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Abstract

Background: DNA methylation is an important epigenetic mark and dysregulation of DNA methylation is
associated with many diseases including cancer. Advances in next-generation sequencing now allow unbiased
methylome profiling of entire patient cohorts, greatly facilitating biomarker discovery and presenting new
opportunities to understand the biological mechanisms by which changes in methylation contribute to disease.
Enrichment-based sequencing assays such as MethylCap-seq are a cost effective solution for genome-wide
determination of methylation status, but the technical reliability of methylation reconstruction from raw
sequencing data has not been well characterized.

Methods: We analyze three MethylCap-seq data sets and perform two different analyses to assess data quality.
First, we investigate how data quality is affected by excluding samples that do not meet quality control cutoff
requirements. Second, we consider the effect of additional reads on enrichment score, saturation, and coverage.
Lastly, we verify a method for the determination of the global amount of methylation from MethylCap-seq data by
comparing to a spiked-in control DNA of known methylation status.

Results: We show that rejection of samples based on our quality control parameters leads to a significant
improvement of methylation calling. Additional reads beyond ~13 million unique aligned reads improved
coverage, modestly improved saturation, and did not impact enrichment score. Lastly, we find that a global
methylation indicator calculated from MethylCap-seq data correlates well with the global methylation level of a
sample as obtained from a spike-in DNA of known methylation level.

Conclusions: We show that with appropriate quality control MethylCap-seq is a reliable tool, suitable for cohorts
of hundreds of patients, that provides reproducible methylation information on a feature by feature basis as well as
information about the global level of methylation.
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Background

The promise of personalized medicine is that each
patient receives customized treatment from a broad base
of options rather than a single, generalized standard of
care treatment [1]. This is especially important in cancer
where each patient’s cancer could be viewed as a separate
disease caused by a unique set of aberrations. The rapidly
decreasing cost of Next Generation Sequencing (NGS) is
rendering this personalized approach a reality. For dis-
eases with relatively high treatment costs, such as cancer,
it is now economically viable to obtain whole genome
sequencing data for the affected individual as part of the
treatment regimen, and with further decreases in cost
more and more diseases will follow suit.

However, the genomic sequence of malignant cells only
partially captures the abnormalities that lead to malig-
nancy. Other factors such as gene expression levels and
epigenetic signals have to be taken into account when
characterizing a specific cancer and deciding on an indivi-
dual’s treatment regimen. One prominent epigenetic signal
for which a dysregulation in various types of cancer is
already well established [2] is the addition of methyl
groups at the 5" carbon of cytosine nucleotides [3,4].

There are several different methods to obtain genome-
wide methylation information using NGS. The most reli-
able method is bisulfite conversion, where the genomic
DNA is treated with sodium bisulfite to convert
unmethylated cytosines into uracils and subsequently
thymines upon PCR amplification [5]. Sequencing of the
converted DNA immediately reveals the degree of methy-
lation at any genomic cytosine by counting the number
of observed cytosines vs. thymines; however complete
methylome profiling using this method requires sequen-
cing depths far beyond what is feasible today on the scale
of larger patient cohorts. The sequencing depth require-
ments can be significantly alleviated by focusing coverage
in CpG-rich genomic regions (e.g., using reduced repre-
sentation bisulfite sequencing [6]), but this comes at the
expense of greatly diminished genomic-wide coverage.
The method used in our lab, MethylCap-seq [7], instead
uses the methyl-binding domain of human MBD2 in
order to enrich fragmented genomic DNA based on
methylation content. Sequencing the fragments bound to
the MBD2 domain provides a genome-wide view of
methylation patterns at reasonable sequencing depths.

While the cost aspect of MethylCap-seq is attractive, it
has two limitations. First, resolution is at the level of the
DNA fragment size, i.e., about 150bp, rather than at the
level of the individual CpG. This is not that problematic as
long as one is only interested in characterizing the methy-
lation status of extended genomic regions such as CpG
islands, promoters, non-coding RNAs, or gene bodies.
Second, the number of reads covering a genomic region is
only a relative indicator of the amount of methylation in
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this region, relative to the sample genome as a whole, and
thus data normalization is required to compare methyla-
tion between samples. This somewhat indirect nature of
methylation status determination makes this method
prone to data quality issues stemming from poorly pre-
pared libraries. Also, somewhat paradoxically, one of the
first parameters one might be interested in knowing,
namely the degree of overall methylation of the sample,
cannot be directly extracted from the data since relative
methylation is encoded in the relative number of reads
covering different genomic regions, yet the total number
of reads is fixed by the sequencing itself rather than by the
actual level of overall methylation in the sample. Here, we
first perform a systematic study of the influence of sample
quality and the contribution of additional reads (beyond
~13 million unique aligned reads) in MethylCap-seq data.
Then, we show experimental evidence that a computa-
tional approach for determining overall methylation levels
from MethylCap-seq data we recently suggested [8]
approximates actual overall methylation levels. These stu-
dies underpin the usability of MethylCap-seq as a reliable
method to obtain genome-wide methylation information
at reasonable cost.

Methods

Patient samples

Tissue samples from an endometrial cohort including
tumors from 89 endometrial patients and 12 nonmalig-
nant endometrial samples were obtained from Washing-
ton University. All studies involving human endometrial
cancer samples were approved by the Human Studies
Committee at the Washington University and at The Ohio
State University.

A subset of 7 ovarian cancer samples from a larger
cohort was obtained from TriService General Hospital,
Taipei, Taiwan. All studies involving human ovarian can-
cer samples were approved by the Institutional Review
Boards of TriService General Hospital and National
Defense Medical Center.

A subset of 14 bone marrow samples from a single-cen-
ter Phase II trial of patients with acute myeloid leukemia
(AML) at The Ohio State University was obtained for this
investigation. The study design and the results of the trial
for the entire cohort of patients have been reported
elsewhere [9]. All studies involving these samples were
approved by The Ohio State University Human Studies
Committee.

Methylated-DNA capture (MethylCap-seq)

Enrichment of methylated DNA was performed with the
Methyl Miner kit (Invitrogen) according to the manufac-
turer’s protocol as previously described [10]. Briefly, one
microgram of sonicated DNA was incubated at room
temperature on a rotator mixer in a solution containing
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3.5 micrograms of MBD-Biotin Protein coupled to M-280
Streptavidin Dynabeads. Non-captured DNA was removed
by collecting beads with bound methylated DNA on a
magnetic stand and washing three times with Bind/Wash
Buffer. Enriched, methylated DNA was eluted from the
bead complex with 1M NaCl and purified by ethanol pre-
cipitation. Library generation and 36-bp single-ended
sequencing were performed on the Illumina Genome
Analyzer IIx according to the manufacturer’s standard
protocol.

MethylCap-seq experimental quality control and
exclusion criteria

The automated quality control (QC) module was imple-
mented as previously described [10]. Pre-aligned sorted.txt
files from the Illumina CASAVA 1.7 pipeline were utilized
in the interest of quick turnaround for our users. In brief,
duplicate alignments were removed from the aligned
sequencing file (a correction for potential PCR artefacts),
and the resulting output was loaded into an R workspace.
MEDIPS [11] was utilized to perform CpG enrichment,
saturation, and CpG coverage analyses.

Sequencing lanes were identified for exclusion using the
following thresholds: CpG enrichment < 1.4, saturation
< 0.5, CpG 5x coverage < 0.05. These criteria and corre-
sponding thresholds were chosen based on their technical
relevance and ability to stratify datasets with known tech-
nical issues without a salient bias towards biological
groups. Samples were excluded if any of the thresholds
were not met. As CpG coverage was assessed qualitatively
for analysis of the Endometrial dataset, five lanes of data
with borderline 5x CpG coverage were not excluded that
would have qualified for exclusion due to this criterion.

For the DMR comparison (Table 1), methylation signal
was normalized for each lane and then averaged among
replicate lanes for each sample. The “All” group thus
contains samples with merged QC pass lanes, samples
with merged QC fail lanes, and samples with merged
QC pass and QC fail lanes.

For the reproducibility comparison (Additional file 1),
Pearson r was calculated using 2 replicate lanes corre-
sponding to each sample represented in the QC pass and
QC fail groups. In the case that a sample had more than
two replicate lanes in a single group, two lanes were ran-
domly chosen for the analysis. Samples lacking two

Table 1 Differentially methylated regions, endometrial
tumors vs. nonmalignant endometrial tissue

Genomic feature All samples Samples passing QC only
CpG islands 4717 7541
Promoter- associated 3806 3980
CpG shores 7515 15371
Promoters 314 6803

Page 3 of 8

replicate lanes in either the QC pass or QC fail group
were excluded from this analysis. Lanes corresponding to
the same sample but generated using different library
preparations were also excluded.

We routinely provide sequencing and QC summaries for
our users, and the summaries corresponding to the
datasets referenced in this manuscript can be viewed in
Additional files 2, 3, and 4.

Standard sequence file processing and alignment
Sequence files were processed and aligned as previously
described [10]. Briefly, QSEQ files from the Illumina
CASAVA1.7 pipeline were converted to FASTA format,
duplicate reads removed (to control for PCR bias), and
then uniquely aligned with Bowtie to generate SAM files
using the following options: -f -t -p 1 -n 3 -132 -k 1 -m
1-S -y —chunkmbs 1024 -max -best [12]. Duplicate align-
ments (reads aligning to the same genomic position) were
removed using SAMtools [13].

Standard global methylation analysis workflow

Aligned sequence files in SAM format were analyzed using
our custom analysis workflow as previously described [10].
Briefly, aligned reads were extended to the average frag-
ment length (as determined by BioAnalyzer fragment
analysis) and counted in 500 bp bins genome-wide. The
resulting count distribution was normalized against the
total aligned reads by conversion to reads per million
(RPM). These normalized genome-wide count files were
then interrogated by genomic feature (e.g., CpG islands,
CpG shores, promoters). Differentially methylated regions
were identified by summing RPM across the bins for each
locus in the genomic feature, then performing a Wilcoxon
rank sum test to assess differences in these summed
RPMs between sample groups. Results were then adjusted
for multiple comparisons by setting a false discovery rate
(FDR) cutoff of 0.05.

Calculation of noise in methylation signal

Noise in methylation signal, representing extended reads
falling in regions without CG dinucleotides, was quanti-
fied as the summation of reads falling into bins with zero
CpG content. In the case that a sample in a given group
had multiple lanes of data, noise was computed for each
lane individually and averaged among replicate lanes in
the group. As a single sample could have a lane that
passed QC and a lane that failed QC, the number of sam-
ples in each group does not sum to the total number of
samples in the study.

Calculation of the Global Methylation Indicator

To assess genome-wide changes in methylation patterns
for each sample across a given experiment, a custom
parameter termed the global methylation indicator
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(GMI) was calculated as previously described [8]. Briefly,
normalized read counts (in RPM) were classified by CpG
density and averaged to construct a methylation distribu-
tion. The average RPM were then summed across the
distribution (i.e., the estimated area under the methyla-
tion distribution curve) to yield the GMI.

Assessment of methylated fragment enrichment using an
in vitro methylated construct

Experimental procedure

The 5.3 kb plasmid vector pIRES2-EGFP, which contains
three CpG islands, was chosen to empirically assess
methylated fragment enrichment. The construct was line-
arized with Nhe I and then in vitro methylated with
M.Sssl. The methylated spike-in DNA was quantified by
Qubit high sensitivity assay and diluted. Plasmid was
spiked into genomic DNA at a concentration of 1.5 pg
plasmid/1 pg genomic DNA (~2.5 plasmid copies per cell)
prior to sonication of genomic DNA for library generation.
Analysis

Reads mapping to the construct were identified by
converting QSEQ files to FASTA format as described
above, then aligning the files with Bowtie using the fol-
lowing options: -q -t -p 1 -n 3 -1 32 -k 1 -S —chunkmbs
1024 —max —best. Duplicate reads were retained for this
analysis. To control for variation in construct aligned
read counts that might be attributable to fluctuations in
lane yield, construct aligned read counts were normal-
ized against the total raw read counts by conversion to
reads per million (RPM).

Results and discussion

Quality control exclusion criteria reduce noise in
methylation signal and improve analytical power

Our automated quality control (QC) module, which is
based on MEDIPS [11], was implemented to identify tech-
nical problems in the sequencing data and flag potentially
spurious samples. One goal of the QC module was to pro-
vide rapid feedback to investigators regarding dataset qual-
ity, facilitating protocol optimization prior to committing
resources to a larger scale sequencing project. A second
goal was to identify samples that should be excluded from
analyses due to data validity concerns. The validity of a
MethylCap-seq experiment is dependent on enrichment of
methylated fragments prior to sequencing. A failure in
enrichment invalidates any downstream data, and therefore
identifying such failures is vital. Also important is verifying
the statistical reproducibility of the data for each sample.
As it is often not cost-effective to generate replicate sequen-
cing lanes for each sample to assess experimental reprodu-
cibility empirically, addressing this issue computationally is
desirable. Similarly, the confidence in methylation calls is
related to the breadth and strength of signal at the CpGs
in the genome. We assessed enrichment of methylated
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fragments using the CpG enrichment parameter, which
compares the frequency of CpGs in the sequenced sample
with the frequency of CpGs in the reference genome.
Statistical reproducibility was assessed by calculation of
saturation, the Pearson correlation of two random parti-
tions of the sequenced sample [11]. Breadth and strength of
methylation signal was assessed using 5X CpG coverage,
which represents the fraction of CpG loci that have five or
more reads in the sample compared to the total number of
CpGs in the reference genome. These QC parameters were
calculated for each sample using MEDIPS [11].

Additional file 2 demonstrates the results of the QC
module for the Endometrial dataset. 203 lanes of sequen-
cing data were generated for 101 unique samples. 43 lanes
failed QC, representing 21 unique samples. To assess how
lanes that pass QC might differ from lanes that failed QC,
we computed the noise in methylation signal, representing
percentage of uniquely aligned extended reads falling in
500 bp bins without CpG dinucleotides (Figure 1). Median
noise in samples that failed QC (6.40%) was more than
3-fold greater than in samples that did not fail QC (2.04%,
p < 0.001), and closely resembled noise in input (7.82%).
Excluding QC failed lanes did not significantly decrease
median noise levels (2.04 vs. 2.22, p = 0.08), but did greatly
decrease the variation in noise levels between samples. As
the distribution of noise levels is positively skewed and not
normal, a small number of outliers would not be expected
to significantly shift the median noise level. To investigate
whether the additional noise seen in QC failed samples
impacted sequencing reproducibility, we computed the
Pearson correlation between replicate lanes of samples
that passed QC vs. failed QC (Additional file 1). Replicates
of samples that passed QC correlated much more highly
than replicates of samples that failed QC (average r = 0.90
vs. 0.59; p < 0.001). Variation in replicate correlation
between samples was also noticeably less in the QC pass
group (relative standard deviation = 6.7% vs. 27.1%). We
surmise that failures in methylation enrichment result in a
more random sampling of the fragment distribution
regardless of methylation status, resulting in increased sig-
nal in regions where methylation should not be detectable.

As the goal of many methylome profiling studies is to
identify differentially methylated regions (DMRs)
between biological groups, we next assessed whether
our QC exclusion criteria might improve our analytical
power to detect DMRs. We compared DMRs between
89 endometrial tumors and 12 nonmalignant endome-
trial tissue samples across several genomic features.
Excluding sequencing lanes that failed QC (correspond-
ing to 19 tumor and 2 nonmalignant samples) resulted
in more DMRs in every genomic feature assessed
(Table 1). The greatest gains were seen in promoters
and CpG shores, where the number of DMRs increased
22-fold and 2-fold, respectively, while gains in CpG
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Figure 1 QC exclusion criteria reduce noise in methylation signal. The percentage of uniquely aligned reads falling in 500 bp bins
containing no CpG dinucleotides pre- and post-QC analysis are plotted as a standard boxplot for samples prior to QC filtering, samples that
passed QC, and samples that did not pass QC. An input from a sample that was not subjected to methylation capture is included for reference.
The number of samples in each group is included above the baseline. Values for replicate lanes in each group were averaged, and samples were
statistically compared using a Wilcoxon rank-sum test. Whiskers indicate 10" and 90™ percentiles. 13.5% of 500 bp bins in the genome are
classified as CpG barren.

islands and promoter-associated CpG islands were more
modest (1.6-fold and 1.05-fold). These results appear to
trend inversely with CpG density, possibly reflecting
greater benefit from QC exclusion in regions where cov-
erage is lower. We speculate that the improvements in
DMR detection resulting from exclusion of samples that
fail QC would be even greater when working with smal-
ler sample sizes or biological groups with more similar
methylation patterns.

The effect of additional sequencing lanes on quality
control metrics

As a sequencing core, we are frequently asked whether
additional lanes of sequencing data are necessary or desir-
able for MethylCap-seq experiments. To address this issue,
we analyzed a large dataset of ovarian tumors, of which
7 samples had been resequenced (using the same genomic
library), for a total of 15 lanes (Additional file 3). Before
comparing the effect of additional lanes, the degree of cor-
relation between the replicate lanes was analyzed to ensure
that additional lanes of data would not introduce excessive
variation. As shown in Figure 2, replicate lanes from
sequencing the same library twice correlated highly (R?
value of 0.98; note, that we here specifically address the
question of the value of additional sequencing lanes and
not of additional technical or biological replicates - the
correlation between technical or biological replicates

would be expected to be much lower than the correlation
between two lanes sequencing the same library shown
here). CpG enrichment, saturation, and 5X coverage were
then evaluated for individual lanes and combined lanes
(Figure 3). CpG enrichment varied somewhat between
samples (range: 2.33-3.02), but was extremely similar for
replicate lanes ( < 1% percent deviation from the combined
lane on average). Saturation improved modestly from a
median of 0.79 to a median of 0.86. As saturation values
for individual lanes of MethylCap-seq data typically range
from 0.6 to 0.85 for single lanes in our hands, and we con-
sider a saturation value of 0.6 acceptable for analysis, this
improvement may be inconsequential although it is statisti-
cally significant. 5X coverage improved noticeably from a
median of 0.21 to a median of 0.28, representing an aver-
age 38% gain. As 5X coverage represents a minimum signal
level needed to reliably differentiate a methylated locus
from a locus with no methylation (or the absence of a
methylation signal), we speculate that this increase could
significantly increase the statistical power to detect DMRs,
particularly in small or lightly methylated regions.

Global methylation indicator correlates inversely with an
in vitro methylated indicator sequence

We recently proposed a computational method to compare
genome-wide changes in methylation patterns between
samples in a given experiment [8]). As MethylCap-seq
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signal (in reads) is normalized by total aligned read counts
to adjust for variability in lane yield, two samples with iden-
tically distributed methylation yet different absolute levels
of methylation would be expected to yield identical nor-
malized methylation signals at any given loci. The GMI
method relies on the observation that in vitro methylated
samples display characteristic changes in the methylation
signal distribution as quantified in a MethylCap-seq experi-
ment, and these changes are CpG density dependent.
Methylation signal shifts from low CpG content regions to
high CpG content regions, and this can be quantified by
calculating the area under the curve of the average normal-
ized methylation signal plotted across CpG density. The
GMI calculation is a potentially powerful tool for capturing
changes in global methylation between samples.

In an effort to validate the GMI as a surrogate for glo-
bal methylation, we developed a complementary analysis
utilizing an in vitro methylated construct. This methy-
lated construct was spiked-in to the genomic DNA in the
AML samples prior to sonication at a defined concentra-
tion and subjected to methylated enrichment along with
the genomic DNA. The spike-in was originally intended
to verify successful enrichment; if enrichment occurred,
PCR for the methylated plasmid would show increased
copy number after enrichment. However, this spike-in is
also a way to determine global methylation levels since
the methylated plasmid competes with the natively

Page 7 of 8

methylated genomic DNA fragments for binding to the
MBD protein. When the proportion of methylated to
unmethylated genomic fragments is high prior to enrich-
ment, the methylated plasmid gets enriched relatively
less, and vice versa. Indeed, we found that read counts
aligned to the plasmid correlate inversely with GMI
(Figure 4, Additional file 4). This result provides empiri-
cal evidence that GMI can capture changes in absolute
global methylation levels for MethylCap-seq experiments.
Such a metric might be useful for gauging response to
treatments that are known or expected to globally alter
the methylome.

Conclusions

We show that post-sequencing QC metrics can be used
to exclude poor quality samples from analysis, resulting
in decreased noise in methylation signal and improved
power to detect DMRs. Furthermore, we show that rese-
quenced lanes from the same library correlate very well,
and that additional lanes of data have a small impact on
saturation (data reproducibility) and a large impact on
5X CpG coverage (confidence in methylation calls at a
given locus). Finally, we demonstrate that our computa-
tional indicator of global methylation correlates with an
unrelated method that utilizes spike-in of DNA with
known methylation status. These findings verify that with
appropriate quality control MethylCap-seq is a reliable
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tool that provides reproducible relative methylation
information on a feature by feature basis, provides infor-
mation about the global level of methylation, and can be
applied to entire patient cohorts of hundreds of patients.

Additional material

Additional file 1: Replicate lane correlation, endometrial QC passed
vs. QC failed samples. A table showing Pearson correlation of replicate
lanes for samples that passed QC vs. failed QC. Data is presented both as
a group summary and for individual samples.

Additional file 2: QC table for endometrial cancer study. A listing of
CpG enrichment, saturation, 5x coverage, and read information for each
sample lane in the endometrial dataset.

Additional file 3: QC table for ovarian study. A listing of CpG
enrichment, saturation, 5x coverage, and read information for each
sample lane in the ovarian dataset.

Additional file 4: QC, GMI, plasmid RPM table for AML study. A
listing of CpG enrichment, saturation, 5x coverage, read information,
global methylation indicator, and plasmid reads per million for each
sample lane in the AML dataset.

List of abbreviations used

NGS: Next-generation sequencing; AML: acute myeloid leukemia; QC: quality
control; RPM: reads per million; FDR: false discovery rate; GMI: global
methylation indicator; DMR: differentially methylated region.
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