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Abstract

genetic information from narrative trial documents.

Background: Many cancer clinical trials now specify the particular status of a genetic lesion in a patient’s tumor in
the inclusion or exclusion criteria for trial enrollment. To facilitate search and identification of gene-associated
clinical trials by potential participants and clinicians, it is important to develop automated methods to identify

Methods: We developed a two-stage classification method to identify genes and genetic lesion statuses in clinical
trial documents extracted from the National Cancer Institute’s (NCI's) Physician Data Query (PDQ) cancer clinical
trial database. The method consists of two steps: 1) to distinguish gene entities from non-gene entities such as
English words; and 2) to determine whether and which genetic lesion status is associated with an identified gene
entity. We developed and evaluated the performance of the method using a manually annotated data set
containing 1,143 instances of the eight most frequently mentioned genes in cancer clinical trials. In addition, we
applied the classifier to a real-world task of cancer trial annotation and evaluated its performance using a larger
sample size (4,013 instances from 249 distinct human gene symbols detected from 250 trials).

Results: Our evaluation using a manually annotated data set showed that the two-stage classifier outperformed
the single-stage classifier and achieved the best average accuracy of 83.7% for the eight most frequently
mentioned genes when optimized feature sets were used. It also showed better generalizability when we applied
the two-stage classifier trained on one set of genes to another independent gene. When a gene-neutral, two-stage
classifier was applied to the real-world task of cancer trial annotation, it achieved a highest accuracy of 89.8%,
demonstrating the feasibility of developing a gene-neutral classifier for this task.

Conclusions: We presented a machine learning-based approach to detect gene entities and the genetic lesion
statuses from clinical trial documents and demonstrated its use in cancer trial annotation. Such methods would be
valuable for building information retrieval tools targeting gene-associated clinical trials.

Background

In recent years, novel cancer therapies targeting specific
genetic lesions in tumors have shown great promise for
improving outcomes for patients with cancer [1,2]. Basic
and clinical research has revealed that some genetic
lesions are not only necessary for the initial development
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or progression of a specific tumor but are also required for
the maintenance of that tumor’s survival; a concept
referred to as ‘oncogene addiction’ [3]. Many clinical trials
for targeted therapies now specify the particular status of a
genetic lesion as detected or not detected in the inclusion
or exclusion criteria for trial enrolment. Genetic lesions in
tumors may be detected as an abnormal gene mutation,
gene rearrangement, gene amplification, or gene-product
(protein) expression. However, clinical trial databases such
as ClinicalTrials.gov (http://www.clinicaltrials.gov) and the
National Cancer Institute’s Physician Data Query (PDQ)
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database [4], do not contain structured representations of
clinical trial eligibility criteria, making it difficult to accu-
rately search for trials based on the status of the genetic
lesion.

MyCancerGenome.org, developed and hosted at Van-
derbilt University, is a freely available online knowledge
base that summarizes the clinical significance of specific
tumor genetic lesions for given cancer diagnoses. Users
are informed about standard of care therapies and gene-
associated clinical trials open to accrual locally, nationally,
and internationally. At MyCancerGenome.org, users can
search for clinical trials by gene and disease. The current
implementation of the search function uses a simple key-
word search against all PDQ clinical trial documents in
the database. However, exact string matching of gene sym-
bols alone often leads to false positive results due to the
ambiguity of gene symbols. For example, searching gene
symbol “MET” could return clinical trial documents con-
taining the English word “met” (e.g., “patient has met the
inclusion criteria ...”). In addition, gene symbols could be
mentioned as part of other biomedical entities. In the sen-
tence “patients may not have had prior EGFR Tyrosine
Kinase Inhibitors”, the term “EGFR” refers not to the gene
EGER but rather to the drug class “EGFR Tyrosine Kinase
Inhibitors”. Furthermore, the status of a genetic lesion as
detected or not detected is often included in clinical trial
eligibility criteria. For example, a clinical trial may specify
an inclusion criterion “with a positive mutational status
for the BRAF or MEK1 gene.” Ideally, we would like to
allow a clinician or patient to filter the list of potential
clinical trials based on the status of an individual’s particu-
lar genetic lesion. Therefore, it is essential to identify the
status of genetic lesions in clinical trial documents. The
simple keyword search method cannot meet these require-
ments. In this study, we thus sought to use more advanced
text processing methods to distinguish gene symbols from
English words and other biomedical entities, as well as to
determine the status of genetic lesions in clinical trial
documents.

Identifying gene instances and genetic lesion statuses
can be viewed as a particular case of a word sense disam-
biguation (WSD) problem, which is a classification task
involving assignment of the correct sense of a particular
occurrence of an ambiguous term. In biomedical litera-
ture, ambiguity of gene names is significant [5]. An ambig-
uous gene symbol could refer to: 1) multiple genes; 2) a
gene or an English word not related to a gene; 3) an RNA,
protein, or gene; or 4) genes in different species. Many stu-
dies have been done to recognize and normalize gene
names in biomedical literature. One example is BioCreA-
tivE, tasks I and II in particular [6-8], which were designed
to address those problems; most groups participating in
the tasks achieved F-scores between 0.75 and 0.85 [9-12].
Some studies focused on disambiguation of gene symbols:

Page 2 of 9

for example, among different semantic types or different
genes. Hatzivassiloglou et al. [13] conducted a study to dis-
ambiguate gene names among three semantic classes:
gene, RNA, and protein, and reported accuracy rates up to
85% with optimized feature combinations. Podowski et al.
[14] built a two-step classification system (the first classi-
fier for AllGenes versus NotGene, followed by the second
classifier for determining the appropriate gene) and they
reported an F-measure of over 0.7 for >7,000 genes with
sufficient number of known document references. Further-
more, a number of studies investigated different methods
for disambiguation among different gene senses and
showed great performance (with precision over 95%)
[15-17]. More recently, a study by Stevenson and Guo [18]
also demonstrated that multiple features and methods
would be required for optimal resolution of different types
of gene symbol ambiguity in biomedical literature.

Almost all previous work on gene symbol disambigua-
tion has focused on the biomedical literature. Little atten-
tion has been paid to clinical trial documents that
increasingly include eligibility criteria referring to patient
genetic information. In this study, we developed a new
two-stage classifier to identify gene entities and asso-
ciated status of genetic lesions from clinical trial docu-
ments. The classifier identifies gene entities first and then
determines genetic lesion status. Our evaluation using a
manually annotated data set containing instances of the
top eight most frequently mentioned genes in cancer
clinical trials showed that the classifier with optimized
feature sets achieved a best average accuracy of 83.7%.
When it was applied to a real-world task of annotating
mentions of any human gene in cancer trials, the two-
stage classifier achieved a highest accuracy of 89.8%. To
the best of our knowledge, this is the first attempt to
determine the status of genetic lesions in clinical trial
documents.

Methods

Overview

In this study, we selected the top eight most frequently
mentioned gene symbols in the NCI's PDQ cancer clinical
trials database. For each gene symbol and its synonyms,
up to 200 occurrences of the gene symbol were randomly
selected and reviewed by domain experts to assign one of
the six predefined status categories. Using the annotated
data set for each gene, we developed and evaluated gene-
specific classifiers for gene entity and genetic lesion status,
using the Support Vector Machines (SVM) algorithm. In
addition, we assessed the feasibility of building a general,
gene-neutral classifier that can apply to any gene. We then
evaluated the gene-neutral classifier first using samples of
the top eight most frequently mentioned cancer genes and
then using instances of all HGNC human genes detected
from 250 randomly selected cancer trials.
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Data sets

The NCI's PDQ cancer database contains descriptions of
cancer clinical trials conducted around the world dating
back to the 1970’s. PDQ is freely available for download
in XML format with weekly updates [4]. For this study,
we used the collection of PDQ clinical trials downloaded
on February 6, 2012. This data set contained descriptions
for over 11,443 active clinical trials of which we used a
subset of 6,949 therapeutic trials, and 14,926 closed clini-
cal trials of which we used a subset of 13,790 therapeutic
trials. For this study, we used a subset of the trial descrip-
tion sections including trial title, summary, and eligibility
criteria. The closed clinical trials in PDQ were used as a
development set, where our developers could look into
those unannotated data. The active trials in PDQ were
used for training and testing of the classifier—samples
were randomly selected and manually reviewed by
domain experts to build annotated data sets, as discussed
in the next paragraph.

We used a list of 33,128 approved human genes from
the HGNC (HUGO Gene Nomenclature Committee)[19]
database, of which 446 genes have been classified as can-
cer genes in the Catalogue of Somatic Mutations in Can-
cer (COSMIC) database [20]. Each gene was associated
with a set of synonyms obtained from the HGNC data-
base and the National Center for Biotechnology Informa-
tion’s Gene database (NCBI Gene) [21]. We searched for
the 33,128 HGNC human genes in the 6,949 active thera-
peutic PDQ clinical trials and ranked them by frequency.
The top eight most frequently mentioned cancer gene
symbols from the list of cancer genes in the COSMIC
database were used in the first part of this study: ALK,
BRAF, EGFR, KIT, KRAS, MET, PTEN and WT1. For
each gene symbol, we collected all occurrences in PDQ
trial documents based on simple string matching. We
then randomly selected 200 occurrences (or the maxi-
mum number of gene occurrences if less than 200) for
each gene and sent them to two domain experts for inde-
pendent annotation. The annotator read the context (a
sentence or relevant sections if needed) where a gene
symbol occurred and assigned one of six predefined sta-
tus categories to the gene mention. Table 1 shows the
definitions and examples of the six categories, which
were defined based on manual observation and needs for
searching clinical trials. Categories 5 and 6 are not gene-
related and categories 1-4 refer to the status of a genetic
lesion. To facilitate the annotation, we also developed
annotation guidelines that provided definitions and
examples for each category. Each annotator indepen-
dently annotated all samples; we have reported the inter-
annotator agreement (IAA) using the Kappa score.

After individual annotation, we collected all the discre-
pancies between the two annotators’ results and presented
them to the annotators. They manually reviewed those
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discrepancies and made their final designations, which led
to our gold standard.

Feature sets

Based on previous studies in named entity recognition
and disambiguation in biomedical text [16], we investi-
gated four feature categories for the classification tasks in
this study:

Contextual words and associated information within a
window: a) words within a window size of 6 for a target
gene symbol; b) direction (e.g., left or right) of the feature
words; c) distance of the feature words; and d) ortho-
graphic information of the gene symbol and its closest
words (e.g., if a word contains capital letters, digits, or
special characters).

Words with dependency relationships to the gene sym-
bol. We used the Stanford Parser [22] to generate a
dependency parse tree for each sentence containing the
gene symbol. From the parse tree, we identified words
with a dependency relationship to the gene symbol. Then
we used those words, their part of speech (POS) tags, and
the type of dependency relationship as features. For
example, for the phrase “pRCC histology with Y1230 or
D1228 MET mutations”, the Stanford Parser would gen-
erate a dependency relationship “amod (mutations,
MET)”, denoting that “MET” is an adjectival modifier of
“mutations”. Therefore, “mutations”, its POS tag, and the
dependency relationship “amod” will be used as features
in this example.

Words expressing negation status. We noticed that
“Genetic lesion not detected” status was often associated
with a list of common negation words, which should be a
valuable feature. We manually reviewed about 200 docu-
ments from the closed trials in PDQ and complied a list
of negation words. Whether there are negation words in
a window size of 3 of the target gene symbol was then
used as a feature for the classifier.

Section headers. Three section headers, including
“Title”, “Summary” and “Eligibility criteria” were used in
this study.

Gene-specific classifiers
As we have an annotated data set for each of the top
eight genes, we first tested gene-specific classifiers for
this task. We built eight classification systems—one for
each gene—and evaluated them using annotated samples.
As shown in Table 1, there is a hierarchical structure
among six categories—categories 1-4 can be viewed as
sub-classes of a new pseudo-category “Gene-related”,
which is at the same level as categories 5 (Drug) and 6
(Others). Therefore, we proposed a new two-stage classi-
fication system for this task. Stage 1 was to classify
among “Gene-related” (merging categories 1-4), “Drug”,
and “Others”. In stage 2, we built a classifier to further
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Table 1 Six categories of gene mentions in clinical trial documents.

Category Definition Examples
ID Stage | Stage Il
1 Gene- Genetic lesion Genetic lesion status is detected. - Positive EGFR mutation test...
related detected - Patient with EGFR positive ...
2 Genetic lesion not Genetic lesion status is Not Detected. - ..negative staining for Kit.
detected - Patient must have wild type KRAS.
3 Genetic lesion Analysis of genetic lesion is mentioned but not « BRAF - gene analysis of archival tissue
mentioned particular results - mutational analysis of genes such as EGFR ...
4 Gene only It refers to the gene entity only, no status is - KIT is a gene that codes for ...
associated. - WT1 is a protein in cancer cells that regulates gene
expression and ...
5 Drug Gene related drugs, drug classes, or other therapy + WT1 Peptide Vaccination in Carcinomas.
- Prior treatment with EGFR inhibitor chemotherapy..
6 Others None of the above classes, e.g., English words, - ..using the kit and testing procedures.

- Criteria are met.

divide the “Gene-related” class into four categories of
genetic lesion status. For both steps, SVM was used as
the machine learning algorithm because of its known
high performance. The LibSVM package [23] was used in
this study. In addition, a single-stage SVM classifier,
which classifies among all six categories in one step, was
also implemented; this served as the baseline method in
the study.

As discussed in the previous paragraph, for each of the
top eight gene symbols, we built a two-stage classifier
and a single-stage classifier based on annotated samples
of that gene symbol. The classifiers were developed and
evaluated using 5-fold cross validation. We optimized
combinations of features and parameters of SVM based
on the average accuracy of five test folds in the cross
validation.

Gene-neutral classifiers

As described above, we built a classifier for each individual
gene, which required creating an annotated data set for
each gene. Because manual annotation is costly and time-
consuming, this approach lacks scalability, especially when
more and more genes are associated with diseases and the

number of gene-associated clinical trials continues to
increase. Therefore, it is in our interest to investigate the
possibility of building a general classifier that can apply to
new genes, by training on samples from a limited set of
genes. In this study, we tested the feasibility of such a
gene-neutral classifier. For each of the top eight genes, we
merged all annotated samples from the other seven genes
and used them to train a classifier, and then we applied
the classifier to samples of the selected gene and reported
its performance. Basically, we trained a classifier using
seven genes and tested it on the eighth gene, and repeated
this process eight times. Finally, we compared the perfor-
mance of the gene-neutral classifiers with individual gene-
specific classifiers (see Tables 3 and 5).

In addition, we applied the gene-neutral classifier to the
real-world task of cancer trial annotation of mentions of
any gene in the HGNC list of human genes (33,128 in
total). To analyze the correlation between the system’s
performance and sample size, we increased the number
of annotated trials and reported the classifier’s perfor-
mance in an iterative approach. We started with the clas-
sifier trained on annotated samples from the top eight
genes and then retrained and retested the gene-neutral

Table 2 Frequency distribution among different categories for the top eight genes.

Gene # of Samples Others Drug Genetic lesion detected Genetic lesion not detected Genetic lesion mentioned Gene only
ALK 102 32 10 41 15 4 0

BRAF 130 0 32 63 13 21 1

EGFR 200 4 117 37 5 26 1

KIT 145 5 26 82 12 16 4

KRAS 200 2 0 65 95 38 0

MET 200 147 28 16 0 5 4

PTEN 69 4 2 41 1 19 2

WT1 97 0 53 32 0 9 3

Total 1,143 194 268 377 141 138 25
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Table 3 Accuracy of two-stage and single classifiers for
individual genes.

Gene Two-stage classifier Single-stage classifier
ALK 88.2% 88.1%

BRAF 85.4% 85.4%

EGFR 82.5% 82.0%

KIT 75.9% 752%

KRAS 87.5% 87.5%

MET 93.0% 92.5%

PTEN 73.9% 71.3%

WT1 83.5% 83.5%

Average 83.7% 83.2%

classifier over five iterations. For each iteration, fifty can-
cer trial documents were randomly selected, and the
gene names and synonyms mentioned in these trials were
identified by a string-matching program. The gene-neu-
tral classifier was then used to predict the status of each
gene symbol instance. A domain expert manually
reviewed and corrected the labels predicted by the classi-
fier; the domain expert annotations served as the gold
standard. We reported the performance of the classifier
on genes in the 50 trials based on that gold standard.
Next, annotated samples from the 50 trials were com-
bined with existing annotated samples and used to build
an updated gene-neutral classifier for the next iteration.
We repeated this procedure five times and recorded the
system’s accuracy at each iteration.

Evaluation

As this was a typical multi-class classification task, we
used accuracy as the primary measurement for classifi-
cation performance. Predicted results from our classi-
fiers were compared to the gold standard to determine
if an instance was correctly assigned to a category.
Accuracy was defined as the ratio between the number
of correctly predicted instances by the system and the
number of total instances in a test set. For each indivi-
dual gene, 5 test folds were be generated from the 5-
fold cross validation. Prediction results from all 5 test
folds were combined and used to calculate an overall
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accuracy, which was the final accuracy for that gene, as
shown in Table 4. We also reported average accuracy
across the top eight genes.

To further analyze classifier performance in each cate-
gory, we reported the precision, recall, and F-score for
individual categories. As an individual gene may have
limited instances for a particular category, we merged
classification results from the top eight genes and
reported category-specific performance on the merged
data set. The precision of a category was defined as the
ratio between the number of instances that were cor-
rectly predicted to belong to that category and the num-
ber of all instances predicted to belong to that category.
The recall for a category was defined as the ratio between
the number of instances that were correctly predicted to
belong to that category and the number of all instances
in the category based on the gold standard. The F-score
for the category was then calculated as: 2 * Precision *
Recall/(Precision + Recall).

Results

Characteristics of the data set and annotation result
Using the list of all human genes from the HGNC data-
base, 1,290 individual gene symbols were detected in
4,951 trials. Figure 1 shows the frequency distribution for
all the detected gene symbols, which were ranked by the
number of occurrences.

Table 2 shows the number of instances in each cate-
gory for the top eight cancer gene symbols, based on
manual annotation. As we can see, the frequency distri-
bution among categories was very different among the
top eight gene symbols. Genes “EGFR” and “MET” were
highly unbalanced, with a major sense of “Drug* or
“Others®, respectively. For each gene symbol, there
existed categories with only a few instances (less than 5).

Among all 1,143 instances from the top eight gene sym-
bols, the two annotators annotated 148 instances differ-
ently. The calculated Kappa score between two annotators
was 0.837, which indicates a reasonable agreement
between two annotators. Forty-eight discrepancies were
between “Genetic lesion detected” and “Genetic lesion not
detected” and twenty-seven were between “Genetic lesion

Table 4 Precision, Recall and F-score for individual categories across the top eight genes.

Two-stage classifier

Single-stage classifier

Category Precision Recall F-score Precision Recall F-score
Genetic lesion detected 754% 92.0% 82.9% 784% 89.4% 83.5%
Genetic lesion not detected 90.2% 78.0% 83.7% 89.4% 78.0% 83.3%
Genetic lesion mentioned 78.5% 60.9% 68.6% 83.5% 55.1% 66.4%
Gene only 66.7% 16.0% 25.8% 60.0% 12.0% 20.0%
Drug 91.0% 90.3% 90.6% 82.0% 95.2% 88.1%
Others 100% 93.8% 96.8% 100% 94.3% 97.1%
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Table 5 Accuracy of the gene-neutral two-stage and single classifiers.

Testing Gene Training Genes Two-stage Classifier Single-stage Classifier
ALK BRAF, EGFR, KIT, KRAS, MET, PTEN, WT1 68.6% 64.7%

BRAF ALK, EGFR, KIT, KRAS, MET, PTEN, WT1 85.4% 84.6%

EGFR ALK, BRAF, KIT, KRAS, MET, PTEN, WT1 78.0% 73.5%

KIT ALK, BRAF, EGFR, KRAS, MET, PTEN, WT1 74.5% 70.3%

KRAS ALK, BRAF, EGFR, KIT, MET, PTEN, WT1 87.0% 81.5%

MET ALK, BRAF, EGFR, KIT, KRAS, PTEN, WT1 73.5% 41.5%

PTEN ALK, BRAF, EGFR, KIT, KRAS, MET, WT1 78.3% 78.3%

WT1 ALK, BRAF, EGFR, KIT, KRAS, MET, PTEN 65.0% 55.7%

Average 76.3% 68.8%

detected” and “Gene only”, which suggested that discrimi-
nation among gene-related categories was more difficult
than that between gene and the non-gene categories
“Others” and “Drug”.

Performance of gene-specific classifiers

Table 3 shows accuracies of the two-stage and single-
stage classifiers that were trained and tested on each indi-
vidual gene, when optimized features and parameters
were used. For all of the top eight genes, the two-stage
SVM classifier always performed better than or equal to
the single-stage SVM classifier. The average accuracy
across the top eight genes was 83.7% for the two-stage
classifier and 83.2% for the single-stage classifier. We
further evaluated the performance of the first classifier
(for determining “Others”, “Drug” and “Gene-related”) in

the two-stage approach; it achieved an average accuracy
of 94.4% across the top eight genes.

Table 4 shows the precision, recall, and F-score for each
category using all instances from the top eight genes, for
both the two-stage classifier and the single-stage classifier.
The six categories showed very different performance.
“Others” and “Drug” had higher F-scores, while the “Gene
only” category had a low F-score. This probably occurred
because the “Gene only” category had the smallest number
of training samples (25 total across all genes), and
instances appeared in similar contexts as compared to
other categories of gene instances. The two-stage classifier
showed a better F-score than that of the single-stage clas-
sifier for four categories, although it slightly dropped per-
formance for the “Drug” and “Genetic lesion detected”
categories.
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Figure 1 Frequency distribution of detected gene symbols detected in cancer trial documents.
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Performance of gene-neutral classifiers

Table 5 shows the performance of gene-neutral classifiers
on the top eight genes using the two-stage and single-
stage approaches. As expected, gene-neutral classifiers
had lower performance than gene-specific classifiers: the
average accuracy dropped from 83.7% (Table 3) to 76.3%
(Table 5) for two-stage classifiers. However, the two-
stage classification approach showed much better results
(average accuracy of 76.3%) than the single-stage classi-
fier (average accuracy of 68.8%), indicating better gener-
alizability across genes. In addition, individual gene
symbols performed differently when gene-neutral classi-
fiers were applied. For example, gene “PTEN” had a bet-
ter accuracy for gene-neutral classifier (78.3%) than that
of the gene-specific classifier (73.9%). However, the
accuracy of gene “MET” dropped significantly—from
93.0% for the gene-specific classifier to 73.5% for the
gene-neutral classifier.

To apply the gene-neutral classifier to the real-world
task of annotating mentions of any gene in cancer trial
documents, we generated a set of 4,031 annotated gene
instances (including 249 distinct gene symbols) from 250
randomly selected trial documents. The numbers of
annotated samples over the five iterations were 759, 585,
792, 1053, and 842, respectively. A new status category,
named “Genetic lesion detected or not detected”, which
denotes that a patient would meet eligibility criteria as
long as their genetic status had been measured prior to
trial entry, was identified and added to the annotation
guidelines. Figure 2 shows the system’s performance at
each iteration point. Due to the new category, we
obtained a low accuracy of 66.1% from the first iteration,
which was trained on gene instances from the top eight
genes. As new training samples were added, the retrained
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gene-neutral classifier improved its performance. After
three iterations (including 3,279 annotated samples), the
gene-neutral classifier achieved a highest accuracy of
89.8%. The accuracy after the fifth iteration dropped
(probably due to the variability in the fifth set of trial
documents), but it still retained a reasonable accuracy
of 86.7%.

Discussion

With the rapid growth in the field of personalized medi-
cine, the rate at which clinical trials are being opened
with eligibility criteria referring to patient genetic infor-
mation is accelerating. To efficiently search those trials,
gene-specific information such as genetic lesion status
needs to be accurately identified and categorized from
narrative clinical trial protocols. As an initial step, we
developed a machine learning-based system to identify
gene entities and the status of genetic lesions from clini-
cal trial descriptions. The gene-specific classifier achieved
an average accuracy of 83.7% for the eight genes included
in the first part of this study. When it was applied to all
genes in cancer trial documents, the gene-neutral classi-
fier achieved a highest accuracy of 89.8%, indicating the
system’s potential in facilitating information retrieval
tasks targeting clinical trial documents.

In our experiment, the two-stage classifier outper-
formed the single-stage classifier for both gene-specific
and gene-neutral tasks. The two-stage classification idea
is related to work published by Podowski et al. [14],
where they built an “AllGenes vs. NotGene” classifier fol-
lowed by a “Gene vs. OtherGene” classifier to identify
gene names in biomedical literature. Staged classification
strategies may have originated in the work of Bennett
and Blue [24], where they built cascade SVM classifiers
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to generate a decision tree. Our rationale behind using this
design was that the classification models might be differ-
ent between the stage 1 classifier (to determine “Others”,
“Drug”, and “Gene_related”) and the stage 2 classifier (to
determine different status categories for genetic lesions).
After the first classification, there may have been less
noise added to the second classification, as non-gene
classes were excluded. Results stratified by individual cate-
gories in Table 4 also showed that the level of difficulty
for each category was different: “Others” and “Drug”
categories were relatively easier, while other gene-related
categories were more difficult. In addition, analysis of dis-
agreement between two annotators showed that most of
discrepancies were also from gene-related categories.

We investigated the contribution of different types of
features for this task. For gene-specific classifiers, the
highest accuracy (83.2%) was achieved by combining all
four categories of features (see Methods). Other combi-
nations achieved lower performance, e.g., 81.4% for using
category 1 features, 82.2% for using category 1 and 2
features. Another interesting finding was that direct use
of POS tagging information did not improve the perfor-
mance. But when POS tags of words that have a depen-
dency relationship with the gene symbol were used, the
system’s performance was improved, which indicates the
value of dependency relationships in this task.

The experimental results from the gene-neutral classi-
fiers were very interesting to us. It was not surprising
that the gene-neutral classifier had a lower average accu-
racy across the top eight genes, when compared with the
gene-specific classifier. But a few genes had almost no or
little loss in performance, including “BRAF”, “KIT”, and
“KRAS”. The gene-neutral classifier even had a better
performance than gene-specific classifier for gene
“PTEN”. This could be related to the increased sample
size by merging annotated data from other seven genes,
as “PTEN” alone had only 69 annotated samples. A cou-
ple of genes had big performance losses when we
switched from a gene-specific classifier to a gene-neutral
classifier, such as “MET”. Since “MET” was the only gene
that had a highly frequent English sense, we could expect
that the model trained on the other seven genes probably
would not work very well on resolving its English mean-
ing. The similar problems caused by the size of training
set and skewed class distribution have been reported in
ML research [25,26]. Nevertheless, the experiment of
annotating a large set cancer trials demonstrated that the
gene-neutral classifier would be very useful in this task. It
is difficult to build a gene-specific classifier and optimize
the parameters for every single gene, as the number of
genes mentioned in cancer clinical trials keeps growing.
The gene-neutral approach provides a scalable solution.
Our study showed that the gene-neutral classifier could
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achieve reliable high performance for new trials, when
enough samples were annotated. We expect that the per-
formance of the gene-neutral classifier could be further
improved, as more and more annotated samples are
accumulated. Meanwhile, annotation time will be drama-
tically reduced as the system’s predictions become more
accurate.

In the future, we will further improve the classification
performance by investigating other machine learning
algorithms or ensembles of classifiers. We will integrate
the gene-neutral approach into the workflow of cancer
trial annotation. In addition, we will integrate methods
developed here with the search function at MyCancer-
Genome.org, and measure its practical uses in informa-
tion retrieval tasks of clinical trials.

Conclusions

In this study, we developed a two-stage classifier to iden-
tify gene entities and the statuses of genetic lesions from
clinical trial documents. Our system achieved an average
accuracy of 83.7% when developed and tested on indivi-
dually annotated genes. In addition, we conducted
experiments and demonstrated the feasibility of building
a gene-neutral classification approach for this task. To
our best knowledge, this is one of the first attempts to
accurately identify genetic information in clinical trial
documents. We plan to apply these methods to facilitate
information retrieval of gene-associated clinical trials.
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