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Abstract

Background: The discovery of molecular pathways is a challenging problem and its solution relies on the
identification of causal molecular interactions in genomics data. Causal molecular interactions can be discovered
using randomized experiments; however such experiments are often costly, infeasible, or unethical. Fortunately,
algorithms that infer causal interactions from observational data have been in development for decades,
predominantly in the quantitative sciences, and many of them have recently been applied to genomics data. While
these algorithms can infer unoriented causal interactions between involved molecular variables (i.e., without
specifying which one is the cause and which one is the effect), causally orienting all inferred molecular interactions
was assumed to be an unsolvable problem until recently. In this work, we use transcription factor-target gene
regulatory interactions in three different organisms to evaluate a new family of methods that, given observational
data for just two causally related variables, can determine which one is the cause and which one is the effect.

Results: We have found that a particular family of causal orientation methods (IGCI Gaussian) is often able to
accurately infer directionality of causal interactions, and that these methods usually outperform other causal
orientation techniques. We also introduced a novel ensemble technique for causal orientation that combines
decisions of individual causal orientation methods. The ensemble method was found to be more accurate than
any best individual causal orientation method in the tested data.

Conclusions: This work represents a first step towards establishing context for practical use of causal orientation
methods in the genomics domain. We have found that some causal orientation methodologies yield accurate
predictions of causal orientation in genomics data, and we have improved on this capability with a novel
ensemble method. Our results suggest that these methods have the potential to facilitate reconstruction of
molecular pathways by minimizing the number of required randomized experiments to find causal directionality
and by avoiding experiments that are infeasible and/or unethical.

Background
The discovery of molecular pathways that drive diseases
and vital cellular functions is a fundamental activity of
biomedical research. Unraveling disease pathways is a
major component in the efforts to develop new therapies
that will effectively fight deadly diseases. Furthermore,
knowing pathways significantly facilitates the design of
personalized medicine modalities for diagnosis,

prognosis, and management of diseases. The discovery of
pathways is a challenging problem and its solution to a
large extent relies on the identification of causal molecu-
lar interactions in genomics data.
By causal molecular interactions or relations we mean

interactions of molecular variables that match the notion
of randomized controlled experiment, which is the de
facto standard for assessing causation in the general
sciences and biomedicine [1-5]. Assume that a hypotheti-
cal experimenter can change the distribution of a variable
X (i.e., experimentally manipulate it). We say that X is a
cause of Y (and Y is an effect of X) and denote this by
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X®Y if the probability distribution of Y changes for
some experimental manipulation of X.
Causal molecular interactions can be discovered using

randomized experiments such as interference with RNA
(e.g., shRNA, siRNA); however such experiments are
often costly, infeasible, or unethical. Fortunately, over the
last 20 years many algorithms that infer causal interac-
tions from observational data have been developed [1-5]
and some of them have been adopted to the high dimen-
sionalities of modern genomics data [6,7]. Outside of bio-
medicine, two Nobel prizes have recently been awarded
in 2003 and 2011 for methods which seek to discover
causal relations from non-experimental data [8-11].
In our prior work we evaluated the ability of state-of-

the-art causal discovery algorithms to de-novo identify
unoriented edges in genome-scale regulatory networks
[12], which represent causal interactions between tran-
scription factors and their target genes without distin-
guishing the mechanistic role of the involved molecular
variables (i.e., we did not assess which genes were tran-
scription factors and which genes were their targets). We
deliberately avoided performing causal orientation of the
discovered unoriented edges (i.e., separating transcription
factors/causes from their target genes/effects) because
this problem has previously been deemed worst-case
unsolvable in observational data using existing algorithms
[1] due to the statistical indistinguishability of causal
models in the same Markov equivalence class. For exam-
ple, causal models X®Y and X¬Y have generally been
assumed to be statistically indistinguishable given only
observational data for X and Y.
Over the last 5 years researchers have developed a new

class of methods that, given observational data for just
two causally related variables X and Y, aim to determine
which variable is the cause and which one is the effect
(e.g., separate X®Y from X¬Y) [13-18]. These causal
orientation methods aim to solve the problem of statisti-
cal indistinguishability of graphs in the Markov equiva-
lence class by exploiting asymmetries in the shapes of the
conditional probability densities and without requiring
randomized experiments. These methods could have sig-
nificant implications for the field of causal discovery
because they can orient unoriented edges that are disco-
verable by other established techniques, e.g. Generalized
Local Learning (GLL) or Local-to-Global Learning (LGL)
[6,7]. Therefore, at face value, these causal orientation
methods have the potential to reduce the number of, and
in some cases even eliminate, randomized experiments
needed for causal orientation of edges in the Markov
equivalence class of graphs and make the causal model
fully identifiable from observational data alone.
As promising as these new causal orientation methods

are, they have not been previously applied in genomics,
where the data is usually noisy and the sample sizes are

relatively small compared to prior test applications of
these methods [13-18]. In this paper we report results of
an extensive study of recent causal orientation techniques
in the genomics domain by (i) testing 12 methods/variants
to distinguish cause (in our experiments, transcription fac-
tor) from effect (in our experiments, target gene) in 5,739
causal interactions and (ii) conducting sensitivity analyses
with respect to noise and sample size for the best-per-
forming methods. In addition, (iii) we introduce a new
ensemble technique for causal orientation that is shown to
be more accurate than any best individual causal orienta-
tion method in the tested data. The results of this study
can serve as a foundation for further development of cau-
sal orientation techniques for genomics data and establish-
ing a context for wide applications in molecular or
biomedical research.

Methods
Causal orientation methods
As mentioned above, the purpose of the tested causal
orientation methods is to separate cause from effect
given data for just two variables X and Y that have a cau-
sal relation (i.e., in the underlying data generative distri-
bution, either X ® Y or X ¬ Y). Typically these methods
are not designed to be used to causally orient pairs of
variables that only have univariate association/correlation
due to the possibility of confounding. For example, in the
majority of distributions, a causal structure X ¬ T ® Y
implies that X and Y are associated even though they are
not causally affecting each other. Therefore, the presence
of association in a pair of variables X and Y is, in general,
a necessary but not sufficient condition to be eligible for
causal orientation. A rigorous approach would involve
first using correct causal discovery methods (e.g., GLL/
LGL [6,7], MMHC [19], PC/FCI [1], IC/IC* [2], etc.) to
identify unoriented edges that denote the existence of
unconfounded causal relations and then applying causal
orientation techniques to orient unoriented edges.
While each causal orientation method has its own prin-

ciples and sufficient assumptions that are outlined in
Table 1 (and brief descriptions of the algorithms are
given in the Additional file 1), most of these techniques
are based on the idea that the factorization of the joint
probability distribution P(cause,effect) into P(cause)P
(effect|cause) yields a simpler representation than the
factorization into P(effect)P(cause|effect). One can
furthermore show that if the marginal probability distri-
bution of the cause P(cause) is independent of the causal
mechanism P(effect|cause), then the factorization P
(cause)P(effect|cause) has lower complexity than the fac-
torization P(effect)P(cause|effect). Given two causally
related variables X and Y, estimating the complexity of
the two different factorizations of P(X,Y) or determining
independence between marginal and conditional
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distributions can thus provide the basis for causal orien-
tation techniques. In practice, however, it is difficult to
directly test independence between P(X) and P(Y|X) or
estimate (or even define a measure of) their complexity;
hence the methods typically use simplifying assumptions
or rely on approximate formulations.
The majority of tested causal orientation methods

(IGCI, LINGAM, GPI-MML, ANM-MML, ANM-
GAUSS) output two scores indicating likelihood of the
forward causal model (X ® Y) and the backward one (X
¬ Y). Other tested methods (ANM, PNL, GPI) output
two p-values indicating significance of the forward and
backward causal models. In order to make all methods
directly comparable to each other, we decided to force
them to make causal orientation decisions for all tested
causal interactions. This was achieved by comparing
scores or p-values of the forward and backward causal

models and selecting the most likely orientation. This
approach follows the practices of previously published
applications of causal orientation methods by their inven-
tors [16-18].
We also note that an alternative approach for the

ANM, PNL, and GPI methods is to select a model (for-
ward/backward) that is statistically significant at a given
alpha level. The latter approach can sometimes improve
accuracy of the causal orientation method while reducing
the fraction of causally oriented edges [17]. While results
for this approach are not central to this manuscript, we
report them in the Additional file 1. We also note that
the main findings for the primary approach are for the
most part consistent with the alternative approach.
Finally, prior to application of the causal orientation

methods, we standardized the data to mean zero and
standard deviation one.

Table 1 High-level description of the tested causal orientation methods.

Method Reference Key principles Sufficient assumptions for
causally orienting X ® Y

Sound

ANM [14] Assuming X ® Y with Y = f(X) + e1, where X and e1 are independent, there will
be no such additive noise model in the opposite direction X ¬ Y, X = g(Y) + e2,
with Y and e2 independent.

• Y = f(X) + e1;
• X and e1 are independent;
• f is non-linear, or one of X and
e is non-Gaussian;
• Probability densities are strictly
positive;
• All functions (including
densities) are 3 times
differentiable.

Yes

PNL [15] Assuming X ® Y with Y = f2(f1(X) + e1), there will be no such model in the
opposite direction X¬Y, X = g2(g1(Y) + e2) with Y and e2 independent.

• Y = f2(f1(X) + e1);
• X and e1 are independent;
• Either f1 or e1 is Gaussian;
• Both f1 and f2 are continuous
and invertible.

Yes

IGCI [16,17] Assuming X®Y with Y = f(X), one can show that the KL-divergence (a measure
of the difference between two probability distributions) between P(Y) and a
reference distribution (e.g., Gaussian or uniform) is greater than the KL-divergence
between P(X) and the same reference distribution.

• Y = f(X) (i.e., there is no noise in
the model);
• f is continuous and invertible;
• Logarithm of the derivative of f
and P(X) are not correlated.

Yes

GPI-
MML

[18] Assuming X®Y, the least complex description of P(X, Y) is given by separate
descriptions of P(X) and P(Y|X). By estimating the latter two quantities using
methods that favor functions and distributions of low complexity, the likelihood
of the observed data given X®Y is inversely related to the complexity of P(X)
and P(Y | X).

• Y = f(X, e);
• X and e are independent;
• e is Gaussian;
• The prior on f and P(X)
factorizes.

No

ANM-
MML

[18] Same as for GPI-MML, except for a different way of estimating P(Y | X) and P(X |
Y).

• Y = f(X) + e;
• X and e are independent;
• e is Gaussian.
• The prior on f and P(X)
factorizes.

No

GPI [18] Assuming X®Y with Y = f(X,e1), where X and e1 are independent and f is
“sufficiently simple”, there will be no such model in the opposite direction X¬Y,
X = g(Y,e2) with Y and e2 independent and g “sufficiently simple”.

Same as for GPI-MML. No

ANM-
GAUSS

[18] Same as for ANM-MML, except for the different way of estimating P(X) and P(Y). Same as for ANM-MML. No

LINGAM [13] Assuming X®Y, if we fit linear models Y = b2X+e1 and X = b1Y+e2 with e1 and
e2 independent, then we will have b1 < b2.

• Y = b2X+e1;
• X and e1 are independent;
• e1 is non-Gaussian.

Yes

The last column indicates whether a method is sound, i.e. it can provably orient a causal structure under its sufficient assumptions. Because causal orientation
methodologies are fairly new and not completely characterized, it is possible that proofs of correctness will become available for GPI-MML, ANM-MML, GPI, and
ANM-GAUSS. All methods implicitly assume that there are no feedback loops. The noise term in the models is denoted by small “e”.
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Gold standard construction and observational data
The primary challenges in evaluating causal orientation
methods for genomics applications are (i) limited availabil-
ity of known gold standards of causal molecular interac-
tions and (ii) limited sample sizes of the available
observational data. To overcome these challenges we
focused on transcription factor-gene regulatory interac-
tions that have been discovered on the genome wide level
and experimentally verified in model organisms [20,21]
and more recently in human cell lines [22]. Therefore, the
gold standards in this work contain tuples of genes (X, Y)
with orientation X®Y, where X is a transcription factor
and Y is its target gene.
We used the following four gold standards: (i) interac-

tions of the NOTCH1 transcription factor and its target
genes in human T-cell acute lymphoblastic leukaemia
(denoted as NOTCH1); (ii) interactions of the RELA tran-
scription factor and its target genes in human T-cell acute
lymphoblastic leukaemia (denoted as RELA); (iii) interac-
tions of 140 transcription factors and their target genes in
Escherichia coli (denoted as ECOLI); and (iv) interactions
of 115 transcription factors and their target genes in
Saccharomyces cerevisiae (denoted as YEAST). We used
microarray gene expression data from the public domain
for orientation of causal relations in each gold standard.
The summary statistics of gold standards and correspond-
ing microarray gene expression datasets are given in Table
2 and Table 3, and details of gold standard creation are
provided below.
Once each of the gold standards was constructed, we

removed interactions without statistically significant
associations (in the observational data) according to Fish-
er’s Z-test [23] at 5% FDR [24,25]. We performed this
filtering because presence of association is a necessary
condition for detecting causal relations in most practical
settings.
All gold standards and microarray gene expression

datasets are available for download from http://www.
nyuinformatics.org/downloads/supplements/
CausalOrientation.
Creation of NOTCH1 and RELA gold standards:

These gold standards contain genes that are directly
downstream of a particular transcription factor
(NOTCH1 or RELA) and are functionally regulated by it.

The gold standards were obtained using the method
described in [22].
Functional gene expression data was first used to iden-

tify genes that are downstream (but not necessarily
directly) of a particular transcription factor. The samples
in such data are randomized to either ‘experiment’ (e. g.,
siRNA knockdown of the transcription factor of interest)
or ‘control’ treatment. All genes that are differentially
expressed between ‘experiment’ and ‘control’ treatments
are expected to be downstream of the transcription fac-
tor. We have used a t-test with a = 0.05 to identify such
genes.
Genome-wide binding data (ChIP-on-chip for NOTCH1

and ChIP-sequencing for RELA) was then employed to
identify direct binding targets of each transcription factor.
Specifically, for each studied transcription factor we
obtained the set of genes with detected promoter region-
transcription factor binding according to the primary
study that generated binding data.
We note that using genome-wide binding data by itself

is insufficient to find downstream functional targets of a
transcription factor, because many binding sites can be
non-functional [26]. Therefore, the final step in gold
standard creation required overlapping the list of direct
binding targets (from binding data) with the list of down-
stream functional targets (from gene expression data).
Knowledge gained by integration of data from these two
sources is believed to provide high confidence that a
given transcription factor directly regulates a particular
gene [27]. Also, integration of data from two different
sources contributes to the reduction of false positives in
the resulting gold standards.
Creation of gold standard for YEAST and ECOLI:

These gold standards contain genes that bind to and are

Table 2 Information about gold standards (GS) used in the study.

Task
name

Reference/
source

# TFs in
GS

# genes
in GS

# gene probes for GS genes in gene
expression data

# TF-gene
interactions

# TF-gene interactions significant
at FDR = 0.05

ECOLI [12,20] 140 913 913 1,885 1,607

YEAST [12,21] 115 1,834 1,834 3,541 2,648

NOTCH1 [22,40] 1 302 813 813 553

RELA [22,41,42] 1 1,420 3,657 3,657 931

“TF” stands for “transcription factor”. Statistically significant associations were determined using Fisher’s Z-test at 5% FDR in microarray gene expression data
(please see text for details).

Table 3 Information about microarray gene expression
datasets used in the study for each gold standard.

Task name Reference/source # samples

ECOLI [43] 907

YEAST [43] 530

NOTCH1 [44] 174

RELA [44] 174

Only T-ALL samples were selected for NOTCH1 and RELA in order to match
cell population used for creation of the respective gold standard.
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likely to be regulated by the known transcription factors
in Saccharomyces cerevisiae and Escherichia coli.
The Saccharomyces cerevisiae (denoted as YEAST)

gold standard was built by identifying the promoter
sequences that are both bound by transcription factors
according to ChIP-on-chip data at 0.001 alpha level and
conserved within 2 related species in the Saccharomyces
genus [12,21]. Binding information is essential because
transcription factors must first bind to a gene to induce
or suppress expression, while conservation information is
important because true-positive transcription factor-
DNA interactions are often conserved within a genus.
The Escherichia coli (denoted as ECOLI) gold standard

was constructed from RegulonDB (version 6.4), a manu-
ally curated database of regulatory interactions obtained
mainly through a literature search [12,20]. ChIP-qPCR
data has shown RegulonDB to be approximately 85%
complete [28,29]. Evidence for each regulatory interac-
tion in RegulonDB is classified as “strong” or “weak”,
depending on the type of experiment used to predict the
interaction. For example, binding of a transcription factor
to a promoter is considered strong evidence, whereas
gene-expression based computational predictions are
considered weak evidence. For the purposes of our study,
we created a conservative gold standard of only strong
interactions.
The gold standards YEAST and ECOLI contain rela-

tions of the type “transcription factor ® gene” and “tran-
scription factor ® transcription factor” (where “gene”
refers to a target gene that is not a transcription factor).
We decided to simplify the setting of our evaluation
when we assess whether the inferred causal orientation
X®Y or X¬Y is correct, and restricted attention to only
interactions of the type “transcription factor ® gene”.
This results in minimizing the number of cases with
feedback that can be represented by causal edges in both
directions. Note that it is not currently possible to com-
prehensively apply this filtering step to NOTCH1 and

RELA gold standards because the transcription factors
are not well known in human cells.

Performance metrics and statistical significance testing
Two metrics were used to assess performance of causal
orientation algorithms. The first metric is accuracy which
is the percentage of causal interactions that have been
oriented correctly. A method that orients all causal inter-
actions in the gold standard as “transcription factor ®
gene” would achieve an accuracy of 1; a method that ori-
ents all interactions as “gene ® transcription factor”
would achieve an accuracy of 0; and a method that flips a
fair coin to make every orientation decision would on aver-
age achieve an accuracy of 0.5.
The second metric is area under ROC curve (AUC),

which is known to be more discriminative than accuracy
because it takes into account the confidence of orientation
decisions [30,31]. The ROC curve is the plot of sensitivity
versus 1-specificity for a range of threshold values on the
difference between the scores/p-values of the forward and
backward causal models [32]. AUC ranges from 0 to 1,
where AUC = 1 corresponds to perfectly correct predic-
tion of causal orientation, AUC = 0.5 corresponds to
prediction by chance, and AUC = 0 corresponds to com-
pletely incorrect prediction of causal orientation. Compu-
tation of sensitivity/specificity and AUC requires a
response variable with both positive and negative labels.
We created such a response variable by representing gold
standard edges (that always point from a transcription fac-
tor to its target gene) in the following two equivalent
ways: 50% of the edges were represented as “transcription
factor ® gene” and the other 50% were represented as
“gene ¬ transcription factor”. The edges “®” were labeled
as positives and “¬” were labeled as negatives. This pro-
cess is illustrated in Table 4; in particular note that the
direction of causality always points from transcription fac-
tor to gene. AUC was then computed according to the for-
mula given in [33], with the difference in scores/p-values

Table 4 An example demonstrating the construction of the response variable for AUC computation

a) b)

Variable 1 Causal Edge Variable 2 Variable 1 Causal Edge Variable 2 Response

NOTCH1 ® ABCF2 NOTCH1 ® ABCF2 +

NOTCH1 ® EIF4E EIF4E ¬ NOTCH1 -

NOTCH1 ® SFRS3 NOTCH1 ® SFRS3 +

NOTCH1 ® NUP98 NUP98 ¬ NOTCH1 -

NOTCH1 ® CYCS NOTCH1 ® CYCS +

NOTCH1 ® ZNHIT ZNHIT ¬ NOTCH1 -

NOTCH1 ® ATM NOTCH1 ® ATM +

NOTCH1 ® TIMM9 TIMM9 ¬ NOTCH1 -

A fragment of the gold standard is shown in a). The edges always point from a transcription factor (NOTCH1) to its target gene. 50% of the edges are
represented as “transcription factor ® gene” and the other 50% as “gene ¬ transcription factor” in b). This constructs a response variable with positives
corresponding to “®” edges (shown in black) and negatives corresponding to “¬” edges (shown in red).
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serving as a predictor. Note that the AUC can also be
interpreted as the probability that the difference between
scores/p-values of the forward and backward causal mod-
els for a randomly chosen positive instance is higher than
the difference between scores/p-values for a randomly
chosen negative instance. Since each of the four gold stan-
dards has a large number of edges (>500), the variance in
AUC due to different choices of edges for negative and
positive labels is minimal and typically smaller than 0.001
AUC, as estimated by computation of AUC for 1,000 ran-
dom choices of positive and negative labels.
Given values of the above two performance metrics

(accuracy and AUC), we need to assess their statistical
significance, i.e. find out if the causal orientation is better
than by chance. Notice that our gold standards are such
that many causal edges are not independent because they
share the same transcription factor. That is why we chose
to apply an exact statistical testing procedure that can
accurately estimate the variance of orientation by chance

in our setting [34]. A schematic illustration of the statisti-
cal testing procedure is given in Figure 1. First we com-
pute AUC using real gene expression data (Figure 1-a).
Then we replace the real data with random data from the
Normal distribution with mean 0 and standard deviation
1 (the null distribution) and compute AUC for the same
gold standard as used with the real data. This step is
repeated with 1,000 different randomly generated data-
sets (Figure 1-b). Finally, we compare AUCs from the
null distribution to the AUC obtained in the real data
and compute a p-value that corresponds to the propor-
tion of random datasets that yield higher AUCs than the
real data (Figure 1-c). A downside of the above statistical
testing procedure is that it is computationally expensive
and requires running each causal orientation method
5,744,739 times (= 5,739 causal interaction · 1,001 data-
sets) in order to assess its significance in all 4 gold stan-
dards used in our study. To make this analysis feasible,
we assessed the statistical significance of only the two

Figure 1 Illustration of the statistical testing procedure to assess significance of the causal orientation method performance (AUC/
accuracy). a) AUC is computed using real data; b) AUC is computed using random data from the Normal distribution (null distribution) for the
same gold standard as used with the real data, and this step is repeated 1,000 times; c) a p-value is calculated by comparing AUCs from the null
distribution to the AUC obtained in the real data.
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best performing methods (IGCI Gaussian/Entropy and
IGCI Gaussian/Integral) and utilized the Asclepius Com-
pute Cluster at the Center for Health Informatics and
Bioinformatics (CHIBI) at New York University Langone
Medical Center (http://www.nyuinformatics.org).

Methodology for sensitivity analyses
In order to study sensitivity to sample size (number of
observations), we sample without replacement from the
original gene expression data nested subsets of size 10,
20, 30, ..., N, where N is the number of samples in the
dataset. Specifically, the subset of size 10 is included in
the subset of size 20, which is in turn included in the
subset of size 30, and so on. We then run the causal
orientation algorithms on each subset and compute per-
formance. This process is repeated with different sampled
nested subsets, and mean performance and variance are
estimated over all runs. For the NOTCH1 and RELA
gold standards, we used 100 subsets of each size, while
for the more computationally expensive YEAST and
ECOLI gold standards we used 20 subsets of each size.
For the sensitivity analysis to noise, we add a certain

proportion (p) of random Gaussian noise to the gene
expression data for both transcription factors and their
target genes, run causal orientation methods in the noisy
data, report their performance, and repeat the entire pro-
cess to assess variance (again, 100 times for NOTCH1
and RELA and 20 times for YEAST and ECOLI). Denot-
ing by X the transcription factor and by Y its target gene,
the noisy transcription factor X′ and gene Y′ are defined
as follows: X′ = (1-p) · X + p · N(MX,SX) and Y′ = (1-p) ·
Y + p · N(MY,SY), where N(m,s) is a Normally distributed
random variable with mean m and standard deviation s,
and MX, MY and SX, SY are means and standard devia-
tions of X and Y in the original data (prior to noise addi-
tion). We use the following proportions of noise (values
of p): 0.05, 0.10, 0.15, ..., 0.90, 0.95, 1.00.

A new ensemble method for causal orientation
As an enhancement to using individual causal orientation
techniques, we introduce ensemble causal orientation
models that combine decisions of all available individual
causal orientation methods in order to produce a more
powerful predictor of causal orientation. These meth-
odologies are popular in the field of supervised learning,
where non-random weak learners are often combined to
produce a more accurate predictor [35]. The use of
ensemble modelling for causal orientation is motivated
by our empirical observations that there is no single cau-
sal orientation methodology that performs perfectly (i.e.,
with 1.0 accuracy or AUC), many causal orientation
methods appear to perform different than chance, and
causal orientation methods often make errors in orient-
ing different edges.

In this study we experimented with a straightforward
approach to ensemble modelling, where we train a logis-
tic regression model [36] on predictions of all 11 tested
causal orientation methods (i.e., the input features consist
of the differences in scores/p-values between forward and
backward models). For the response variable, we follow
the same approach as for the computation of AUC which
was described above in the subsection on performance
metrics. Namely, 50% of edges are represented as “tran-
scription factor ® gene” and the other 50% as “gene ¬
transcription factor”. Then the response variable is con-
structed by labelling “®” edges as positives and “¬”
edges as negatives.
As with every supervised learning procedure that is

trained and tested using the same dataset, it is essential to
split the available data into non-overlapping training and
testing sets, whereby the training set is used to fit a learn-
ing model and the testing set is used to estimate its perfor-
mance [37,38]. For each gold standard we used 30% of the
causal interactions (chosen at random) for training and
the remaining 70% for testing. We decided to use a train-
ing set that was smaller than the testing set so that our
study resembles a possible practical application where
only a small portion of the gold standard is known and the
rest is to be discovered. The predictions of the ensemble
model in each gold standard are compared with the pre-
dictions of the best individual causal orientation technique
in the same testing set with 70% of the data (to ensure
that the results are directly comparable).
Finally, in addition to exploring holdout validation per-

formance of the ensemble models, we trained and tested
the ensemble models on different gold standards. In
practice this approach can be justified if the data distribu-
tions in the gold standards used for training and testing
of ensemble models are similar. It also resembles a prac-
tical situation when a gold standard is known in a
previously studied dataset but is not known in a new but
distributionally similar one.

Results
Evaluating causal orientation methods with the accuracy
metric
The causal orientation accuracy values are given in
Table 5 for 12 causal orientation methods (including
orientation by flipping a fair coin which is denoted as
“RANDOM” in the table) and 4 gold standards. The
performance ranks of methods with accuracies higher
than 0.50 are given in Table 6.
As can be seen, IGCI Gaussian/Entropy and IGCI

Gaussian/Integral methods achieve the highest accuracies
in each of the four gold standards. In general, the other
causal orientation methods perform worse, and some
methods (e.g., ANM-MML) consistently prefer wrong
decisions and have accuracies lower than 0.5.
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Interestingly, if we consider the best performing method
(IGCI Gaussian/Entropy) with the average rank 1.25, its
results are statistically significant at alpha = 0.05 according
to the exact test (described in the Methods section) only
for the ECOLI gold standard (p-value < 0.001). The sec-
ond best performing method (IGCI Gaussian/Integral)
with the average rank 1.75 achieves significance in two out
of four gold standards (p-value < 0.001 for ECOLI and
0.003 for YEAST) at alpha = 0.05. The reason why the
IGCI Gaussian/Integral method achieves significance in
more gold standards than the best performing technique
IGCI Gaussian/Entropy is the small variance of the former
method. The detailed statistical significance results includ-
ing null distributions are given in the Additional file 1 in
Figure S1 (for IGCI Gaussian/Entropy) and Figure S3 (for

IGCI Gaussian/Integral). It is worth noting that statistical
significance was achieved by neither of the two best per-
forming methods in NOTCH1 and RELA gold standards
that have only 1 transcription factor. This was primarily
due to a large variance of causal orientation accuracies in
the null distribution (see Figures S1 and S3 in the Addi-
tional file 1). On the other hand, if we join these two gold
standards into one with 2 transcription factors, both meth-
ods achieve statistical significance at alpha = 0.05 (p-value
of IGCI Gaussian/Entropy is 0.018 and p-value of IGCI
Gaussian/Integral is 0.007).
The superior and often statistically significant perfor-

mance of the two IGCI methods compared to other
techniques was a surprising finding that we did not
expect theoretically. IGCI assumes a noise free model
(Table 1) that is unrealistic in genomics data. On the
other hand, other methods that have a priori more rea-
listic assumptions perform worse. We hypothesize that
sufficient assumptions of the IGCI methods are too
strict in practice and can be mitigated in many ways
that are currently not well understood.

Evaluating causal orientation methods with the AUC
metric
The causal orientation AUC values are given in Table 7
for 12 causal orientation methods (including orientation
by flipping a fair coin which is denoted as “RANDOM” in
the table) and 4 gold standards. The performance ranks
of methods with AUCs higher than 0.50 are given in
Table 8.
Similarly to the accuracy results, IGCI Gaussian/

Entropy and IGCI Gaussian/Integral methods achieve the
highest AUCs in each of the four gold standards. Other
causal orientation methods perform worse, and some
methods (e.g., ANM-MML) consistently prefer wrong
decisions and have AUCs lower than 0.5.

Table 5 Accuracy of causal orientation

Method ECOLI YEAST NOTCH1 RELA

ANM 0.462 0.383 0.476 0.396

PNL 0.453 0.471 0.521 0.520

IGCI (Uniform/Entropy) 0.647 0.427 0.611 0.692

IGCI (Uniform/Integral) 0.605 0.441 0.561 0.669

IGCI (Gaussian/Entropy) 0.742 0.555 0.848 0.898

IGCI (Gaussian/Integral) 0.645 0.587 0.729 0.835

GPI-MML 0.485 0.390 0.251 0.395

ANM-MML 0.428 0.316 0.183 0.172

GPI 0.526 0.401 0.548 0.506

ANM-GAUSS 0.480 0.483 0.727 0.462

LINGAM 0.469 0.451 0.367 0.387

RANDOM 0.500 0.500 0.500 0.500

For each gold standard (column) dark orange cells correspond to methods
that have high values of accuracy, while white cells correspond to methods
that have low values of accuracy. Accuracies higher than 0.50 are shown in
bold.

Table 6 Ranks of causal orientation methods for each gold
standard

Method ECOLI YEAST NOTCH1 RELA

ANM - - - -

PNL - - 5 5

IGCI (Uniform/Entropy) 2 - 3 3

IGCI (Uniform/Integral) 3 - 4 4

IGCI (Gaussian/Entropy) 1 2 1 1

IGCI (Gaussian/Integral) 2 1 2 2

GPI-MML - - - -

ANM-MML - - - -

GPI 4 - 4 5

ANM-GAUSS - - 2 -

LINGAM - - - -

Ranks were computed only for the methods with accuracies greater than 0.50.
The lower the rank, the better the accuracy of the causal orientation method
for the given gold standard. The computation of rank took into account
statistical variability, e.g. accuracies 0.647 and 0.645 obtained by the two IGCI
methods in the ECOLI gold standard are statistically indistinguishable; that is
why they have the same rank value.

Table 7 AUC of causal orientation

Method ECOLI YEAST NOTCH1 RELA

ANM 0.464 0.379 0.456 0.369

PNL 0.443 0.464 0.520 0.520

IGCI (Uniform/Entropy) 0.713 0.409 0.708 0.805

IGCI (Uniform/Integral) 0.642 0.437 0.631 0.757

IGCI (Gaussian/Entropy) 0.813 0.613 0.935 0.967

IGCI (Gaussian/Integral) 0.724 0.655 0.834 0.927

GPI-MML 0.488 0.370 0.184 0.333

ANM-MML 0.393 0.237 0.078 0.071

GPI 0.536 0.396 0.594 0.513

ANM-GAUSS 0.474 0.476 0.807 0.446

LINGAM 0.462 0.463 0.362 0.392

RANDOM 0.500 0.500 0.500 0.500

For each gold standard (column) dark orange cells correspond to methods
that have high values of AUC, while white cells correspond to methods that
have low values of AUC. AUCs higher than 0.50 are shown in bold.
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The statistical significance analysis of IGCI Gaussian/
Entropy and IGCI Gaussian/Integral is described in detail
in the Additional file 1 in Figure S2 (for IGCI Gaussian/
Entropy) and Figure S4 (for IGCI Gaussian/Integral). In
summary, both methods achieve statistical significance of
causal orientations (at alpha = 0.05) in ECOLI and
YEAST, only IGCI Gaussian/Integral achieves signifi-
cance in RELA, and none of the two methods achieves
significance in NOTCH1. On the other hand, similarly to
results for the accuracy metric, both methods achieve sta-
tistically significant results in the joined NOTCH1 and
RELA gold standard with 2 transcription factors.

Sensitivity analysis to noise
The results of sensitivity analysis to noise for the two best
performing methods (IGCI Gaussian/Entropy and IGCI
Gaussian/Integral) are given in Figures 2, 3, 4, 5 for
NOTCH1, RELA, ECOLI, and YEAST gold standards,
respectively. In all gold standards except for YEAST, the
accuracy of the methods decreases with increasing noise
proportion. On the other hand, in YEAST gold standard
the performance of causal orientation methods signifi-
cantly increases when a small amount of noise is added,
and then gradually decreases for higher proportions of
noise. The Additional file 1 provides a detailed analysis of
this phenomenon.
Whereas in NOTCH1 and RELA gold standards it

takes only 5-10% of noise to make the results statistically
indistinguishable from orientation by chance, in YEAST
and ECOLI gold standards the methods can tolerate
much higher proportions of noise and still produce statis-
tically significant results. This can be attributed to a lar-
ger number of transcription factors in YEAST and
ECOLI gold standards, as well as larger sample sizes in

the corresponding datasets which both decrease the
variability of the results.
A decrease in performance upon the addition of noise

is theoretically expected since IGCI assumes a noise-free
model, and the addition of Gaussian noise violates its suf-
ficient assumptions. Also, as can be seen in the figures,
the IGCI Gaussian/Integral method has lower variance
than the IGCI Gaussian/Entropy method. The above
results are consistent with our prior findings and statisti-
cal significance testing by the exact test (see Figures
S1-S4 in the Additional file 1).

Sensitivity analysis to sample size
The results of sensitivity analysis to sample size for the
two best performing methods (IGCI Gaussian/Entropy
and IGCI Gaussian/Integral) are given in Figures 6, 7, 8, 9
for NOTCH1, RELA, ECOLI, and YEAST gold standards,
respectively. In all gold standards except for YEAST, the
accuracy of the methods decreases as the sample size gets
smaller. On the other hand, in YEAST gold standard the
performance of causal orientation methods slightly
increases by reducing the sample size and then gradually
decreases for smaller sample sizes. The Additional file 1
provides a detailed analysis of this phenomenon.
Whereas in NOTCH1 and RELA gold standards results

become statistically indistinguishable from orientation by
chance when the sample size is <80-100, in YEAST and
ECOLI gold standards the methods yield statistically sig-
nificant results for smaller sample sizes. This can be
attributed to a larger number of transcription factors in
YEAST and ECOLI gold standards which decreases varia-
bility of the results.
Also, as can be seen in the figures, the IGCI Gaussian/

Integral method has lower variance than the IGCI Gaus-
sian/Entropy method. The above results are consistent
with our prior findings in statistical significance testing by
the exact test (see Figures S1-S4 in the Additional file 1).

Ensemble causal orientation
For each gold standard, Table 9 compares the AUC
achieved by the best individual causal orientation method
to the AUC achieved by the ensemble method, which
combines the predictions of all 11 methods using a logis-
tic regression model. A detailed description of the
ensemble modeling methodology is given in the Methods
section. As can be seen, ensemble causal orientation
achieves higher values of AUC than any individual causal
orientation method in all four gold standards. It is worth-
while to highlight the magnitude of the improvement in
the YEAST gold standard: the ensemble approach
improves performance over the best individual causal
orientation method (IGCI Gaussian/Integral) by 0.164
AUC. Table 10 provides coefficients for the ensemble
logistic regression model in the YEAST gold standard.

Table 8 Ranks of causal orientation methods for each gold
standard

Method ECOLI YEAST NOTCH1 RELA

ANM - - - -

PNL - - 5 5

IGCI (Uniform/Entropy) 2 - 3 3

IGCI (Uniform/Integral) 3 - 4 4

IGCI (Gaussian/Entropy) 1 2 1 1

IGCI (Gaussian/Integral) 2 1 2 2

GPI-MML - - - -

ANM-MML - - - -

GPI 4 - 4 5

ANM-GAUSS - - 2 -

LINGAM - - - -

Ranks were computed only for the methods with AUCs greater than 0.50. The
lower the rank, the better the AUC of the causal orientation method for the
given gold standard. The computation of rank took into account statistical
variability, e.g. the AUCs of 0.724 and 0.713 obtained by the two IGCI
methods in the ECOLI gold standard are statistically indistinguishable; that is
why they have the same rank value.
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Figure 2 Sensitivity analysis to noise in NOTCH1 gold standard for the best two IGCI methods. Error bars denote 80% intervals of variation
that were empirically estimated in 100 datasets for each value of the noise proportion.

Figure 3 Sensitivity analysis to noise in RELA gold standard for the best two IGCI methods. Error bars denote 80% intervals of variation that
were empirically estimated in 100 datasets for each value of the noise proportion.
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Figure 4 Sensitivity analysis to noise in ECOLI gold standard for the best two IGCI methods. Error bars denote 80% intervals of variation that
were empirically estimated in 20 datasets for each value of the noise proportion.

Figure 5 Sensitivity analysis to noise in YEAST gold standard for the best two IGCI methods. Error bars denote 80% intervals of variation that
were empirically estimated in 20 datasets for each value of the noise proportion.
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Figure 6 Sensitivity analysis to sample size in NOTCH1 gold standard for the best two IGCI methods. Error bars denote 80% intervals of
variation that were empirically estimated in 100 sampled datasets of each sample size.

Figure 7 Sensitivity analysis to sample size in RELA gold standard for the best two IGCI methods. Error bars denote 80% intervals of
variation that were empirically estimated in 100 sampled datasets of each sample size.
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Figure 8 Sensitivity analysis to sample size in ECOLI gold standard for the best two IGCI methods. Error bars denote 80% intervals of
variation that were empirically estimated in 20 sampled datasets of each sample size.

Figure 9 Sensitivity analysis to sample size in YEAST gold standard for the best two IGCI methods. Error bars denote 80% intervals of
variation that were empirically estimated in 100 sampled datasets of each sample size.
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Bold values correspond to coefficients that are statisti-
cally significant at 0.05 alpha level. The model preserves
its performance (0.822 AUC) when it is trained/tested
using only the 5 causal orientation methods that have
statistically significant coefficients. Therefore the
improvement in AUC in the YEAST gold standard can
be attributed to effectively combining the IGCI and
ANM-MML causal orientation predictions by the logistic
regression ensemble model.
The above results were obtained by holdout validation

where we used different portions of the same gold stan-
dard for training and testing ensemble models. We also
experimented with training and testing ensemble models
on different gold standards. First we experimented with
the RELA and NOTCH1 gold standards that were
derived from the same organism and phenotype, and
thus are likely to be distributionally similar and support
cross-gold standard application of the ensemble model.
We find that an ensemble logistic regression model
trained on RELA obtains AUC = 0.996 when tested on
NOTCH1, and likewise an ensemble model trained on
NOTCH1 obtains AUC = 0.989 when tested on RELA.
Both these results significantly improve performance
over the best individual causal orientation method (IGCI

Gaussian/Entropy) in both NOTCH1 and RELA gold
standards (with p-values <0.0001).
In addition, we experimented with the YEAST and

ECOLI gold standards which originate from different
organisms and thus are unlikely to be distributionally
similar; for this reason they a priori question cross-gold
standard application of the ensemble model. Indeed, our
results confirm this expectation: an ensemble logistic
regression model trained on YEAST performs with AUC
= 0.4833 in ECOLI, and an ensemble model trained in
ECOLI performs with AUC = 0.5916 in YEAST. Neither
of these results improves the best individual causal orien-
tation method in the respective gold standard. This sug-
gests that the success of cross-gold standard application
of ensemble models is grounded on similarity of the
underlying distributions.

Discussion
This work represents the first comprehensive effort to
evaluate performance and furthermore enhance the
recently introduced causal orientation methods [13-18]
in genomics data. One of the main challenges is the lim-
ited availability of gold standards of causal molecular
interactions. That is why we have focused on regulatory
interactions between transcriptions factors and their tar-
get genes that have been recently identified on a gen-
ome-wide level in model organisms and human cell lines.
These interactions have a well-defined causal directional-
ity (from a transcription factor to its target gene) and can
be readily used for an evaluation study such as ours.
However, it is possible that some edges in the gold stan-
dards (especially, NOTCH1 and RELA) have causal rela-
tionships in both directions due to feedback mechanisms.
Since the signal in the direction from a transcription fac-
tor to its target gene is expected to be stronger than in
the opposite direction (due to attenuation in the signal
transduction pathways), we are implicitly assuming that
in such cases a causal orientation method would prefer
the direction from transcription factor to gene. If this
assumption is not true, this does not invalidate results of
the methods (because the direction from transcription
factor to gene is valid) but provides additional explana-
tions as to why some methods prefer the opposite causal
direction.

Table 9 Ensemble causal orientation results and comparison with the best performing individual causal orientation
methods

ECOLI YEAST NOTCH1 RELA

Best individual causal orientation method (AUC) 0.828 0.658 0.926 0.970

Ensemble method (AUC) 0.837 0.822 0.984 0.992

Improvement (AUC) 0.009 0.164 0.058 0.022

Statistical significance of improvement (p-value) 0.3407 <0.0001 0.0062 <0.0001

Bold p-values indicate a statistically significant performance improvement by using an ensemble causal orientation. The p-values were obtained from Delong’s
test for AUC comparison [45].

Table 10 Coefficients for the ensemble logistic regression
model trained in the YEAST gold standard

Method (feature in the logistic regression
model)

Beta P-value

ANM -1.20 0.291

PNL -0.27 0.750

IGCI (Uniform/Entropy) -128.03 <0.0001

IGCI (Uniform/Integral) 135.07 <0.0001

IGCI (Gaussian/Entropy) 99.20 <0.0001

IGCI (Gaussian/Integral) -106.45 <0.0001

GPI-MML 1.15 0.578

ANM-MML -9.87 0.017

GPI 1.45 0.298

ANM-GAUSS 0.40 0.808

LINGAM 0.11 0.963

Bold values correspond to coefficients that are statistically significant at 0.05
alpha level. We note that due to multicollinearity among the IGCI Uniform
methods and among the IGCI Gaussian methods, care must be taken when
interpreting the logistic regression coefficients [36].
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Even though the choice of the gold standard with tran-
scription factor-gene regulatory interactions enables this
study, its practical relevance may be limited in the organ-
isms/settings where all transcription factors have already
been identified. That is why we plan to work on extend-
ing this evaluation to other types of causal molecular
interactions, for example in cellular protein signaling
networks [39].
In this study we have implicitly assumed that unor-

iented edges (representing causal interactions between a
transcription factor and its target gene without specifying
which of the two genes is a transcription factor and
which is its regulatory target) are given by an Oracle and
we have evaluated performance of only causal orientation
methods. However, in practical tasks one typically has to
both discover and orient edges. Although we have pre-
viously evaluated methods for discovery of unoriented
edges [12], it will be interesting to assess the performance
of the two classes of methods (for edge discovery and for
its orientation) when they are applied together.
Finally, we think that a fruitful area of research will be

to extend this study by comparison with classical causal
orientation techniques that output Markov equivalence
classes of graphs (based on v-structures with constraint
propagation) and thus, in general, can orient only a sub-
set of edges in the graph [1].

Conclusions
In this paper we have taken a first step toward practical
use of recent causal orientation techniques in the geno-
mics domain. First of all, we report results of an extensive
study of causal orientation methods in genomics data
that utilized 12 methods/variants to distinguish cause
(transcription factor) from effect (target gene) in 5,739
causal interactions. We have found that IGCI Gaussian
methods [16,17] often accurately infer directionality of
the causal interaction, and they outperform other causal
orientation techniques. In addition, we have performed
sensitivity analyses that allow us to empirically establish
the minimal requirements for the sample size and maxi-
mal level of noise that can be tolerated by the best per-
forming causal orientation techniques. Second, we
described a novel ensemble technique for causal orienta-
tion that combines decisions of individual causal orienta-
tion methods to provide a more powerful predictor of
causal directionality. The proposed ensemble method
was found to be more accurate than any best individual
causal orientation method in the tested data. In sum-
mary, our results suggest that causal orientation methods
have significant potential to facilitate reconstruction
of molecular pathways by minimizing the number of
required randomized experiments to find causal direc-
tionality and by avoiding experiments that are infeasible
and/or unethical.

Additional material

Additional file 1: This file contains (1) brief description of causal
orientation algorithms; (2) results of causal orientation methods
ANM, PNL, and GPI obtained by assessing statistical significance of
the forward and backward causal models; (3) detailed results of
significance testing of IGCI Gaussian/Entropy and Gaussian/Integral
methods; (4) explanation of performance increase due to adding
small amount of noise or reducing the sample size in YEAST gold
standard.
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