeqs were detected. An examination of the sources of
the matched ESTs indicated that the representativeness of
each tissue is skewed and that the brain is the most repre-
sented out of all tissues. Among the 48 different tissues,
brain ESTs constituted 26% of all matched ESTs, uterus
(6.40%) ranked second, followed by testis (5.91%), placenta
(4.33%), pancreas (3.99%), muscle (3.88%), liver (3.51%),
kidney (3.52) and others each below 3% (see Additional
file 1). Similarly, condition type (normal and cancer) repre-
sentation was also skewed. Normal tissue type had
1,251,883 ESTs combined, and cancer tissue had 393,077
ESTs in the ratio of roughly 3 to 1. Originally before
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filtering out those from the cell lines, there were more
cancer ESTs and the ratio of normal ESTs to cancer ESTs
was roughly 1 to 3. This showed how much more rigorous
our filtering was. Unfortunately, this also meant we had a
much smaller dataset to work with.

The unequal distribution of the 1,644,960 matched
ESTs in different tissue types caused some tissue types to
be ill-represented. For example, the number of brain EST
hits dominated over other tissue types. On the other
hand, spinal cord had the least count with 430 EST hits.
The latter had little value for our application. Therefore,
we only took a tissue type into consideration when its
total EST hit count was above the cut-off of 20,000. Con-
sidering that the human genome has approximately
22,000 genes, the cut-off still did not allow “deep” probe
into gene expression. Nevertheless, the method we
employed did not attempt to identify specific gene
expression in one particular tissue; therefore, the pro-
blem was mitigated.

We also categorized ESTs according to their clone
library classification, to either be from normal or from
cancer. Sometimes a certain tissue-condition type was so
under-represented that the information was not trust-
worthy. For example, adipose had 10,362 normal hits but
only 440 cancer hits, and heart tissue had 22,179 normal
hits but no cancer hits. For these cases, data was kept
throughout the analysis. But these data did not make con-
tribution to our analysis.

Since our EST assignments were made to transcripts
represented by RefSeq sequences, when the entire assign-
ment procedure was done, each transcript variant had its
expression profile across all tissue-condition types. Due to
the lack of enough ESTs data, differentiating between dif-
ferent splicing variants of the same gene was not feasible.
We had to pool expression from different splicing variants
into a single expression profile representing the gene.
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Analysis of differentially expressed genes

Due to the small sample size (EST counts), it was only
realistic to evaluate gene expression based on all ESTs
of all tissues. However, tissue type was a confounder. If
all counts for each gene were pooled as “normal” or
“cancer” regardless of the tissue of origin, the count
would be incorrect. To solve both the sample size and
the tissue confounder problems, Cochran-Mantel-
Haenszel statistical method was employed to identify
genes with differential expression as described in the
method. We used the arbitrary cut-offs of p-value <
0.05 and odds ratio 2 1.65 to obtain a primary set of
candidates. As a result, a total of 723 cancer differen-
tially expressed gene candidates were selected. The 1.65
cut-off is chosen based on a good coverage to a list of
well-known biomarkers or genes known to associate
with cancer (Table 2).

To show that this list of 723 genes was enriched for
cancer and thus obtains credibility for our methodology,
we looked for cancer related pathways associated with
them in GeneGO [55] pathways, which covered 650 sig-
naling and metabolic networks (Figure 2A). Among the
10 most significantly matched pathways, several are can-
cer related - Pathways number 1, 3, and 4 involve
immune response; number 2 and 5 involve cytoskeleton
remodeling; number 6 is transition and termination of
DNA replication; and number 8 and number 9 are adhe-
sion related. In addition, the result of GeneGo disease
enrichment analysis (Figure 2B) indicates our set of genes
as neoplasm enriched: seven out of the 10 most asso-
ciated diseases are related to cancer. The disease ranks
the highest is neoplasms, followed by neoplasm by site,
and digestive systems neoplasm. This list reveals that our
723 DEGs covers general neoplasm related functions,
and not specific to any particular neoplasm, as digestive,
urogenital and breast are all covered.

Table 2 EST counts and odd ratios of 11 well-known cancer-related genes present in our list of DEGs.

Gene Description Total Normal Cancer Odds
symbol ratio
BCAN Homo sapiens brevican 391 79 312 104
KRT14 Homo sapiens keratin 14 205 40 165 9.1
KRT16 Homo sapiens keratin 16 41 7 34 7.8
MMP11 Homo sapiens matrix metallopeptidase 11 (stromelysin 3) 68 20 48 53
MUC1 Homo sapiens mucin 1, cell surface associated 69 30 39 42
VEGFA Homo sapiens vascular endothelial growth factor A 82 33 49 37
AGRN Homo sapiens agrin 503 143 360 35
COL3A1 Homo sapiens collagen, type ll, alpha 1 145 90 55 35
MMP1 Homo sapiens matrix metallopeptidase 1 (interstitial collagenase) 70 29 41 33
EGFR Homo sapiens epidermal growth factor receptor (erythroblasticleukemia viral (v-erb-b) oncogene 49 79 312 104

homolog, avian)
AFP Homo sapiens alpha-fetoprotein 391 40 165 9.1
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To narrow down this list of biomarkers, we crossed
examined the expression profiles of the candidates with
the differentially expressed genes in 6 microarray experi-
ments, i.e. two each of ovary and uterus, and one each of
pancreas and colon (Table 3). These tissue types were
selected based on the following reasons. We noticed that
many of our candidate genes had the most expression in
ovary tissue (after normalization). The other concern was
the number of ESTs. Since our candidate genes were
derived from EST sampling of various tissue types, they

Table 3 Five microarray projects cross referenced with
our set of 723 DEGs

GEO Tissue  Test sample size (n  Sig genes Reference
type vs. C) DN

GSE18520  Ovary 10 vs. 53 79 [66]
GSE14407  Ovary 12vs. 12 109 [67]
GSE764 Uterus 4 vs. 7 benign 0 Unpublished
GSE764 Uterus 4 vs. 8 malignant 2 Unpublished
GSE15471  Pancreas 39 vs. 39 120 [68]
GSE23878  Colon 24 vs. 35 74 Unpublished

n: normal, ¢: cancer
GSE764 has two entries since we compared pair-wise between normal vs.
benign and normal vs. malignant.

were influenced more heavily by tissue types with more
EST representation due to deeper sampling from them.
Therefore, the rest of the tissue types were selected based
on their representativeness. Of the 723 DEGs, 235 candi-
dates were also found to be differentially expressed genes
in our microarray analysis.

Since membrane and secretory proteins could be poten-
tial therapeutic target or serum biomarkers, the subcellular
location of the 235 DEGs were examined against the
secretory and membrane protein lists consolidated from
public databases. Among these, 96 DEGs were putative
membrane or secretory proteins - 57 had only secretory
annotation, 27 had only membrane annotation and 12 had
both.

Literature search and STRING analysis of the 96 DEGs

To further examine whether the 96 membrane/secretory
DEGs identified in our EST database mining had enriched
cancer-related genes, we searched the literatures for known
associations with cancers. In additions, they were also ana-
lyzed with STRING for interactions, which are based on
experimental evidence or prediction, such as conserved
genomic neighborhood, gene fusion, co-occurrence across
genomes, pathways, protein complex, co-regulation, or
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other literature sources such as co-mentioning. The net-
work of the STRING interactions of the 96 DEGs together
with the literature search results were plotted based on the
combined STRING score with Cytoscape [56] (Figure 3).
Approximately 68 proteins formed a big cluster of interact-
ing proteins and a large proportion of the DEGs (88%) had
published cancer association with clinical or non-clinical
experimental supports. This demonstrates the value of our
integration strategy since we had an ample of literature
supports.

The 96 DEGs were selected out of their general cancer
propensity without necessarily referring to any particular
tissue type. However, we can still assess the general tissue
distributions shown in Figure 4. A gene has a tissue repre-
sentation if any EST from a clone library of the tissue type
is matched to it. We can see that some genes are observed
across many tissue types. A gene could be observed across
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a variety of tissue types if it is pan-tissue, and its expres-
sion measure is relatively abundant. Separately, Woolf’s
test for heterogeneity can also give hints to whether a
gene is pan-cancer. Those that were found as significant in
this test were considered having unequal representation in
different genes; although whether they are pan-cancer
require further evaluation.

Three candidates had higher expression in several

cancer tissues

Three cancer differentially expressed secreted protein gene
candidates, COL3A1 (Collagen alpha-1(III) chain), DLG3
(Discs large homolog 3), and RNF43 (Ring finger protein
43), which had an odds ratio of 3.55, 7.97, and 4.03,
respectively, and with limited or no clinical support were
selected for real-time qPCR analysis using the Tagman®
Gene Expression Assay kits (Applied Biosystems, Foster
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City, CA) (Figure 5). With the HPRT1 as the reference,
higher expressions of these genes were noticed in at least
some of the cancer tissues. Apparently, the average relative
expression levels of COL3A1 in breast, liver, thyroid can-
cer samples were higher than their normal counterparts.
The average expression levels of DLG3 in breast, kidney,
liver, lung, and ovarian cancers, and RNF43 in colon, liver,
lung, ovarian, and prostate cancers were also found to be
higher than their normal tissues. The expression of
COL3AL in approximately 5 of the liver cancers, DLG3 in
5 of the liver, 7 lung and 5 ovarian cancers, and RN43 in 7
of the colon, 8 ovarian and 5 prostate cancers seemed to

have higher expressions than the normal tissues. In light
of the limited sample size, the three candidates appear to
have an overall higher expression in cancer tissues.

Discussion

Reported here is an integrative, meta-analytic approach for
the discovery of pan-cancer differentially expressed gene
candidates. Our primary enrichment included a set of 723
DEGs with cancer associations supported by GeneGO dis-
ease and pathway analysis. Further integrative evaluations
with cancer differentially expressed genes suggested by
microarray data narrowed the list down to 234 genes, and
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Figure 5 Relative transcript levels of COL3A1, DLG3, RNF43 in
normal and cancer tissues detected by RT-qPCR analysis. Each
dot represents the relative gene expression level normalized against
the individual HPRT1 level of each tissue specimen. A total of 3
normal (N) and 9 cancer (T) tissue samples from 8 different tissues
or organs were analyzed.

among these there were 96 DEGs likely belonged to either
secretory and membrane protein genes. Further STRING
protein network analysis and literature reviewing indicated
71% of the 96 DEGs were highly connected and many of
them were associated with cancers in previous publications.

Simpson’s paradox

The meta-analytic nature of our study brought us the
opportunities as well as challenges to study the digital
signatures of various transcriptomes in a new perspec-
tive. Comparing to experimental methods that focus on
a single tissue type or limited tissue types, our approach
allows us to find genes inclined to express in cancer in
a pan-tissue manner. An important challenge of our
approach is to avoid Simpson’s paradox which can
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occur in a meta-analysis study [32]. Simpson’s paradox
is where the association between two variables may
show a correlation that is reversed in direction from
what is observed from stratified subgroups. A contrived
example is shown in Table 1 in which gene A appears
to have a higher cancer expression when pooled, but it
is in fact not so under individual stratified sub-tables.
This may be somewhat of an extreme case, where direc-
tionality of the ratios actually differs between the sub-
tables and the pooled table. However, the tissue con-
founder still introduces bias, large or small, that may
throw our judgment off. In this study, we used CMH to
analyze the data based on stratified sub-tables to avoid
running into this paradox. One could also analyze only
one tissue at a time for differential expression, but this
means one has a smaller dataset to work with. CMH
could avoid this problem since it uses EST counts from
all tissues instead of analyzing just the normal and can-
cer propensity under each individual tissue type.

In our actual data, the odds ratio of the pooled table is
also different from that of the stratified table. For example,
the gene PTRF, a polymerase I and transcript release fac-
tor, has a pooled odds ratio of 0.40 and a CMH odds ratio
of 0.16 calculated from stratified sub-tables. In this parti-
cular case, both odds ratios indicated an inclination
toward a higher normal expression and are both statisti-
cally significant although at different degree (the pooled
has a p-value of 5.269e-15 under a 2x2 y test [57] versus
CMH’s 7.16E-77). For the gene VCAN (versican), the
pooled odds ratio is 1.86 and % test yields a significant p-
value of 1.83e-4. However, CMH gives an insignificant
result for this gene with p-value of 0.25. As an extreme
case, GBP6 (guanylate binding protein family, member 6)
has a pooled odds ratio of 6.69 and % test gives a p-value
smaller than 2.2e-16 (approaching 0), whereas with CMH
the odds ratio is 0.73, actually indicating a higher normal
counts, although CMH p-value of 0.15 is insignificant.
This indicates Simpson’s paradox in action. Careful
inspection showed that all cancer counts and most normal
counts of GBP6 were contributed by the tongue tissue
source. Out of a total of 50 cancer counts and 21 EST nor-
mal counts, tongue accounts for cancer and normal counts
of 50 and 17, respectively. For this gene, the tongue cancer
count 50 is not influential under a total of 29,479 cancer
counts and 7,486 counts for the tongue. Thus pooling
loses information in this respect and gives a false impres-
sion that its cancer expression is much higher when sum-
ming all cancer counts from all tissues. Stratifying by
tissue type guards against this bias.

Heterogeneity of odds ratios

In the strictest application, the use of Cochran-Mantel-
Haenszel method requires the odds ratios of the sub-tables
be homogeneous. In our context, it means the ratio of
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gene expressions between cancer and normal tissues are
probably the same among all tissue types under study and
any observed variability is most likely due to sampling
bias. Also, the calculated odds ratio would be the esti-
mated common odds ratio across the tissue strata. In our
case, however, not all genes had similar ratios under each
tissue (based on Woolf’s test for homogeneity available in
Additional file 2 under the “Woolf” column label), and
this was of course expected. In spite of this, we were inter-
ested in the overall expression patterns of the genes in
cancer conditions. We were not interested in an estimate
of common odds ratio across the strata, which often does
not exist. We were interested in hypothesis testing - to
give us leads to the genes that had higher cancer expres-
sion in general. In this regard, the test could be applied
[58,59]. The CMH odds ratio is a weighted average of the
odds ratio in each tissue classification and can give us a
summary measure [60], which we used to prioritize and
followed up with subsequent biological analyses. In other
word, an odds ratio in our data was merely a value that
“average up” across all tissue types. From these ratios we
were able to reveal the preferential cancer expressions,
since the list covered a number of important known bio-
markers, and enrichment of cancer-related genes were
supported by knowledge-based GeneGO analyses and pre-
vious publications.

Lower bound of confidence interval

Another distinctive tactic we used is the selection of
DEGs among the statistically significant genes (p-value <
0.05) base on lower bounds of the confidence interval of
the odds ratio estimates. The popular approach to search
for DEGs is to select genes base on p-value first, and
then select the subset base on parameter estimators such
as odds ratio or fold change values. The p-value criterion
selects the statistically significant ones (those not likely to
be the result of random fluctuation). The subsequent cri-
terion is based on prior domain knowledge. However,
among those with statistically significant p-values and
similar parameter estimators, the ranges of the estima-
tions can vary widely. Using our dataset as an example,
the two genes TUBA1B and FAMG60A both have odd
values of 2.38 (Additional file 2). However, for TUBA1B,
it is within the 95% confidence that its true odds ratio is
between 2.26 and 2.50. Yet for FAMG60A it is between
1.59 and 3.54. Based on our background knowledge and
for future application, if we must select genes having
odds ratios greater than 2.0, then using odds ratio as cut-
off would not serve this purpose since it is quite possible
that the real odds ratio (i.e., of the population) is below
2.0. Choosing genes based on their confidence intervals
would be more precise, but this has not been much
appreciated.
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Multi-cancer biomarkers

The multi-cancer approach compares genes that are
overall differentially expressed among multiple cancer
types comparing to their respective normal tissue types.
Although many biomarker studies focus on gene differ-
entially expressed in a particular tissue type, Wu et al.
found 8 proteins in the conditioned media of 23 cell lines
showing negative or weak tissue staining in the Human
protein atlas, suggesting them to be potential pan-cancer
markers [61]. Sahin et al., found that claudin-18 splice
variant 2 had the ectopic activations in pancreatic, eso-
phageal, ovarian, and lung tumors while its expression in
normal tissue only occurred in differentiated epithelial
cells of the gastric mucosa, confirmed by RT-PCR [62].
These studies suggested that relatively multi-cancer
genes or multi-cancer splice variants exist. The three
candidates COL3A1 (Collagen alpha-1(III) chain), DLG3
(Discs large homolog 3) (plasma membrane), and RNF43
(Ring finger protein 43) are putative secreted or plasma
membrane proteins with the potential of developing
serum diagnostic reagents. In reviewing the involvement
of these genes with cancers in previous studies, hint for
pan-cancer marker was surfaced as the expression of the
extracellular matrix protein COL3A1 gene in brain can-
cer [63] and angiofibroma [64] was elevated. While
secreted membrane bound RNF43 protein gene was
known to be up-regulated in colorectal cancer [65]. Inter-
estingly, upon the real-time qPCR analysis of three can-
cer differentially expressed secreted protein gene
candidates, COL3A1, DLG3, and RNF43 identified in this
study, higher cancer expression levels of these genes in
multiple cancer types were verified. This does not only
indicate the usefulness of our computational approach
and filtering procedure but also encourages us to devote
further resources for assessing the clinical usages of these
three candidates.

Pooling of gene expression

Earlier in this discussion, we mentioned that naive pooling
of data may introduce bias and at worst may produce
Simpson’s paradox. We also mentioned that we have
tackled this problem with CMH. Nevertheless, two other
occasions of pooling actually took place. We pooled
expression from different splicing variants from the same
gene to make one gene expression. We also pooled differ-
ent libraries of the same tissue into one tissue classifica-
tion. In both of these cases, we may encounter expression
bias, since different splicing variants and different tissue
libraries (i.e., tissues from different patients) might have
differences in expression patterns. This is an unfortunate
limitation in this and similar studies, since dbEST data
consists of many different sources, and given the relative
lack of data after the very stringent criteria we have used
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in our library selection compare to previous studies (Most
importantly the exclusion of ESTs from cell lines, PCR
amplification, subtraction, and cDNA normalization pro-
tocols). We opted for pooling since we had comparatively
limited number of sequences to work with (1,644,960 out
of 8,296,089 downloaded - 18.03%). Nonetheless, future
digital expression profiling can be made better with the
RNA-Seq methodology that offers a greater depth of cov-
erage than ESTs obtained from traditional cDNA sequen-
cing. It gives a much larger sampling size that makes more
realistic the differentiation among isoforms and also
makes pooling of different libraries of the same tissue less
necessary. As for discovery of pan-cancer genes or iso-
forms when studying multiple tissue types, similar idea as
outlined in this study would be just as applicable.

Conclusions

We have demonstrated that the use of the Cochran-
Mantel-Haenszel statistic in the integrative approaches
allowed us to identify potential biomarkers or therapeu-
tic targets via exhaustive search of various EST libraries
from dbEST. As shown in previous study, splice variant
could be useful target of antibody therapy [62]. The
method can be easily extended over to searching cancer
differential splicing variants had there been enough data.
The issues involved in the analysis, such as the Simp-
son’s paradox and the pan-cancer markers, may also be
encountered in other multi-class digital analysis. The
three targets confirmed by real-time qPCR, COL3A1,
DLGS3, and RNF43, are worthy of further evaluation for
clinical applications.

Additional material

Additional file 1: Tissue and library distributions of 1,644,960 ESTs.
This table shows the number of ESTs assigned to each tissue type prior
to matching to reference sequences.

Additional file 2: EST pipeline raw data. This is the raw EST count
from the EST pipeline imported into Excel. The columns are the
condition type, tissue, and condition-tissue type stratifications. The rows
represent the EST counts that are assigned to genes.
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