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Abstract

patients.

Background: Identifying similarities and differences in the molecular constitutions of various types of cancer is one
of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions,
including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to
decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover
heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is
to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying
molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to

Results: In this study, we describe a novel method to discern molecular interactions specific to certain molecular
contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify
cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share
coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel
formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions
observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions.
When compared to an existing approach, the proposed method was much more sensitive in identifying
condition-specific interactions even in heterogeneous data set. The results also revealed that network components
specific to different types of cancer are related to different biological functions than cancer-generic network
components. We found not only the results that are consistent with previous studies, but also new hypotheses on the
biological mechanisms specific to certain cancer types that warrant further investigations.

Conclusions: The analysis on the contextual gene sets and characterization of networks of interaction composed of
these sets discovered distinct functional differences underlying various types of cancer. The results show that our
method successfully reveals many subtype-specific regions in the identified maps of biological contexts, which well
represent biological functions that can be connected to specific subtypes.

Keywords: Molecular context, Cancer, Condition-specificity, Gene regulatory network, Glioblastoma

Background

Many computational and mathematical techniques have
been developed to infer molecular patterns of biological
and translational interest from gene expression data pro-
filed from human tumors. As most of these methodologies
are highly dependent on simple correlation of changes in
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mRNA abundance as the primary measure of relatedness,
they are intrinsically limited in their sensitivity and speci-
ficity by the highly heterogeneous, idiosyncratic nature of
tumor gene expression patterns. Early expectations were
that the molecular pathology of tumors arising from a
particular tissue of origin would show striking similarities
due to very common sets of oncogenic molecular pro-
cesses accounting for each such tumor type’s initiation
and progression. The finding that samples of tumors taken
at different points in the course of an individual’s disease
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were more similar to each other than to any other tumor
in the study was therefore quite surprising and stands as
a noteworthy finding from early expression profiling stud-
ies [1]. One tumor type, chronic myelogenous leukemia
(CML), has been found to have a large number of genes
behaving in a very homogeneous fashion [2], however this
kind of behavior has been the exception rather than the
rule. The relative homogeneity of CML is probably in line
with the expectation that a cancer type would exhibit high
homogeneity if there was a high similarity in the pro-
cess of oncogenesis. In the case of CML, it is true that
the means of transformation is simple and constant. As
the biochemical mechanisms of tumor growth and sur-
vival have been subjected to ever more detailed analysis, it
has become clear that for most tumor types there is sub-
stantial variation in how tumors use available normal and
altered cellular functions to achieve relentless growth and
disproportionate survival.

In recent studies, hence, the identification of genomic
patterns that are specific to certain biological contexts
is gaining more interest as the heterogeneity in biologi-
cal data becomes better embraced. Biological contexts of
interest can be derived from subtypes of diseases or dif-
ferent clinical outcomes within the same subtype, such
as responses to therapy. One of the early approaches to
identify context-specific patterns involved searching for
the co-regulated sets of genes and depicting the rela-
tionships between the gene sets and the biological or
clinical characterization of samples. Gasch and Eisen [3]
used a modified fuzzy k-means clustering method to find
gene sets and showed correlation between those gene
sets and the experimental conditions that determined
how yeast cells respond to environmental changes. Segal
et al. [4] used existing knowledge sources as well as clus-
tering techniques to find gene sets that are either func-
tionally co-related or coherently expressed in each set,
then determined their specificity to particular types of
tumors.

More recently, new strategies to identify context speci-
ficity of biological interactions are being proposed, as
it is being widely accepted that biological interactions
are coordinated in systematic ways but distinctively so,
depending on biological contexts. These approaches are
often based on network models representing biological
interactions. Identifying context specificity in biological
interactions can reveal environmental conditions under
which the activities of components of biological net-
works vary, and this can make significant contribution
to reinforcing confidence in the network as well as to
improving the understanding of more exact mechanisms
of transcriptional or translational regulations. Several
studies have shown that it is possible to identify context-
specific activity in known biological networks [5-8]. In
these studies, biological networks were built from existing
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prior knowledge, and context-specific gene expression or
protein expression data was used to annotate biological
interactions’ context specificities. While this approach is
useful for understanding the context specificity in already
characterized networks, its utility is limited by the scope
of the network as context-specificity is identified only for
those interactions known from prior knowledge. Con-
sidering such limitation, a more desirable approach is
to simultaneously identify biological interaction networks
and their context specificity from high-throughput data.
Grzegorczyk et al. [9] proposed a method to learn a non-
homogeneous Bayesian network that can represent mul-
tiple different conditions, by using a mixture model that
unifies networks of different conditions. Such approach is
ideal in situations where enough amount of samples and
computing resources are available. However, the scalabil-
ity of its application is significantly limited in practice due
to the complexity of the model. Indeed, their study only
show the results from networks of up to 11 genes. Another
possible approach is applying conventional network learn-
ing methods to subtype-specific samples and comparing
the results. However, this approach requires many sam-
ples for each condition to achieve reliable results, and
comparing inferred models from different conditions can
be arguable especially when different amount of samples
were available across conditions.

In this study, we propose a novel method to learn con-
textual gene set interaction networks that can represent
maps of functional modules in target biological systems
with statistical interactions between gene sets, and iden-
tify condition/subtype-specificity of inferred interactions.
Our method comprises two novel approaches. The first
is using context-specific gene sets as nodes of networks
instead of individual genes, and the second is measur-
ing condition-specificity with a formulation based on the
probabilistic graphical model. Using gene sets instead
of individual genes as nodes in networks can signifi-
cantly increase the scalability of the application. To iden-
tify context-specific gene sets, we use a computational
method that we have developed to model context-specific
genomic regulations [10-12]. Identified gene sets, termed
contextual gene sets, have coherent expression patterns
specific for a subset of samples where they have statisti-
cally significant coherency. This property helps to identify
networks of gene sets and relevant condition-specificity.
Another novel aspect of our approach is using the con-
ventional homogeneous Bayesian network model to learn
networks and to measure condition-specificity. Using
homogeneous network models requires significantly less
computational cost than using non-homogeneous mix-
ture models, compared to Grzegorczyk et al. [9], thus
it is more scalable and can be applied to problems of
larger scales. For example, we found limited application of
the non-homogeneous mixture Bayesian network model



Jung et al. BMC Genomics 2013, 14:110
http://www.biomedcentral.com/1471-2164/14/110

proposed by Grzegorczyk et al. [9], while the conventional
homogeneous Bayesian network model has been widely
used for applications of varying sizes, from about one hun-
dred [13] to almost one thousand genes [14,15]. However,
such homogeneous model does not represent any condi-
tion specificity by itself. To overcome this limitation, we
designed a novel formulation to quantitate the effect of the
samples from different conditions/subtypes on the forma-
tion of networks to measure the degree and the statistical
significance of condition specificity. The brief results of
a simulation study is also given to show the feasibility of
identifying condition-specificity.

Two cancer data sets were used as applications to show
the benefit of identifying condition/subtype-specificity, 1)
a refractory cancer gene expression data with 113 cancer
patient samples of 32 different tissue types [16], and 2) The
Cancer Genome Atlas (TCGA) glioblastoma multiforme
(GBM) gene expression data. Each resultant contextual
gene set interaction network shows both cancer-generic
and subtype-specific interactions. The comparison to the
result using a conventional biclustering-based approach,
using a refractory cancer data set, we show the proposed
method is much more sensitive in identifying context-
specific interactions. We also found that the identified
cancer-generic and subtype-specific sub-networks have
different functional roles. Besides the comparison of func-
tional annotations, we also related the identified subtype-
specific interactions to supporting evidence from other
knowledge sources. These results show that our approach
to identify condition specificity in learned networks can
provide novel information about biological functions spe-
cific to the given conditions.

Results and discussion

Overview of learning contextual gene set interaction
networks and identifying condition specificity

Learning contextual gene set interaction networks and
identifying condition specificity involves several steps of
data transformation, as illustrated in Figure 1, and is
described further in the Methods section. It consists of
four major steps: (STEP I) identifying contextual gene
sets as basic functional modules, (STEP II) summariz-
ing contextual gene sets to transform the data of genes
to the data of contextual gene sets, (STEP III) learn-
ing contextual gene set interaction networks where each
interaction represents dependency in expression (specific
expression status of a gene set depends on the expres-
sion status of the other gene set) between two contextual
gene sets, and (STEP IV) identifying condition speci-
ficity of each interaction. For the first step of identifying
contextual gene sets, we define a contextual gene set as
a set of genes that show consistent expression pattern
under a biological context, i.e. a subset of samples. This
is based on the assumption that once a biological context
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achieves a steady state, genes involved in the process
show consistent transcriptional patterns under the biolog-
ical context. Identifying contextual gene sets first requires
the identification of samples where biological contexts
are involved, and we use the context-mining algorithm
[10,12] to find such contextual conditions, where a con-
textual condition is a subset of samples where groups of
closely related coherent expression patterns are found.
Under each contextual condition, sets of genes with sim-
ilar over-expression or under-expression are identified as
contextual gene sets (STEP I in Figure 1).

To infer networks of contextual gene sets, each con-
textual gene set is represented as a single variable. This
requires that the original gene expression matrix needs to
be transformed to a gene set expression matrix, where the
value of a contextual gene set for a sample is a representa-
tive value of all genes in the contextual gene set. Expres-
sion values of genes in a contextual gene set for a sample
are summarized to either UP or DOWN if the majority
of the genes are over-expressed or under-expressed, and
NOCHANGE value is given otherwise (STEP II). We are
going to focus on the cases of statistically significant up-
regulation or down-regulation, and most results from this
study are from the cases of up or down-regulations.

A contextual gene set interaction network is learned
from the summarized contextual gene set expression data,
by evaluating the likelihood of dependency between each
pair of contextual gene sets given all samples and building
a connection if the dependency likelihood is larger than
a given threshold (STEP III). Inference of interaction net-
works from the summarized data has a few advantages
over traditional approach where all genes are used. Since
the number of variables (nodes) is significantly smaller
in this approach as all the genes in contextual gene set
are aggregated to a single variable, the method suffers
less in computational complexity, and thus it is subject
to the curse of dimensionality to a lesser degree, lead-
ing to more reliable estimation of probability statistics on
network models.

A resultant interaction between two contextual gene
sets represents that there is a probabilistic dependency
in their summarized expressions. Gene sets with depen-
dency are expressed in coordinated manners, where the
expression status of a gene set depends on the expres-
sion status of the other gene set. However, the effect to
the dependency from the samples can be different for
diverse conditions, as they can imply different activities
of biological functions. Based on this idea, we identify
condition-specific regions in the built network by mea-
suring the effect from the samples of each condition on
the likelihood of dependency. To measure the effect of a
condition on a dependency, we evaluated the likelihood
of the dependency without the samples of the condition
and computed its difference with the original likelihood
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Figure 1 The schematic overview of learning contextual gene set interaction networks and identifying condition specificity. From the

gene expression matrix, contextual gene sets are identified through the context-mining process. The expression values of genes in each contextual

gene set for each sample are summarized into one major representative value, and a contextual gene set expression matrix is built as a result.

Multiple Bayesian networks are learned from this matrix and their consensus network (undirected dependency likelihood matrix) is built while

ignoring the direction of connections. For each condition, a subset of data is built by discarding the samples of the condition from the original data

and a new dependency likelihood matrix is built from it. If the dependency likelihood of the interaction between G; and G; from all samples is

significantly larger than the dependency likelihood from a data without a condition |, the interaction is specific to the condition I.
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obtained using all available samples (STEP IV). If the
original likelihood is significantly higher than the likeli-
hood without the samples from the condition, it means
that the samples under the condition have made signif-
icant contribution to the dependency. This implies that
the dependency exists mainly due to the samples from
the condition, thus it is declared as a condition-specific
dependency.

Example and advantage of identifying
condition-specificity and contextual gene set

Example of identifying condition-specificity

One of key components of our approach is identi-
fying condition-specificity of interactions in biological
networks. To show the applicability of our method of
identifying condition-specificity, we conducted a simu-
lation experiment as an example. We used a boolean
network model of cholesterol regulatory pathway [17] to
generate synthetic data sets of two different conditions.
The cholesterol regulatory pathway describes the syn-
thesis of cholesterol from acetyl CoA. This process can
be prohibited by drugs such as statins, and the boolean
network model also includes the statins and its regu-
latory path. From the boolean network model of the
cholesterol regulatory pathway, two synthetic data sets
were generated with/without statins perturbation, where
statins-perturbed data sets were generated by setting the
state of statins to the value 1, which simulates a sce-
nario that statins was given to block the synthesis of
cholesterol, and the statins-free data were generated by
setting the state of statins to the value 0, which simulates
a normal scenario that cholesterol can be freely synthe-
sized without the disturbance of statins (for the details of
the synthetic data generation, see the Additional file 1).
For each case of with/without statins perturbation, 100
samples were generated. The specificity to the statins per-
turbation and its statistical significance were evaluated for
each regulatory relationship from the cholesterol pathway
model, by using the method for identifying condition-
specific interactions described in the Methods section.
The same parameter values were used as described in
the Methods section except for the number of permuta-
tions, as 1,000 permutations were used in this simulation
example. Figure 2(A) illustrates a network diagram of the
cholesterol regulatory pathway, and statins perturbation-
specific regulations were highlighted with red color. As
expected, the inhibitive regulation from statins to HMG-
CoA reductase and its direct downstream regulation from
HMG-CoA reductase to Mevalonic acid were identified
as statins perturbation-specific regulations with statistical
significance P < 0.05. All other regulatory relationships
did not pass the significance threshold P = 0.05 (regula-
tions represented with black connections), thus were not
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declared to be statins perturbation-specific. The presence
of statins completely inhibits the existence of HMG-CoA
reductase, and it stops HMG-CoA reductase from help-
ing production of Mevalonic acid with the existence of
HMG-CoA. This statins perturbation-specific regulations
can be also seen from the heat map in Figure 2(B), which
shows the boolean states of intermediate products that
are produced in the process of synthesizing cholesterol
from Acetyl-CoA. HMG-CoA reductase was inhibited
with the presence of statins, and subsequently Meval-
onic acid could not be produced regardless of the state
of HMG-CoA. This heat map also shows that all the
downstream products of Mevalonic acid do not exist with
the presence of statins, either. However, their states are
determined regardless of other elements once the state of
Mevalonic acid is given, thus such later downstream reg-
ulations are not as specific to the presence of statins. This
simulation example shows that the proposed method suc-
cessfully identifies the regulatory paths of statins on the
production of cholesterol, which are specifically affected
by the condition of statins existence.

Advantage of contextual gene sets over biclusters

We showed that the identification of condition-specificity
in biological networks can be possible by the proposed
method. However, applying that method to gene-level
networks is computationally challenging when a target
data covers a lot of genes, thus considering a set of
genes as a functional module in the target network is
a viable approach. We used the context-mining method
to find contextual gene sets as such functional modules.
Compared to the approach of context mining, conven-
tional methods to cluster genes cannot identify gene
sets that show coherent expression across a subset of
samples, and thus final networks of gene sets will have
only generic interactions across all samples, without any
condition/subtype-specific interaction. Biclustering can
be an alternative approach to find gene sets that show
coherent expression under certain subset of samples,
because it searches combinations of a subset of genes
and a subset of samples, where the genes show similar
patterns in the corresponding subset of samples. How-
ever, most biclustering methods lack the ability to group
similar biclusters and often give significantly overlapping
results. We compared our context mining based method
and the Iterative Signature Biclustering Algorithm (ISA)
[18] to see the overlap between their identified gene sets.
From the refractory cancer data, 339 contextual gene sets
were identified by our context mining based method, and
the same number of biclusters were identified using ISA.
The context mining based method gave significantly lower
overlap between gene sets than ISA (Figure 3), thus using
gene sets from the context mining based method will have
less chance of inferring undesirable generic interactions
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Figure 2 The boolean network model of the cholesterol regulatory pathway. (A) A network diagram of the model. All incoming connections
into a node constitute AND logic except for cholesterol that has OR logic. A connection ending with a bar indicates NOT logic. The cholesterol
synthesis pathway is shown from the precursor Acetyl-CoA to the final product cholesterol including feedback from cholesterol to SREBP-SCAP.
Statins inhibits HMG-CoA reductase, and regulates the synthesis of cholesterol. After evaluating the specificity of each regulation to the statins
perturbation, statins perturbation-specific regulations were colored with red. (B) A heat map of key intermediate products in the process of
synthesizing cholesterol from Acetyl-CoA, together with the status of statins and HMG-CoA reductase. All 200 samples (100 without statins and 100

between similar gene sets. This was confirmed by learning
a gene set interaction network and identifying tissue-type
specificity from the refractory cancer data, with gene sets
from both methods. From the ISA gene sets, only 10 inter-
actions were identified and none of them was determined
to be tissue-specific, while 88 tissue-specific interactions
were identified with the contextual gene sets, which will
be described in the later sections.

Contextual gene set interaction network from the
refractory cancer gene expression data

Contextual gene set interaction network of refractory cancer
with tissue type specificity

We identified contextual gene sets and a network of the
gene sets from the gene expression data of refractory can-
cer. From the gene expression data of 21,073 probes (from
Agilent-011521 Human 1A Microarray G4110A) and 113
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Figure 3 Jaccard similarity heat maps of 339 gene sets from two different methods. (A) Context-mining based method, (B) ISA.
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cancer patient samples of 32 different tissue types, 339
contextual gene sets were identified as functional mod-
ules. The gene expression data was summarized to an
assortment of 339 contextual gene sets as shown in Addi-
tional file 2: Figure S1. By learning Bayesian networks
from the summarized expression data, a dependency like-
lihood djj (= dj;) was evaluated for each pair of con-
textual gene sets G; and Gj;, where 0 < d; < 1. A
contextual gene set interaction network of 285 interac-
tions and 278 contextual gene sets was constructed by
connecting gene sets with dependency likelihood larger
than 0.5, which implies that they are more “likely” to
exist. For each of 285 interactions in the contextual gene
set interaction network, its specificity to each of 32 tis-
sue types was evaluated and 88 interactions (31%) were
identified to be tissue specific. The number of specific
interactions for each tissue type is summarized in Table 1.
Figure 4-1 shows the contextual gene set interaction net-
work and tissue type specificity, with contextual gene sets
as nodes and interactions as edges. Edges have different
styles and colors based on their tissue type specificity.
In this network, tissue-specific interactions are associated
with 19 tissue types and the other 13 tissue types did not
have significant effect on the interactions. We also high-
lighted sub-networks enriched with interactions of certain

Table 1 The number of specific interactions for each tissue
type from the refractory cancer data

Contextual gene set ISA
All identified interactions 285

-
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tissue types by dotted ellipses after visual inspection. This
result represents that the samples of different tissue types
have different effect on the dependency between contex-
tual gene sets. Compared to this contextual gene set inter-
action network, a network of ISA biclusters is also shown
in Figure 4-1I with the same style of tissue-specificity
annotation. Only 10 interactions were identified and no
tissue-specific interaction was found. This shows that our
approach of using contextual gene sets can be more proper
in identifying condition-specific gene set interactions than
using conventional biclusters.

Discrepancy in biological functions between cancer-generic
and tissue-centric contextual gene sets

Each contextual gene set was annotated with Gene Ontol-
ogy (GO) [19] terms of biological functions and pathways
to further elucidate the meaning of the network. GATHER
[20] was used to find associated annotations with statis-
tical significance, with P = 0.01 as a threshold of signifi-
cance. To validate the discrepancy in functional meaning
between cancer-generic interactions and tissue-specific
interactions, the associated GO terms were compared
between contextual gene sets with different types of inter-
actions. From the contextual gene set interaction network
in Figure 4-1, contextual gene sets with only interactions
specific to a tissue type Ty were declared as Tk-centric
contextual gene sets. Similarly, contextual gene sets with
only cancer-generic interactions were declared as cancer-
generic contextual gene sets. Representing the set of GO
terms associated with T-centric contextual gene sets as
Annot(Ty), we compared the union of Annot(7}) from
all tissue types to the GO terms associated with cancer-
generic contextual gene sets, Annot(Cancer). The num-
ber of all tissue-centric contextual gene sets were 51 with
| U, Annot(Ty)| = 169, while 175 contextual gene
sets were cancer generic with |[Annot(Cancer)| = 413
(the rest 52 gene sets with mixed tissue type interactions
were not considered in this process). Ur, Annot(T}) and
Annot(Cancer) have 93 common GO terms. Table 2 lists
the most frequent GO terms associated with either only
cancer-generic contextual gene sets or only tissue-centric
contextual gene sets. Many GO terms associated with
cancer-generic contextual gene sets are basic biological
mechanisms and well-known biological functions related
to general cancer, such as signal transduction, cell cycle
and RNA processing. For tissue-specific functions, a few
tissue-specific network regions will be discussed in detail
in the later subsection with their functional annotations.

Cancer-generic network region

The region (A) in Figure 4-I is one example of a cancer-
generic region. As this region includes many interactions
that are not specific to certain tissue types, the expres-
sions of the contextual gene sets within this region shows
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Figure 4 The refractory cancer gene set interaction network annotated with the identified tissue type specificity. (I) Network built with
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correlation across all tissue type samples. This region is
mainly related to immune systems, as the 10 most statis-
tically significant annotations are listed in Table 3. This
can imply abnormal activity in immune mechanisms for
the patients corresponding to the contextual conditions.
Besides this example, the complete annotated network
and the annotations of all contextual gene sets are given in
the Additional file 3.

Tissue-specific regions

The regions (B) — (E) in Figure 4-I are the examples
of network regions where many tissue-specific interac-
tions exist. For each region, the expression patterns of
contextual gene sets show strong correlation for the corre-
sponding tissue type samples (see Additional file 4: Figure
S2(B-E)).

The melanoma-specific region (B) in Figure 4-1 showed
association with apoptosis. The five under-expressed
contextual gene sets were related to abnormality in
pigmentation, cell death signaling pathways and apop-
tosis. Individual contextual gene set shows further
details in tissue-specific functional abnormalities. For

example, Gigo and Ggps in the region (B) are related to
the metabolism of nicotinamide and nicotinamide ade-
nine dinucleotide (NAD™) metabolism. Through these
metabolisms, the coenzyme compound NAD™ accepts or
donates electrons in redox reactions [21] that play signifi-
cant roles in releasing energy from nutrients by generating
ATPs. This possible abnormal activity of energy genera-
tion can be related to the fact that melanoma (and also
other cancers) is intensively positive in positron emission
tomography (PET) scans due to their intense demand for
energy, where tumor has up-regulated receptors that take
in glucose and subsequently have high levels of glycoly-
sis. One over-expressed contextual gene set in this region
was related to GTP binding (P = 1.71E — 5) and guanyl
nucleotide binding (P = 1.37E — 5), and this is supported
by a report of the expression of small GTP-binding protein
genes of the RAS family in melanoma [22].

For the pancreas-specific region (C) in Figure 4-],
the over-expressed Gigog was associated with post-
translational modification, such as ubiquitination. Ring
finger proteins RNF11 (7 out of 16 pancreas samples, P =
0.001) and RNF139 (9 out of 16 pancreas samples, P =
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Table 2 Significantly associated GO terms to only cancer-generic or tissue-centric contextual gene sets

GO terms relevant only to cancer-generic

contextual gene sets

GO terms relevant only to tissue-centric

contextual gene sets

GO term Frequency GO term Frequency
GO:0007166: cell surface receptor signal transduction 11 GO:0006163: purine nucleotide metabolism 2
GO:0007049: cell cycle 9 GO:0006164: purine nucleotide biosynthesis 2
G0:0006396: RNA processing 7 GO:0006629: lipid metabolism 2
G0:0008283: cell proliferation 7 GO:0009150: purine ribonucleotide metabolism 2
GO:0016070: RNA metabolism 7 GO:0009152: purine ribonucleotide biosynthesis 2
GO:0043207: response to external biotic stimulus 7 GO0:0009259: ribonucleotide metabolism 2
GO:0000375: RNA splicing, via transesterification reactions 6 G0O:0009260: ribonucleotide biosynthesis 2
GO:0000377: RNA splicing, via transesterification reactions 6 GO:0044255: cellular lipid metabolism 2
G0:0000398: nuclear mRNA splicing, via spliceosome 6 GO:0046148: pigment biosynthesis 2
GO:0006397: mMRNA processing 6 GO:0000904: cellular morphogenesis 1
G0O:0006959: humoral immune response 6 GO:0006099: tricarboxylic acid cycle 1
G0:0008380: RNA splicing 6 GO:0006119: oxidative phosphorylation 1
GO:0009613: response to pest, pathogen or parasite 6 GO:0006144: purine base metabolism 1
G0:0016071: mRNA metabolism 6 GO:0006188 : IMP biosynthesis 1
G0:0030333: antigen processing 6 GO:0006189: ‘de novo' IMP biosynthesis 1
GO:0000067: DNA replication and chromosome cycle 5 GO:0006510: ATP-dependent proteolysis 1
GO:0000075: cell cycle checkpoint 5 GO:0006554: lysine catabolism 1
GO:0006950: response to stress 5 GO:0006570: tyrosine metabolism 1
GO:0016064: humoral defense mechanism 5 GO:0006582: melanin metabolism 1
G0:0000279: M phase 4 GO:0006583: melanin biosynthesis from tyrosine 1

The frequency indicates the number of contextual gene sets associated with the corresponding GO term. Only 20 most frequent terms are shown for each case.

0.0085) are over-expressed for several pancreas samples in
Giog (Figure 5), and there is a report that the ubiquitin-
editing enzyme A20 downregulates NF-kB signaling in
the presence of RNF11 [23]. While the over-expressed
Giog was related to post-translational modification with

Table 3 Top 10 most significant annotations for 12
contextual gene sets of region (A), Figure 3

MSigDB annotation (Source) P

Graft versus host disease (KEGG) 5.39E-08
Type | diabetes mellitus (KEGG) 9.56E-08
Natural killer cell mediated cytotoxicity (KEGG) 1.08E-07
Generation of second messenger molecules (REAC- 1.24E-07
TOME)

Allograft rejection (KEGG) 1.69E-07
Viral myocarditis (KEGG) 9.33E-07
Translocation of ZAP70 to immunological synapse 2.58E-06
(REACTOME)

Signaling in immune system (REACTOME) 3.97E-06
Leishmania infection (KEGG) 4.64E-06
Autoimmune thyroid disease (KEGG) 6.20E-06

ubiquitination, the genes in the two under-expressed con-
textual gene sets (G199 and Ga1p) were related to maintain-
ing cell structures, which can facilitate cell motility and
invasion.

The ovary-specific region (D) in Figure 4-I includes
six contextual gene sets under-expressed in most of the
ovarian samples, where they were associated with ovary-
specific functional annotations such as reproduction and

Pancreas

avers DTN | (N
gagd 0 o

101
L

Gene expression

Figure 5 View of RNF11 and RNF139 expressions across the
refractory cancer patient samples. Gene expression values were
transformed to log; ratios compared to expressions from normal
tissue samples.




Jung et al. BMC Genomics 2013, 14:110
http://www.biomedcentral.com/1471-2164/14/110

pregnancy. This can be related to the loss of normal ovar-
ian function from the ovarian cancer patients. Besides the
ovary-specific annotations, they are also related to the
B-Arrestin pathway and the caspase mediated cleavage
of cytoskeletal proteins. Arrestins can block G protein-
mediated signaling, and redirect signaling to alternative G
protein-independent pathways [24]. Regarding this anno-
tation, there is a report that caspase mediated cleavage of
cytoskeletal actin plays a positive role in the morphologi-
cal changes of apoptosis [25].

Contextual gene set interaction network from the GBM
data of TCGA

Contextual gene set interaction network with
phenotype/genotype specificity

We also identified a contextual gene set interaction net-
work from the gene expression data of TCGA GBM.
From 202 GBM patient samples with four subtypes (Clas-
sical, Mesenchymal, Neural and Proneural) reported by
Verhaak et al. [26], 316 contextual gene sets were iden-
tified. The gene expression data was summarized for the
316 contextual gene sets as shown in Additional file 5:
Figure S3. Based on this summarized contextual gene set
expression data, a contextual gene set interaction network
(with 296 interactions and 247 contextual gene sets with
at least one interaction) was built with the same meth-
ods and parameters applied to the case of the refractory
cancer data analysis. For each interaction, its specificity
to each of four subtypes was evaluated and 77 inter-
actions (26%) were declared to be subtype specific. In
addition to the four subtypes of GBM, specificities to
the mutations of selected genes (EGFR, NF1, PDGFRA,
PIK3CA, PIK3R1 and TP53), the methylation of MGMT,
and age< 40 were also evaluated. The number of specific
interactions for each subtype and condition is given in
Table 4. Figure 6 shows the contextual gene set interaction
network with identified phenotype/genotype specificity.
After visual inspection, regions enriched with interactions
of certain subtypes were highlighted with dotted ellipses.

Table 4 The number of specific interactions for each GBM
subtype and sample condition

Subtype/Condition Number of specific interactions
Classical 24

Mesenchymal 20

Neural 8

Proneural 24

EGFR mutation 2

MGMT methylation 1

Age < 40 7

Among the investigated conditions, conditions with no specific interaction are
not shown.
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Among the tested genetic mutations, only EGFR mutation
showed associated interactions.

Functional difference between GBM-generic and
subtype-centric contextual gene sets

Each contextual gene set was annotated with GO terms of
biological functions and pathways, and significantly asso-
ciated GO terms were compared for the contextual gene
sets that have different types of interactions. From the
GBM contextual gene set interaction network in Figure 6,
the annotations of subtype Tj-centric contextual gene
sets were compared to the annotations of GBM-generic
contextual gene sets. Table 5 lists the number of each
subtype-centric contextual gene sets with their associ-
ated annotation terms. From Table 5, all four (100%)
GO terms associated with Neural-centric contextual gene
sets and 31 out of 35 (88.6%) GO terms associated with
Proneural-centric contextual gene sets were also associ-
ated with GBM-generic contextual gene sets. This can
imply the closeness of the abnormalities in Neural and
Proneural subtypes to GBM-generic abnormalities. Com-
pared to the cases of Neural and Proneural subtypes,
none or few of the GO terms from Classical (none out
of four, 0%) and Mesenchymal (6 out of 34, 17.6%) sub-
types were overlapping with the GO terms associated with
GBM-generic contextual gene sets, which can imply these
two subtypes are more differentiated forms of GBM than
Neural and Proneural subtypes. These findings of Classi-
cal and Mesenchymal subtypes being more differentiated
GBM are consistent with the results of a previous GBM
study [26].

Comparison of contextual gene sets with other gene
signatures of GBM subtypes

We compared the genes in subtype-centric contextual
gene sets with the GBM subtype signature genes reported
by Verhaak et al. [26]. Table 6 lists the number of
over/under-expressed genes for each subtype, from two
methods. Subtype-centric contextual gene sets have com-
pletely different list of genes compared to the gene signa-
tures reported by Verhaak et al., as there was no overlap
across all subtypes. This significant difference is due to the
different approaches of identifying genes from two meth-
ods. The GBM subtype signature genes by Verhaak et al.
were identified in two steps — they first used a consen-
sus clustering to group the patient samples into four stable
clusters, and then, differentially over-expressed genes in
each subtype were identified using the combination of
significance analysis of microarrays (SAM), receiver oper-
ating characteristic (ROC) methods and ClaNC, a nearest
centroid-based classifier [26]. In contrast, contextual gene
sets were identified with more focus on biological pro-
cesses rather than differentially expressed signatures of
subtypes. Genes in each contextual gene set are grouped
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Figure 6 The GBM contextual gene set interaction network annotated with the identified phenotype/genotype specificity. Only 247
contextual gene sets with at least one interaction are shown. The contextual gene sets under-expressed across their corresponding contextual
conditions are colored with green and over-expressed contextual gene sets are colored with red.

as they show statistical interactions amongst them based The identified contextual gene sets were also compared
on their expression levels, and each subtype-centric con-  to the result of Gene Set Enrichment Analysis (GSEA)
textual gene set has its interactions strongly associated on MSigDB [27], which is a method to identify differ-
with a specific subtype. Thus, subtype-specific contextual entially expressed gene sets for each condition, based
gene sets represent genes whose interactions are strongly  on prior knowledge. For GSEA, the standardized gene
associated with biological processes underlying certain  expression data was used without quantization. GSEA
specific subtypes, rather than gene signatures for certain  analysis was done by comparing “samples of one sub-
subtypes. In addition, as some genes may function in mul-  type versus the rest of the samples” for each subtype,
tiple different biological processes, a gene may belong to  to identify subtype-specific gene sets. Out of 2,101 gene
multiple contextual gene sets, and this is another dis- sets of canonical pathway gene sets and GO gene sets of
crepancy between contextual gene sets and subtype gene  biological process and molecular function from MSigDB,
signatures. 2,067 gene sets (98.4%) with up to 500 genes were tested
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Table 5 The number of subtype-centric contextual gene sets and associated annotation terms

Tk Tk-centric gene sets Genes |Annot(Ty)| |Annot(Tx) N Annot(GBM)| (Overlap %)
Classical 6 317 4 0 (0%)

Mesenchymal 8 564 34 6 (17.6%)

Neural 4 577 4 4 (100%)

Proneural 14 1,408 35 31 (88.6%)

using GSEA. In running GSEA for each gene set, 1,000
permutations were applied. From the result, P values were
FDR-corrected using Benjamini and Hochberg’s method,
and FDR-corrected P = 0.05 was used for statistical
significance. Table 7 lists the number of identified gene
sets by using two methods, where GBM-generic or each
subtype-centric gene sets are shown for contextual gene
sets, and subtype-specific gene sets are shown for GSEA.
Our method could identify GBM-generic contextual gene
sets as well as multi-type contextual gene sets, which show
interactions with other contextual gene sets across mul-
tiple subtypes of GBM. Such types of gene sets cannot
be identified using conventional GSEA, which works in a
supervised manner based on the given subtype informa-
tion. Another finding is that GSEA returns very biased
number of gene sets between subtypes, where the Mes-
enchymal subtype dominates the number of findings. A
possible hypothesis of GSEA returning biased results for
Mesenchymal is that Mesenchymal is a most differenti-
ated form of GBM (physiologically or genotypically) [26]
and many genes are differentially expressed in Mesenchy-
mal compared to other subtypes. Compared to GSEA,
our method gives less biased results to a specific sub-
type, and this is because subtype-centric contextual gene
sets are identified based on subtype-specific interactions.
As subtype-specific interactions are focused on consistent
interactions instead of consistent expression levels, they
are relatively free from the bias of consistent differential
expression in each subtype.

GBM-generic network region

The network region (A) in Figure 6 is one example of a
GBM-generic region with 12 contextual gene sets in it.
The heat map (Additional file 6: Figure S4(A)) of the con-
textual gene sets show that their expressions are closely

correlated across all patient samples, making the interac-
tions among these contextual gene sets be GBM-generic.
From the associated annotations of the over-expressed
contextual gene sets in their corresponding contextual
conditions, this network region was mainly related to
the tight junction and the intercellular adhesion, which
occur in epithelia and brain endothelia. Also by consid-
ering other annotations such as epithelial cell differenti-
ation and morphogenesis of an epithelium, this network
component can represent active epithelia construction in
GBM, which can imply active blood vessel construction.
For the MSigDB annotations of the under-expressed con-
textual gene set, the presence of a transcriptional start site
motif was statistically significant, which matches anno-
tations for vitamin D receptor VDR. Considering the
function of vitamin D killing GBM cells [28], a possi-
ble hypothesis is that the loss of vitamin D susceptibility
in GBM patients can be related to the low activities of
genes targeted by VDR, while the main cause of such low
activities remains for further studies.

GBM subtype-specific regions

The regions (B) — (G) in Figure 6 show the examples
of subtype-specific regions for four subtypes of GBM. In
each example, the expression patterns of contextual gene
sets show strong correlation for the corresponding sub-
type samples (see Figure 7(A) and (B), and Additional
file 6: Figure S4).

The Classial-specific region (B) in Figure 6 includes six
contextual gene sets, where one is over-expressed and the
other five are under-expressed across Classical samples.
From the MSigDB analysis, one of the significant anno-
tations related to the over-expressed contextual gene set
is a transcriptional start site motif that matches annota-
tion for a member of ETS oncogene family, ELK1, which

Table 6 Comparison between GBM subtype-centric contextual gene sets and GBM subtype signature genes reported by
Verhaak et al. [26]

Gene set Classical Mesenchymal Neural Proneural

upP DOWN up DOWN upP DOWN up DOWN
Subtype-centric contextual gene set 309 8 27 537 362 215 612 796
Verhaak et al. 162 0 216 0 129 0 178 0
Overlap 0 0 0 0

Table lists the number of over-expressed genes (UP) and under-expressed genes (DOWN).
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Table 7 Comparison between contextual gene sets and MSigDB gene sets identified with GSEA

GBM-generic Classical Mesenchymal Neural Proneural Multi-type
Contextual gene set 144 6 8 4 14 71
GSEA N/A 1 245 6 3 N/A

The number of gene sets are listed. For the contextual gene sets, GBM-generic or each subtype-centric contextual gene sets are shown. Multi-type indicates gene sets

with various subtype-specific interactions.

is involved in pro-apoptotic and pro-differentiation in
neuronal cells [29], and MAPK-ELKI signaling pathway
that contributes to cell survival [30]. This implies that
genes targeted by ELKI are over-expressed and ELK] is
enabling many of its downstream genes. The genes in
the under-expressed contextual gene sets were related to
central nervous system development (P = 2.58E — 4),
which can imply abnormalities in neural system develop-
ment. A transcriptional start site motif was also related to
the under-expressed contextual gene sets, which matches
annotation for the androgen receptor AR. It has been
reported that AR was detected in a higher proportion of
gliomas [31], while there was a suggestion that the prolif-
erative effect of GBM may not be through the activation
of AR [32]. However, there are reports of activated AR
enhancing susceptibility of GBM cells to chemotherapeu-
tics and radiation therapy [33], and promoting cell death
[34]. These reports suggest that there is a certain group
of patients with low AR activity, where the activation of
AR combined with other therapeutics can be a potential
treatment for such patients. The Classical-specific region
(C) reveals the presence of N-Myc over-expression, which
directly regulates a number of genes associated with the
classical phenotype gene signature including EGFR [35].
For the Mesenchymal-specific region (D) in Figure 6,
five over-expressed contextual gene sets for Mesenchymal
samples are related to cell surface interactions (integrin
cell surface interactions, P = 7.3E — 5) and several
signaling pathways related to cancer. We could see up-
regulation of Collagen I, IV ECM components (COLIA2
up-regulation in 33 out of 58 Mesenchymal samples, P =
1.22E — 15; COL4AS up-regulation in 10 Mesenchymal
samples, P = 0.1069) that signify increased ECM pro-
duction. TGF beta receptor II is also up-regulated (46 out
of 58 Mesenchymal samples, P < 8.12E — 21), which is
associated with epithelial-mesenchymal transition (EMT).
Jak-STAT signaling pathway was related, too (P = 1.84E —
4), with PIK3CD and JAK2 up-regulation. Genes involved
in integrin cell surface interactions (COLIA2, ITGA1l,
RAPIB, COL4AS and APBBIIP) were also included and
these can lead to MAPK signaling [36]. The other 10
contextual gene sets under-expressed in many Mesenchy-
mal samples include down-regulated CTNNA2 (down-
regulation in 18 of 58 Mesenchymal samples, P = 1.89E —
4), where CTNNA?2 is known to control the stability of
dendritic spines and synaptic contacts [37]. This suggests

that EMT in GBM also accompanies the low activity of
CTNNA2 and resulting instability of neuronal cell-cell
structures. These gene sets are also related to microtubule
cytoskeleton organization and biogenesis (P = 1E — 5).
Besides, we could observe the down-regulation of tubulins
(TUBBS8 down-regulation in 30 of 58 Mesenchymal sam-
ples, P = 2.17E — 5; TUBGCP6 down-regulation in 23
of 58 Mesenchymal samples, P = 2.95E — 3) and NEKI
(25 of 58 Mesenchymal samples, P = 4E — 3) and NEK11
(16 of 58 Mesenchymal samples, P = 0.263), which are
components of proliferation, and it suggests a hypothe-
sis that proliferation activity can be low in Mesenchymal
cells since their high migratory behavior. A brief sum-
mary and a heat map of gene expressions of this region is
shown in Figure 7(A), and the findings mentioned above
can imply active EMT, abnormalities in maintaining cell
structures, and low proliferative activity, which well fit the
characteristics of the Mesenchymal subtype.

The Neural-specific region (E) in Figure 6 can repre-
sent the cell cycle progression by p27 phosphorylation.
The over-expressed Gy includes p27 (12 of 33 Neural sam-
ples, P = 0.159) and RBX1I (16 of 33 Neural samples, P =
5.51E — 5), where p27 can block progression of cell cycle
[38]. However, F box protein binds with phosphorylated
p27 with the involvement of RBXI, causes p27 degra-
dation and cell cycle progression [39]. Accordingly, the
three under-expressed contextual gene sets were related
to dephosphorylation (P = 2.45E — 3). A summary and a
heat map of this region is also shown in Figure 7(B).

The Proneural-specific region (F) in Figure 6 includes
over-expressed contextual gene sets that are related to cell
cycle, and under-expressed contextual gene sets related
to homeostatic processes. The Proneural-specific region
(G) also shows active cell cycle processes, and degraded
immune responses.

Other genotype/phenotype-specific regions

In addition to the four subtypes of GBM, other condition-
specific interactions were also identified. Among genetic
mutations, only EGFR mutation has associated interac-
tions in regions (H) and (I). The condition of ages < 40
is associated with regions (K), (L) and (M). An interest-
ing result is the region (J) associated with the methylation
of MGMT (Figure 7(C)). In the region (J), the two over-
expressed contextual gene sets, which are connected with
a MGMT methylation-specific interaction, were related
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to cell cycle, especially DNA replication and checkpoint
(DNA dependent DNA replication with P = 7.84E — 10,
mitotic cell cycle with P = 3.47E — 9 and mitotic M-M/G1
phases with P = 1.59E — 7). This specificity of MGMT
methylation to the DNA replication and checkpoint in cell
cycle is evident, by considering that MGMT is involved in
the process of repairing damaged DNA during the replica-
tion process. The expression of MGMT could have been
disturbed by methylation and eventually lost its function

in the cell cycle checkpoint. The review by Casorelli et al.
[40] also covers the role of the MGMT repair protein in
cancer.

Conclusions

High heterogeneity in cancer has been evident since
early studies, and approaches to reveal such heterogeneity
embedded in genomic profiling data are showing promis-
ing results. In this work, we used a novel method of
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measuring the effect from expression samples of certain
conditions on the components in contextual gene set
interaction networks to identify condition-specificity. In
addition to the simulation experiment, two cancer data
sets were analyzed to support the validity of identify-
ing condition-specificity, which are the refractory cancer
data with 32 tissue types and TCGA GBM data with
four subtypes. Contextual gene set interaction networks
were built with tissue/phenotype/genotype-specificities.
The resultant contextual gene set interaction networks
with specificities showed different interaction patterns
across conditions, and they provided new hypotheses as
well as consistency with previous studies. Bayesian net-
work learning was used in this work to more correctly
estimate the likelihood of dependency, but simpler mea-
sures such as correlation or mutual information can be
also used for the same formulation. Thorough analysis
will follow this study for condition-specific interactions
and related contextual gene sets to further analyze biolog-
ical mechanisms of condition specificity in cancer. We are
also developing methods to classify new patient samples
based on the identified contextual features. Specifically,
the analysis results of TCGA GBM data in this study
are being considered to subtype additional GBM patient
samples from TCGA as well as GBM xenograft models
with drug response information. Such results of validation
using independent GBM samples will be further discussed
in future studies.

Methods

The refractory cancer and TCGA-GBM gene expression data
For the case of analyzing the refractory cancer data [16],
gene expression data of 21,073 probes (from Agilent-
011521 Human 1A Microarray G4110A) and 113 patient
samples (32 different types of refractory cancer) were used
in this study. The consenting of the patients involved has
been performed as described in [16]. The patients ranged
in ages of 27 - 75 and there was no juvenile. For each tumor
type, its (normal) tissue of origin was used as a baseline
and the ratio of the tumor to its tissue of origin was com-
puted, using a statistical model [41], and the ratio value
was quantized to three discrete values of UP, DOWN and
NOCHANGE with two-fold change as threshold. This
two-fold change threshold was to ensure quantized val-
ues to represent minimal changes that can be reliably
reproducible. The distribution of the 113 samples among
different cancer tumor types is listed in the Additional
file 1: Table S1.

As for the GBM study, we downloaded the GBM gene
expression data from The Cancer Genome Atlas (http://
cancergenome.nih.gov/). Among those, 202 samples with
four known subtypes (54 Classical, 58 Mesenchymal,
33 Neural and 57 Proneural [26]) were used in this
study.
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Since we only used gene-level summary values for
TCGA-GBM data, we used a heuristic approach to
discretize the data for our analysis. The expression
of 17,814 genes in the GBM samples were converted
to z-scores using 10 normal samples as a reference.
The standardized expression values were quantized to
three levels of UP, DOWN and NOCHANGE by using
one standard deviation as a threshold. Higher thresh-
old resulted in too many NOCHANGE values, which
led to less informative data for the analysis. The
detailed sample information is available in the Additional
file 3.

Identifying contextual gene sets

We define a contextual gene set as a set of genes that
show consistent expression pattern under a biological
context. This is based on the assumption that once a bio-
logical context reaches a steady state, genes involved in
the process show consistent patterns under the biolog-
ical context. It requires the identification of subsets of
samples, which are representations of biological contexts.
We use the context-mining algorithm [10,12] to find con-
textual conditions as such samples, where a contextual
condition is a subset of samples that have groups of closely
related coherent expression patterns (such patterns are
called context-motifs in the algorithm). In the process of
context-mining, two consistency statistics conditioning (8)
and crosstalk (n) are used to find context-motifs, and a
permutation test is applied to check their statistical signif-
icance. In our study, § = 0.1, = 0.3 and the significance
P < 0.05 (Benjamini and Hochberg corrected) were used.
With the graphical representation of context-motifs, the
Markov cluster (MCL) algorithm [42] is used to cluster
closely related context motifs into biological contexts. The
inflation parameter was set to 2 in our study, as suggested
by the developer of MCL. A representative set of samples
from each identified context is determined as a contex-
tual condition using the sample association score (SAS)
[43], and we used SAS < 0.5 in our study. For each con-
textual condition, consistency statistics § and 1 were used
again to find contextual gene sets that include genes with
consistent over-expression or under-expression. The same
8 =0.1,n = 0.3 and P < 0.05 were used in this step.

Summarizing gene sets

To infer networks of contextual gene sets, each contextual
gene set needs to be represented as a single variable as
most network models assume each node as a single ran-
dom variable. For each sample si, the expression values
of m genes in a contextual gene set G; is summarized to
a single representative value G, where Gy is UP if more
than r % of the genes in G; are over-expressed with statis-
tical significance of a hypergeometric P lower than a given
threshold (vice versa for the case of DOWN). Otherwise,
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Gjx is given a value of NOCHANGE. In this study, r =
50% and a P threshold 0.05 were used.

Learning contextual gene set interaction networks

A contextual gene set interaction network is built from
Su, which is a set of all samples after the expression
summarization of the original gene expression matrix
D, by computing the likelihood of dependency d; =
Pr(G; < Gj|Sy) (= dj) between each pair of con-
textual gene sets G; and G;. G; < Gj is a connec-
tion between two contextual gene sets G; and G; in any
direction. We used the Bayesian network model to iden-
tify the dependency between contextual gene sets, and
the BANJO software (http://www.cs.duke.edu/~amink/
software/banjo/) was used to learn Bayesian networks.
From R independent runs of BANJO with S, d;; was
computed as a frequency of the undirected connection
G; < G;j as follows:

Y XL E(BNL, G < G))

R . 1)

d;

where BNy is a Bayesian network structure from kth run
of BANJO, and F is a function that returns 1 if BN} has
G; < G;j, or 0 otherwise. The direction of connections in
the Bayesian networks was ignored as we consider either
direction of a connection to represent the same existence
of dependency between two contextual gene sets. If d;; is
larger than a given threshold dy, we declared that a depen-
dency exists between G; and G;. In our study, we used
R =1,024and dy = 0.5.

Identifying condition-specific network components

Our approach to identify the specificity of a dependency
relationship to a condition is measuring the effect by the
samples of a condition on the likelihood of the depen-
dency. When S7, is a set of samples of a condition T, the
amount of effect y by St, on a dependency relationship
G; < G; is defined by the relative ratio of the dependency
likelihood with Sy; to the likelihood with S;; — S7,. More
specifically, y can be defined as follows:

d,.
v(Gi < GjiSu,S1) = —7, 2)
d;

where d;k = Pr(G; <> G;|Sy — St1;). One characteristic of
y is that ¥ (G; < Gj; Sy, St) is proportional to Pr(G; <
G;|St,), which is a conventional measure for the relevance
of G; < Gj to the type T.

Theorem 1. Once Sr, is given, y (G; < Gj;Sy,ST;) is
proportional to Pr(G; < Gj|St,).
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Proof. With the Bayes’ theorem,

Pr(G; < Gj|Sy)
G; G;Su, S = 3
v(Gi < Gj; Su, Sty) Pr(G; < G;j|Sy — St,) ®

_Pr(Su|Gi < Gj) Pr(G; < G))

4
Pr(Syy) @)
% Pr(su - STk)
Pr(Sy — S1,1G; < Gj) Pr(G; < G))
Pr(Suy|G; < G)) y Pr(Sy — St,) 5)

"~ Pr(Su — S7,1G;i < G)) Pr(Sy)
By assuming independence in observing each sample
given G; < Gj,
Pr(Sy — St)
Pr(Su)
(6)

v(G; < Gj; Sy, S1,) = Pr(S,1G; < Gj) x

With the Bayes’ theorem,
Pr(S7,|G; < Gj) Pr(G; < G))

Pr(Gi <> G,’|ST,<) =

Pr(St,)
(7)
Thus,
Pr(St,)
Pr(S7,1G; < G)) = m x Pr(G; <> G;jIST,)
(8)
From equations (6) and (8),
Pr(St,)
v(G; < G; Sy, S1,) = m x Pr(G; <> Gj|ST,)
©)
Pr(Sy — St)

Pr(Sy)

1 Pr(Sy — St,) Pr(St,)
— Pr(G; < Gj|S
PrG < Gj) X Pr(Sy) xPr(G; < 1| Tk)

(10)

By assuming a uniform prior for Pr(G; < Gj), m

. L Pr(Sy—S7,) Pr(Sty) .
is a constant. And once S7, is given, W

also a constant. Thus, the equation (10) can be written as
follows:

v(G; < G; Sy, S1) = C x Pr(G; < GjISt,), (11)
where C is a constant. Therefore,

v(G; < G;Sy, S1,) o« Pr(G; < G;j|STy) (12)

O

The benefit of this characteristic is that y can be used
instead of the conventional measure Pr(G; < G;j|ST;),
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especially when the direct measurement of Pr(G; <
G;j|ST,) can be unreliable due to the limited number of
samples for each condition, which is the case of many
biological applications.

To measure the statistical significance of y(G; <
Gj;Su,St,), a permutation test is done by using S’Tk
instead of S7,, which is built by randomly selecting |St, |
samples from Sy;. If H out of M permutations gave y
greater than or equal to ¥ (G; < Gj; Sy, St,), the statisti-
cal significance P of y(G; < Gj; Sy, St,) is H/M. When
v(G; < Gj;Sy,St,) is larger than a given threshold yy
and its P is lower than a threshold, G; < Gj is declared
to be specific to the condition T%. In our study, we limited
M to 100 for each significance test of y due to the com-
putational cost of repeating Bayesian network learning
many times for each permutation. yy = 2, which indicates
two-fold or higher increase of dependency relationship by
adding the sample of the condition T, and P = 0.05 were
used as threshold values.

Annotation of gene sets

GATHER [20] was used to identify GO terms that are
associated to each contextual gene set with statistical sig-
nificance, where the terms from molecular function and
biological process categories were considered. P = 0.01
was used as a significance threshold. For annotating spe-
cific regions in a contextual gene set interaction network,
we computed the overlap of genes (all, over-expressed, or
under-expressed) in a region with the pathway gene sets
in MSigDB [27], and its statistical significance was eval-
uated with a hypergeometric P. After the false discovery
rate (FDR) correction of P values using Benjamini and
Hochberg’s method, FDR-corrected P = 0.01 was used as
a significance threshold.
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