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Abstract

Background: RNA sequencing (RNA-seq) has become a major tool for biomedical research. A key step in analyzing
RNA-seq data is to infer the origin of short reads in the source genome, and for this purpose, many read
alignment/mapping software programs have been developed. Usually, the majority of mappable reads can be
mapped to one unambiguous genomic location, and these reads are called unique reads. However, a considerable
proportion of mappable reads can be aligned to more than one genomic location with the same or similar
fidelities, and they are called “multireads”. Allocating these multireads is challenging but critical for interpreting
RNA-seq data. We recently developed a Bayesian stochastic model that allocates multireads more accurately than
alternative methods (Ji et al. Biometrics 2011).

Results: In order to serve a greater biological community, we have implemented this method in a stand-alone,
efficient, and user-friendly software package, BM-Map. BM-Map takes SAM (Sequence Alignment/Map), the most
popular read alignment format, as the standard input; then based on the Bayesian model, it calculates mapping
probabilities of multireads for competing genomic loci; and BM-Map generates the output by adding mapping
probabilities to the original SAM file so that users can easily perform downstream analyses. The program is
available in three common operating systems, Linux, Mac and PC. Moreover, we have built a dedicated website,
http://bioinformatics.mdanderson.org/main/BM-Map, which includes free downloads, detailed tutorials and
illustration examples.

Conclusions: We have developed a stand-alone, efficient, and user-friendly software package for accurately
allocating multireads, which is an important addition to our previous methodology paper. We believe that this
bioinformatics tool will greatly help RNA-seq and related applications reach their full potential in life science
research.

Background
In recent years RNA-seq has become a popular and
powerful approach for transcriptome profiling [1,2].
Using this approach, millions of short reads are gener-
ated from RNA samples by next-generation platforms
such as Illumina Solexa and ABI SOLiD. Due to such

sequence-based “digital output”, RNA-seq not only
allows a more accurate quantification of gene expression
than conventional microarrays [2-4], but also is able to
characterize other aspects of transcriptome such as
alternative splicing [5,6], gene fusion [7], RNA editing
[8] and expressed alleles [9,10].
A key step in the analysis of RNA-seq data is read map-

ping, the goal of which is to infer the origin of short reads
in the source genome. For this purpose, many software
programs have been developed such as Bowtie [11],
BFAST [12] and MAQ [13]. These programs align each

* Correspondence: yji@northshore.org; hliang1@mdanderson.org
2Department of Bioinformatics and Computational Biology, The University of
Texas MD Anderson Cancer Center, Houston, TX 77030, USA
5Department of Biostatistics, The University of Texas MD Anderson Cancer
Center, Houston, TX 77030, USA
Full list of author information is available at the end of the article

Yuan et al. BMC Genomics 2012, 13(Suppl 8):S9
http://www.biomedcentral.com/1471-2164/13/S8/S9

© 2012 Yuan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://bioinformatics.mdanderson.org/main/BM-Map
mailto:yji@northshore.org
mailto:hliang1@mdanderson.org
http://creativecommons.org/licenses/by/2.0


read independently to a reference genome based on
sequence similarity. As a result, the majority of mappable
reads (e.g., 70~80%) are mapped to one unambiguous
genomic location, and these reads are called “unique
reads”. On the other hand, a considerable proportion of
mappable reads can be aligned to more than one geno-
mic location with the same or similar fidelities, and they
are called “multireads”. Currently, a common practice in
the community is to use unique reads only for down-
stream analysis. This practice not only discards poten-
tially useful information, but also introduces an
underestimation bias for quantifying expression of genes
with highly redundant sequences (e.g., young duplicated
genes).
Therefore, we consider allocating multireads is a critical

issue in the RNA-seq analysis, which has received rela-
tively little attention in literature. One pioneering and
influential method is “the proportional method” developed
by Mortazavi et al. (2008) [14] in which unique reads are
first mapped, and then multireads are allocated to compet-
ing locations in proportion to the numbers of mapped
unique reads associated with the locations. The key idea of
the proportional method is to borrow the information
from unique reads in the dataset to guide the allocation of
multireads. Motivated by such an idea, we recently pro-
posed a Bayesian stochastic model for allocating multi-
reads, which takes full advantage of information stored in
the mapped unique reads [15]. The simulation results
show that our method has better performance than other
allocating methods [15]. In order to serve a greater biolo-
gical community, we have implemented this method in a
stand-alone, efficient and user-friendly software package,
“BM-Map”, which may help RNA-seq and related applica-
tions reach their full potential in life science research.

Implementation
Overview of the BM-Map algorithm
Figure 1 shows where our BM-Map program stands in the
pipeline of RNA-seq data analysis. RNA-seq short reads
are first mapped to the reference genome, and based on
the sequence alignments, mappable reads are classified
into unique reads and multireads (for pair-end reads, the
read pairs can be classified into uniquely mapped pairs
and those mapped to multiple loci). Then, our BM-Map
program refines the mapping of multireads by computing
their assignment probabilities to competing loci.
The details about the underlying probability model and

algorithm are depicted in our previous study [15], and here
we provide a quick review. Suppose a multiread can be
aligned to several genomic locations with the same or simi-
lar mismatch numbers, and each competing location is
associated with a set of unique reads (these unique reads
usually partially overlap with a competing location). Given
the observed data, our BM-Map method computes a

“posterior” probability for mapping the multiread to each
competing location. According to Bayes’ rule, the posterior
distribution can be computed in terms of two quantities: (i)
the probability of observing the mismatching pattern of the
multiread if it is generated from a specific genomic loca-
tion, referred to as the “likelihood” of the data; and (ii) an
expectation about the distribution of the multiread before
observation of data, referred to as the “prior” distribution.
In our model, the likelihood can be calculated based on

the probability of mismatch at each nucleotide position
of the multiread (q). We assume that the observed mis-
matches (e for multiread and g for unique reads) come
from two resources. The first one is sequencing error (a),
and we estimate quality-score specific error rate by con-
sidering all the unique reads in the dataset. The second
source is called hidden nucleotide variations (b), which is
mainly due to that RNA-seq reads are typically mapped
to a public reference genome rather than the actual sam-
ple genome. Hence, variations between the two genome
versions (e.g., SNPs) may cause some observed mis-
matches between the reads and the reference genome.
Given the unique reads associated with a competing loca-
tion, we model the uncertainty of hidden nucleotide var-
iations using Markov chain Monte Carlo (MCMC)
simulations. The prior distribution of reads mapping (Z)
is set in proportion to the numbers of unique reads asso-
ciated with competing loci, which essentially follows the
main idea in Mortazavi et al. (2008) [14]. Figure 2 sum-
marizes the relationships among parameters and data in
our model.
Software implementation
Because the amount of RNA-seq data is large and our
Bayesian method relies on extensive numerical computa-
tions for statistical inference, we implemented our method
in a C++ programming written software package. To
reduce the computer memory requirement for the calcula-
tions, we carefully examined the aligned data to minimize
the size of the data structures that were held in memory
simultaneously. To reduce lengthy execution times, we
optimized the search algorithms used to process the reads.
Finally, we achieved a further reduction in wall-clock run-
time by running the calculations on multiple parallel
threads of execution utilizing the capabilities typical of a
modern desktop computer (i.e., Intel multi-core CPU).
Currently, for an RNA-seq dataset with 8 million post-
aligned short reads, our BM-Map program takes 3~4
hours to complete allocating the multireads in a single
Windows 64-bit desktop machine (Intel Core i7@2.93
GHz, 16 GB memory), which is generally comparable to
the computing time of mapping short reads by other
methods.
We have made BM-Map a user-friendly software pack-

age. BM-Map takes SAM format (Sequence Alignment/
Map) [16], the most popular read alignment format, as
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the standard input. Then based on the Bayesian model
with parameters defined in a simple configuration file,
BM-Map calculates mapping probabilities of multireads
for competing genomic loci; and it generates the output
in a SAM-like format by adding mapping probabilities
to the original input file. The mapping probabilities
can be easily parsed and used as weights in downstream
analyses. Users can run BM-Map through a graphical
user interface (as shown in Figure 3) or command lines
(which is convenient for processing a large number of
input files). We have provided the stand-alone executa-
bles for three common operating platforms (Linux, Mac

and PC) at http://bioinformatics.mdanderson.org/main/
BM-Map. The website also contains detailed tutorials
and references about the BM-Map software.

Results and discussion
Based on a Bayesian stochastic model we previously pro-
posed, we have developed an efficient and user-friendly
software package for allocating RNA-seq multireads,
which takes full advantage of the information stored in the
unique reads, including sequencing error profiles, the like-
lihood of hidden nucleotide variations (e.g., SNPs), and the
expression level of competing locations. After reads are

Figure 1 The analytic pipeline of RNA-seq data with an additional refinement step on allocating multireads.

Figure 2 The graphic model summarizing the parameters and data in our BM-Map algorithm. In the model, e and g are the observed
data, representing the mismatch patterns of multiread and related unique reads, respectively; a is sequencing error rate by considering all the
unique reads in the dataset; b is the probability of mismatch due to hidden nucleotide variations; q is the probability of mismatch based on a
and b; and Z is the prior distribution of reads mapping, which is set in proportion to the numbers of unique reads associated with competing
loci.
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aligned by a general aligner, a mapping refinement step on
multireads using our program would further improve the
accuracy of gene expression quantification.
Obviously, the effect of allocating multireads on gene

expression is related to next-generation sequencing
techniques. With the increase of read length, whether to
include multireads in expression quantification would
become less important. Nevertheless, through our analy-
sis on RNA-seq datasets with different read lengths
(from 36~76 nt), the effect of multireads on certain
genes (e.g., young duplicated genes) appear to be non-
negligible given current sequencing technologies (addi-
tional file 1). Moreover, among the leading sequencing
platforms, the read length of ABI SOLiD has been stable
at 50 nt for some time. Finally, there are huge amounts
of earlier generated RNA-seq reads in the public
domain, and our program may be a key tool for data
mining on such data.

The value of allocating multireads using BM-Map also
depends on the organisms and genes of interest. Our
program would have a relatively large effect for (i)
organisms underwent several rounds of whole-genome
duplications such as plants [17], (ii) genes with closely
related paralogs or with recent pseudo-genes and (iii)
transposon-derived transcripts [18]. Moreover, since our
BM-Map considers the uncertainty due to hidden
nucleotide variations, it could be more useful for the
species with a high polymorphism rate. This is particu-
larly true when the original genome under survey is not
available and that of a closely related species is used as
surrogacy for read mapping. In addition, our BM-Map
will be highly valuable for other RNA-seq related appli-
cations, such as RNA immunoprecipitation sequencing
(RIP-seq), cross-linking immunoprecipitation sequencing
(CLIP-seq) [19] and 3’-end sequencing (3-seq) [20]. In
future, we will further speed up our BM-Map algorithm

Figure 3 The graphic user interface of BM-Map.
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and make the software more convenient for processing
pair-end reads.

Conclusions
We have developed a stand-alone and user-friendly soft-
ware package, BM-Map, which can accurately allocating a
large amount of RNA-seq multireads in an efficient way.
We expect that this useful bioinformatics tool would help
RNA-seq and its related applications reach their full
potential in life sciences and biomedical research.

Availability and requirements
• Project name: BM-Map
• Project home page: http://bioinformatics.mdan-
derson.org/main/BM-Map
• Operating system(s): Linux, Mac and PC
• Programming language: C++
• Other requirements: No
• License: No
• Any restrictions to use by non-academics: No

Additional material

Additional file 1: Effect of multireads on the expression
quantification of different gene groups.
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sequencing; CLIP-seq: cross-linking immunoprecipitation sequencing; 3-seq:
3’-end sequencing.
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