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Abstract

Background: Orthoptera, the largest polyneopteran insect order, contains 2 suborders and 235 subfamilies.
Orthoptera mitochondrial genomes (mitogenomes) follow the ancestral insect gene order, with the exception of a
trnD-trnK rearrangement in Acridomorphs and rare tRNA inversions. A question still remains regarding whether a
long thymine-nucleotide stretch (T-stretch) involved in the recognition of the replication origin exists in the control
region (CR) of Orthoptera mitochondrial DNA (mtDNA). Herein, we completed the sequencing of whole
mitogenomes of two congeners (Sinochlora longifissa and S. retrolateralis), which possess overlapping distribution
areas. Additionally, we performed comparative mitogenomic analysis to depict evolutionary trends of Orthoptera
mitogenomes.

Results: Both Sinochlora mitogenomes possess 37 genes and one CR, a common gene orientation, normal
structures of transfer RNA and ribosomal RNA genes, rather low A+T bias, and significant C skew in the majority
strand (J-strand), resembling all the other sequenced ensiferans. Both mitogenomes are characterized by (1) a large
size resulting from multiple copies of an approximately 175 bp GC-rich tandem repeat within CR; (2) a novel gene
order (rrnS-trnI-trnM-nad2-CR-trnQ-trnW), compared to the ancestral order (rrnS-CR-trnI-trnQ-trnM-nad2-trnW); and (3)
redundant trnS(UCN) pseudogenes located between trnS(UCN) and nad1. Multiple independent duplication events
followed by random and/or non-random loss occurred during Sinochlora mtDNA evolution. The Orthoptera mtDNA
recognition sequence of the replication origin may be one of two kinds: a long T-stretch situated in or adjacent to
a possible stem-loop structure or a variant of a long T-stretch located within a potential stem-loop structure.

Conclusions: The unique Sinochlora mitogenomes reveal that the mtDNA architecture within Orthoptera is more
variable than previously thought, enriching our knowledge on mitogenomic genetic diversities. The novel genome
rearrangements shed light on mtDNA evolutionary patterns. The two kinds of recognition sequences of replication
origin suggest that the regulatory sequences involved in the replication initiation process of mtDNA have diverged
through Orthoptera evolution.
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Background
Insect mitogenomes are generally compact with few
intergenic spacers and possess stable gene content and
organization. They are usually about 16 kb in size and
bear 13 protein-coding genes (PCGs), 2 ribosomal RNA
genes (rRNAs), 22 transfer RNA genes (tRNAs), and one
control region (CR) that includes replication and tran-
scription origins [1]. However, extensive studies have
revealed that gene order rearrangement and size vari-
ation that results from the presence of tandem repeats
(TRs) and other non-coding regions occur more often
than previously expected. Much attention has been paid
to studies focusing on unveiling genomic diversities and
evolutionary trends. Recently, a mitogenomic investigation
of congeneric species has yielded a valuable approach for
assessing mtDNA evolutionary trends [2]. Unfortunately,
in spite of the large number of insect species, the limited
availability of complete mitogenomic sequence data, in-
cluding those of congeneric species, impedes a thorough
understanding of the insect mitogenomes.
Orthoptera, the largest polyneopteran order, contains

235 subfamilies and over 22,500 described species, taxo-
nomically divided into two suborders: Caelifera (locusts
and grasshoppers) and Ensifera (katydids and crickets
etc.) [3]. Orthoptera mitogenomes generally possess a
relatively stable gene content and organization identical
to the insect ancestor [1]. Only a trnD-trnK rearrange-
ment in the lineage Acridomorpha [4,5], inversion of the
gene cluster trnE-trnS(AGN)-trnN in Teleogryllus emma
[6], and occasional inversion of trnW in the migratory
locust [7] have been discovered. A mitogenomic diver-
gence in the AT-bias between the two suborders has
been demonstrated, i.e., the AT-content was generally
lower in Ensifera than in Caelifera [4]. Additionally, a
possible stem-loop structure has been implicated in
mtDNA replication initiation in a few caeliferans [8,9],
which contrasts with the recognition of the mtDNA rep-
lication origin (OR) that involves a long T-stretch in
most other insects [8]. However, representative katydid
mitogenomes, e.g., Anabrus simplex and Deracantha onos,
revealed the existence of a long T-stretch [10,11]. Further-
more, mitogenomes of 27 Caelifera and 10 Ensifera spe-
cies available from GenBank demonstrate a distinct taxon
sampling imbalance between the two suborders. Thus,
additional Ensifera taxon sampling is essential to inves-
tigate the mitogenomic genetic diversities and evolution-
ary trends.
The genus Sinochlora Tinkham [12], Chinese bush ka-

tydid, belongs to the subfamily Phaneropterinae in the
suborder Ensifera. In Sinochlora, one species S. longifissa
is widespread in East Asia including Japan, Korea, and
southern China, and two species are widely distributed
and indigenous in southern China [13]. Other species
are endemic in various large mountains in southern
China including low-altitude areas in Tibet [13,14]. In-
vestigation of the mitogenomic evolutionary trends of
the genus is helpful to unveil the molecular mechanism
of the divergence patterns.
Herein, we chose two representative species, S. longifissa

distributed in East Asia, and S. retrolateralis narrowly en-
demic in southern China, for mitogenomic investigation.
We sequenced the mitogenomes of the two congeners,
unveiled novel mitogenomic characteristics, and outlined
the possible rearrangement mechanism. Additionally, we
also compared the recognition sequences of the OR in
known Orthoptera mitogenomes. Overall, we attempted
to provide the molecular basis for understanding diversifi-
cation of the genus Sinochlora and depict molecular diver-
sity and evolutionary trends of Orthoptera mitogenomes.

Results and discussion
Genome organization
We sequenced the complete mitogenome of S. longifissa
(18,133 bp) and the nearly complete mitogenome of S.
retrolateralis (17,209 bp) with a partial CR. The mitoge-
nomes of S. longifissa and S. retrolateralis have been
deposited in the GenBank database under accession
numbers of KC467055 and KC467056, respectively. They
are currently the largest Orthoptera mitogenomes on
GenBank. Their large sizes are due to two large non-
coding regions, i.e., the CR and one intergenic spacer
(IGS) located between trnS(UCN) and nad1. Both
mitogenomes (Table 1) resemble the available ensiferan
mitogenomes [4] and the proposed ancestral insect
mitogenome [1] in gene content and orientation, tRNA
anticodons, and tRNA/rRNA structures (Figure 1). Addi-
tionally, there are several gene overlaps, such as the open
reading frames (ORF) of atp6-atp8 and nad4L-nad4, each
of which overlaps by seven nucleotides (Table 1). A few
other IGS are also present in the mitogenomes (Table 1).

Nucleotide composition
Like other ensiferans, the two mitogenomes show com-
paratively low A+T bias (69.05% in S. longifissa and
70.08% in S. retrolateralis) (Additional file 1), compared
with most caeliferans [4]. The AT skew is 0.0017 in S.
longifissa and 0.0063 in S. retrolateralis, while the GC
skew is -0.2983 in the former and -0.3218 in the lat-
ter, indicating weak A skew and strong C skew in the
J-strand. Through comparison of nucleotide skew in all
sequenced Orthoptera, the skew divergence between the
two suborders was detected. Within the Ensifera, the AT
skew values of the whole J-strand range from -0.1 to 0.1
and GC skew values are lower than -0.25, showing the
same skew patterns as in Sinochlora species (Figure 2).
By contrast, within the Caelifera except a tridactylid
Ellipes minuta [4], absolute values of AT skew and GC
skew of the J-strand range from 0.1 to 0.25, indicating



Table 1 Mitogenome organization of the two Sinochlora species

Feature Strand Position Initiation codon Stop codon Anticodon

Sl Sr Sl Sr Sl Sr

trnI J 1-66(+5) 1-66(+5) GAT

trnM J 72-138(-3) 72-138(0) CAT

nad2 J 139-1161(0) 139-1161(0) ATA ATA TAA TAA

ATR —— 1162-2552(0) 1162-2547(0)

TRU —— 2553-4281(+33) 2548-3419(+33)*

trnQ N 4383-4315(+35) 3521-3453(+36) TTG

trnW J 4419-4484(-1) 3558-3623(-1) TCA

trnC N 4547-4484(+2) 3687-3623(+3) GCA

trnY N 4616-4550(+16) 3757-3691(+16) GTA

cox1 J 4633-6148(0) 3774-5289(0) TCT TCT T T

trn L(UUR) J 6149-6212(+2) 5290-5353(+2) TAA

cox2 J 6215-6905(0) 5356-6045(+1) ATG ATG T TAA

trnK J 6906-6975(-1) 6047-6116(-1) CTT

trnD J 6975-7042(0) 6116-6183(0) GTC

atp8 J 7043-7207(-7) 6184-6348(-7) ATC ATC TAA TAA

atp6 J 7201-7875(+2) 6342-7015(0) ATG ATG TAA TA

cox3 J 7878-8678(0) 7016-7815(0) ATG ATG TAA TA

trnG J 8679-8742(0) 7816-7880(0) TCC

nad3 J 8743-9096(+6) 7881-8234(+7) ATC ATC TAA TAA

trnA J 9103-9170(-1) 8242-8308(-1) TGC

trnR J 9170-9232(+4) 8308-8370(+4) TCG

trnN J 9237-9302(0) 8375-8440(0) GTT

trnS (AGN) J 9303-9369(0) 8441-8507(0) GCT

trnE J 9370-9435(-2) 8508-8573(-2) TTC

trnF N 9496-9434(0) 8634-8572(0) GAA

nad5 N 11213-9497(0) 10351-8635(0) ATA ATA T T

trnH N 11278-11214(0) 10416-10352(0) GTG

nad4 N 12614-11279(-7) 11752-10417(-7) ATG ATG T T

nad4L N 12907-12608(+1) 12045-11746(+10) ATA ATA TAA TAA

trnT J 12909-12972(-1) 12056-12119(-1) TGT

trnP N 13040-12972(0) 12187-12119(0) TGG

nad6 J 13041-13558(0) 12188-12705(0) CTG TTG TA TA

cob J 13559-14693(0) 12706-13840(0) ATG ATG T T

trnS(UCN) J 14694-14762(+161) 13841-13908(+94) TGA

nad1 N 15862-14924(+3) 14941-14003(+3) ATT ATT TAG TAG

trnL(CUN) N 15928-15866(-1) 15007-14945(0) TAG

rrnL N 17230-15928(-2) 16307-15008(0)

trnV N 17300-17229(0) 16378-16308(0) TAC

rrnS N 18083-17301(+50) 17159-16379(+50)

Sl, S. longifissa; Sr, S. retrolateralis. The number of intergenic nucleotides before the gene starts are shown in parenthesis. The asterisk indicates that the tandem
repeat region in S. retrolateralis was not completely sequenced.
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Figure 1 Mitogenome organization across sequenced Orthoptera. Genome organization of (A) most sequenced ensiferans, few caeliferans,
and proposed insect ancestor; (B) all sequenced Acridomorphans in Caelifera; (C) Teleogryllus emma, an ensiferan; (D) the two Sinochlora species.
For the purpose of presentation, the circular mitogenomes are linearized. The translocated regions are highlighted in color. Genes are transcribed
from left to right, except those underlined which are transcribed from right to left. Gene lengths are not to scale.
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pronounced A skew and C skew (Figure 2). The syn-
onymous fourfold degenerate third codon positions
(P4fd) suffer less selective constraints, and thus could in-
dicate background mutational pressures on nucleotide
skew [15]. The skew patterns at the P4fd between the
two suborders are consistent with those on the J-strand
(Figure 2). It is proposed that nucleotide composition
bias and skew are caused by the selection-mutation-drift
equilibrium in the molecular evolution [16]. The asyste-
matical directional mutation pressure and corresponding
deaminations of cytosine and adenine in the mitogenomes
are involved in the mutation processes [17].
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Figure 2 Comparison of AT and GC skews between Caelifera and Ens
P4fd in protein-coding genes on the J-strand. Circles and squares separately
Start and stop codons
All PCGs except cox1 and nad6 start with typical ATN
codons. A previous study concerning Orthoptera mito-
genomes suggested that the cox1 gene may start with an
irregular tetranucleotide codon AUGA [4]. Similar ir-
regular tetranucleotide codons were also proposed as
start codons in Drosophila [18,19]. However, there is no
experimental evidence for the use of a 4-bp start codon
in any creature. Recent research on characteristics of
mature mRNA and rRNA genes from D. melanogaster
mitochondria showed that UCG serves as the start
codon of its cox1 gene [20]. The result is consistent with
ecies

                                           Ensifera

ifera. Triangles and diamonds separately represent AT and GC skews at
represent AT and GC skews of the whole J-strand.
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predictions of the start of cox1 suggested by comparison
of conserved amino acid positions [21]. By comparing
amino acid sequences of cox1 in all sequenced Orthop-
tera, we observed that the first conserved codon is the
TCN serine codon, downstream of which at least three
codon positions are also conserved and there are no
standard ATN bases (Additional file 2). Thus, in both
Sinochlora species, the conserved TCT serine codon
may also serve as a start codon. Concerning the nad6
gene, it has been proposed to start with ATN codons in
other sequenced orthopterans; however, there are no
conserved amino acid positions within the span of over
50 amino acids downstream of trnP (Additional file 3).
Then we propose that the nad6 may start with CTG in
S. longifissa and TTG in S. retrolateralis, considering
previous designation of such start codons [22,23]. The
two start codons, creating no IGS or overlap between
trnP and nad6 genes, also appear to be more plausible
in the evolutionary economic perspective [22].
Two standard stop codons TAA/TAG and two incom-

plete stop codons T/TA are utilized in the PCGs. For S.
longifissa, six PCGs (nad2, atp8, atp6, cox3, nad3, and
nad4L) terminate with TAA, one (nad1) with TAG, one
(nad6) with TA, and the other four (cox1, nad5, nad4,
and cob) with T. The stop codons differ between the two
congeners in that TAA is utilized as the cox2 stop
codon, and TA is utilized as the atp6 and cox3 stop
codon in S. retrolateralis. A partial T or TA stop codon,
which was proposed to create complete TAA stop
codons via posttranscriptional polyadenylation [24], is
also present in other metazoan mitochondrial genes.

Novel gene order rearrangement involving the control
region
One of our most significant findings is the novel gene or-
der rearrangement "rrnS-trnI-trnM-nad2-CR-trnQ-trnW"
in both Sinochlora species (Figure 1). The two mitoge-
nomes are the first representatives that have a large-scale
translocation involving the CR in Orthoptera. Such gene
order has not been observed in other sequenced insect
mitogenomes. The gene cluster rrnS-CR-trnI-trnQ-trnM-
nad2 in the proposed ancestral mitogenome has been
discovered to function as a hot spot for gene rearrange-
ments in arthropod mitogenomes. Duplicate trnI and par-
tial trnQ genes have been discovered in the CR close to the
rrnS gene in some blowflies [25,26]. In a mantid, a compli-
cate set of repeat units dispersing in both ends of the CR
also translocated between trnM and nad2 [27]. A plague
thrips displayed CR duplications that are distant from the
rRNA genes [28]. Various locations of the CR and
neighboring tRNA genes have been exhibited in lice [29].
Location variability of the putative CR has also been
reported as a product of the tRNA gene translocation, such
as rrnS-trnQ-CR-trnI-trnS(UCN)-trnM-nad2 in a springtail
[30], or the tRNA and rRNA gene translocation, such as
rrnL-trnV-trnS(UCN)-trnC-CR-rrnS in a mite [31]. The CR
and the neighboring genes have also been found to be
duplicated in some ticks [32].

Organization of the control region
For both Sinochlora species, the putative CR is com-
posed of two major sections with different nucleotide
compositions: a highly A+T-biased region (ATR) adja-
cent to nad2 and several GC-rich TR units adjacent to
trnQ. For the former, the A+T content is 75.70% in
S. longifissa and 75.61% in S. retrolateralis. By contrast,
the TR region has low bias toward A+T (55.52% in
S. longifissa and 58.26% in S. retrolateralis). The ATR is
conserved between the two congeners in length, nucleo-
tide composition and secondary structure. Its length is
1,391 bp in S. longifissa and 1,386 bp in S. retrolateralis,
consistent with the A+T-rich region of other ortho-
pterans [4,33]. The two species share 82.6% sequence
identity in this region. A long T-stretch and several
conserved potential hairpin structures are thought to
play significant roles in initiating and/or regulating the
transcription and replication of mtDNA [8]. They were
also found in the both Sinochlora species. The long
T-stretch (> 18 bp) is situated in the initial quarter of
the ATR on the J-strand, and a similar T-stretch (> 8 bp)
is situated in the initial third of the ATR on the minority
strand (N-strand) (Figure 3A). The two species also
share 97.10% sequence identity in the domain located
between these two T-stretches. The domain has seven
similar sites capable of forming 8- to 33-bp stem-loop
structures (Figure 3B). Additionally, there are three simi-
lar sites for the formation of 11- to 25-bp stable
hairpins, with 7- to 11-bp loops supported by 1–5 GC
matches in the stems, adjacent to the 5’ end of the
T-stretch on the J-strand (Figure 3B).
In S. longifissa, the TR region is 1,731 bp in length,

comprising nine full 175-bp copies and a partial 153-bp
copy. In S. retrolateralis, a total of five 175-bp repeat
copies have been successfully sequenced from both ends
of the TR; however, we failed to sequence through the
whole TR region due to the presence of a large number
of repeat copies. We estimate that there are twelve 175-
bp tandem copies in S. retrolateralis based on the length
(~2,100 bp) of the TR indicated by gel electrophoresis.
The consensus TR motifs of the two species share 61.2%
sequence identity. In S. longifissa, four of the nine TR
motifs are identical to the consensus TR motif, and the
other five have a few mutations and/or deletions. Among
the nine TR motifs, all but the fourth possess an ORF.
The consensus ORF could be translated into 58 amino
acids, starting with lysine (AAA) and ending with valine



T T T T T T T T T T T T T T T T T T A T -

T T T T T T T T T T T T T T T T T T T T T

Sl

Sr

nad2 QTR

J-strand

N-strand3’

5’

Sl C TTTTTTTTATTTTTTTG

Sr C TTTTTTTTATTTTTTTG

 

A

A

A

A

A

A

T

C

T

T

T

T

T

A

T
T

T
A
G

T

A

A

G

A

A

G
T
A
A

A

T

T

T

T

T

TA

C

T

A

A

A

A

T
G

T

C
T T C

T

T

A
A

T

T

T

T

A

G

TG

A

T

A

A A
A
A

A

T

C C

G

T

G

C

G

T

C

T
C

A
A

C

G

G

C

C

A

T

G

G

A

A

T

A

A

A
T
A

C

T

T

A
T

C

T
C T T

A
A

A
T

A

A

G

C

T

T

T

A

T

T C

T

A
A A

T

A

G A

T

A

G

T
A

A

T
G

T
T

T

A
A

A
T

A
A T T A

A
T

T
C

T

T
A

C
AA

T

T

A

C

T

A

T A

A

T

C

T

C
T G

T
A

A

G

A

T

T G

T

G

C

C

T

T
T

C
C C C

T

A

T
A

G

G

C

A

T A

G

G

T

T

A

T

A
C

G

G

T
A

T
T

C C T
G

C

A
T
A

T
T

T

A

T

A

A

G

C

T C

T

A

A

A

C

C

C

C
T T T

C

T

G

G

A

T

T

A

G A

T

T

A
T

A

T
T

A

T

A

C

A

A
G C

A

T

G

T

A

T

A

T

A

T

A

A

T A

A

T

G

A

A

A

A

A

A

A

A

G
C

C
C

C

C

C

A
A

A
A G G T

C
A

T

T
T

A
C

G
A

C

T

T

T

T

T

T
T

T

C

A

T

T5’ 3’... ...A

A

T

G

A

A

A

A

A

A

A

A

A

A

A

A

A

T

T

T

T

T

T

T

T

T

T

T

T

highly A+T-biased region

A

B

A
A
G

A

A

A

G

C
C

G
C

A

A

G

C

A

AG A

A

A

A

A

A
A

A
AA

A

A

A

A

A

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

T

T

T
T

T

TT

T

T

T

T

T

T

T

T

T T

T

T

T

T
TT

C

C

C

C

C

C

C

C

C C

C C

C

C

C

C

CC

C

C

C

C

T

T

TT

AC

T

T

T

T

T

T
T

T

T T

T

T

T

T

T

T

T

T

T

T

T

T

T

TT

T

T

C

C

C

GATAAAT

G

G

A

A
A

A A

A

A

A

A
A A

A
A

A

A

A

A

A

A

A

A
A

A

A

A
A

A

A
A

A

A

C

C

C

C

CC

C

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

C

C

C
C

C

C

C

C

C

C
C

CT

T

C

C

C

CC

C

T

T

T

G

G

G

A

A
AA

G

G

C

T TTTT

TT

C C

C

A A A A A

AG

G G

C

T 3’...

G 3’...

5’...

5’...

18                      6                 1                    2                          16                                24                            27

 5                           3                          10                                10                                     45

 6          17           6              53        13          88          1           7                  3                     8                6                 23

C

D

Figure 3 (See legend on next page.)
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Figure 3 Organization of the control region. (A) Structure of the control region and its neighbourhood. (B) Shared potential stem-loop
structures situated in the highly A+T-biased region on the J-strand (depicted as in S. longifissa). Predicted secondary structures of the first tandem
repeat and flanking junctions in S. longifissa (C) and in S. retrolateralis (D). Sl, S. longifissa; Sr, S. retrolateralis. T-stretch is highlighted in carmine.
Arrows indicate the initiation location of a certain repeat unit. The numbers of bases between hairpins are shown above the line. Gene lengths
are not to scale.
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(GTG) (Additional file 4). Low shared identities (< 45%)
with nuclear sequences in search of the GenBank data-
base exclude the possibility that the ORF is transferred
from the nuclear genome. It has 47.1% identity with the
antisense strand of nad4, and 45.9% identity with the
sense strand of cox1. The shared bases are scattered
in alignment, among which over 60% are A and T
(Additional file 5). This suggests that the ORF might not
be obtained through horizontal transfer between mito-
chondria. In contrast, no ORF could be found in the
S. retrolateralis TR motif.
The TR motif could be duplicated through slipped-

strand mispairing [34,35]. Moreover, potential stem-loop
structures in a repeated unit and its flanking part have
been demonstrated to cause an increase in slipped-
strand mispairing frequency [35,36]. Stem-loop struc-
tures were detected in the TR region of the two
Sinochlora species. For example, in the first TR unit and
its junctions at both ends in S. longifissa, the nucleotide
sequence can potentially form seven 8- to 27-bp hairpins
with 5- to 10-bp loops supported by 1–5 GC matches in
the stem (Figure 3C). In the corresponding regions in
S. retrolateralis, the nucleotide sequence can potentially
form six 10- to 29-bp hairpins with 5- to 15-bp loops
supported by 1–4 GC matches in the stem (Figure 3D).
Similar complicated hairpin structures in TR were also
detected in the louse Bothriometopus [23] and termites
[37,38]. However, there are no conserved stem-loops
among the TRs and at the joints in these insects.

Unassigned intergenic spacers and trnS(UCN)
pseudogenes
Eleven IGSs with identical locations are present in S.
longifissa (totalling 318 bp) and S. retrolateralis (263 bp);
one additional IGS is situated between atp6 and cox3
in S. longfissa (2 bp) and between cox2 and trnK in
S. retrolateralis (1 bp) (Table 1). The largest IGS (161 bp
for S. longifissa and 94 bp for S. retrolateralis) lies between
trnS(UCN) and nad1. By comparing the IGS of currently
available Orthoptera mitogenomes, we found a 7-bp
conserved motif (THYTHDA) downstream the nad1
across Orthoptera, with the only exception of Mekongiella
xizangensis (Additional file 6). The conserved motif has
been proposed as a binding site for mitochondrial tran-
scription termination factor (mtTERM) in Orthoptera [4].
Similar conserved motifs, which were proposed as a bin-
ding site of the mtTERM, between trnS(UCN) and nad1
have also been found in Lepidoptera [39], and Coleoptera
[40]. It has been confirmed that one of the two binding
sites of mtTERM lies downstream of nad1 in Drosophila
[41,42].
In the IGS region between trnS(UCN) and nad1, we

detected the vestige of one additional trnS(UCN) gene
copy in both Sinochlora species. While both trnS(UCN)
pseudogenes possess the same anticodon to the func-
tional trnS(UCN), they are unable to form stable clover-
leaf secondary structures (Figure 4). Relative-rate tests
show that both pseudogenes evolved more than twice as
fast as their functional paralogs (Table 2). This suggests
that the redundant trnS(UCN) pseudogenes have expe-
rienced more relaxed selective constraints. In addition,
the IGS region in S. longifissa could be folded into three
19- to 25-bp stable stem-loop structures (Figure 4C).
The anticodon lies in the stem of the second hairpin and
the 7-bp conserved motif aforementioned lies adjacent to
the 3’ end of the third hairpin (Figure 4C). In contrast,
there is no hairpin in the IGS region in S. retrolateralis.
Mechanism of genome rearrangements
The predominant mechanism of mitogenome rearrange-
ments is considered to be partial genome duplication
followed by a random [34,43,44] or non-random loss of
the duplicated gene copies [45]. For the rearrangement
involving the CR neighbourhood, we propose that the
ancestor of the two Sinochlora species possessed the
same gene order as ancestral insects [1]. Firstly, the gene
cluster CR-trnI-trnQ-trnM-nad2 was duplicated, likely
promoted by the stem-loop structures detected in the
CR (Figure 3C,D). Subsequently, non-random deletions
might happen to the entire subset of the duplicated
genes, dependent on the gene copy’s transcriptional
polarity and location in the genome, because the CR
includes a transcriptional control sequence [45]. Namely,
the redundant genes which possess the same polarity,
such as the redundant gene cluster trnI-trnM-nad2,
were successively deleted during replication (Figure 5).
By contrast, persistence of the trnS(UCN) pseudogenes
may have resulted from the tandem duplication of trnS
(UCN) followed by a subsequent random loss of the trnS
(UCN) paralogs. Apparently, more knowledge of



Figure 4 Analysis of the trnS(UCN) pseudogenes. (A) Alignment of the trnS(UCN) gene and its pseudogenes in the two Sinochlora species; (B)
Minimum Evolution phylogram inferred from the alignment; (C) secondary structures in the IGS between trnS(UCN) and nad1 in S. longifissa. The
nucleotides highlighted in yellow and carmine represent the anti-codon and the conserved motif related to mtTERM, separately. The number of
bases between hairpins are shown in figure C. Sr, S. retrolateralis; Sl, S. longifissa; Mm, Myrmecophilus manni; Ser, trnS(UCN); pSer, trnS(UCN)
pseudogenes.
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transcription signals in insect mitogenomes and sam-
pling additional closely related taxa will be helpful to
understand the rearrangement mechanism.

Recognition sequences of replication origins
The T-stretch is involved in the recognition of the OR of
mtDNA at least among holometabolous insects, whereas
similar T-stretch was not found in the upstream portion of
the OR for L. migratoria (hemimetabolous insect) [8].
However, after a thorough re-investigation, we detected
long T-stretches or variants of T-stretch in the putative CR
of available Orthoptera mitogenomes (Additional file 7).
The long T-stretch can be observed in the available
sequences of all katydids (Figure 6), except Ruspolia dubia,
and varies in size from 10 (E. cheni) to 21 bp (S. retro-
lateralis). The T-stretches could participate in the forma-
tion of or be positioned adjacent to a possible stem-loop
structure. By contrast, in crickets and grasshoppers,
T-stretch variants can be detected within a potential stem-
Table 2 Relative-Rate Test results for contrasts between
trnS(UCN) genes and pseudogenes

Contrast Rates SD P Value

All S. Ser versus all S. pSer 0.338989 versus 0.675022 0.1326 0.0113*

Sr-Ser vesus Sr-pSer 0.364826 versus 0.791345 0.1855 0.0215*

Sl-Ser vesus Sl-pSer 0.297057 versus 0.604668 0.1299 0.0179*

Results of all possible pairwise contrasts between trnS(UCN) genes and trnS
(UCN) pseudogenes are significant (P < 0.01). SD, standard deviation; Sr, S.
retrolateralis; Sl, S. longifissa; Mm, Myrmecophilus manni; Ser, trnS(UCN); pSer,
trnS(UCN) pseudogenes.
loop structure (Figure 7). In the T-stretch variants, a few
transitions between thymine and cytosine occurred to
form (T)nC(T)n sequences. The T-stretch variants lie
proximal to the middle part of the CR in the crickets, vary-
ing in size from 13 to 19 bp (Figure 7A). The T-stretch
variants vary in size from 16 to 18 bp in grasshoppers
(Figure 7B), with the exception of Alulatettix yunnanensis.
In A. yunnanensis, a small T-stretch could be observed in
the stem portion of a hairpin structure, similar to that
observed in katydids (Figure 7B).
Human mtDNA synthesis is initiated from the sites

near the stem base of the secondary structure located
around the light strand origin, and the small T-stretch
(6–11 bp) located in the loop portion participates in the
initiation process [46]. The secondary structure in
human and other vertebrate mtDNA is very similar to
the aforementioned stem-loop structure in the
orthopterans [8]. Therefore, the long T-stretch, which
participates in the formation of or is adjacent to a pos-
sible stem-loop structure in katydids, and the T-stretch
variants within the stem-loop structure of crickets and
most grasshoppers, could also play a crucial role in
mtDNA replication initiation. Notably, the T-stretch in
cockroaches and termites also participates in the forma-
tion of a certain stem-loop structure (Additional file 8).
However, the stem-loop structure around the mtDNA
OR could not be detected in Drosophila [8]. Therefore,
the OR recognition sequences of mtDNA, although gen-
erally detected in Orthoptera, have diverged not only
among Orthoptera but also throughout insect evolution.



Figure 5 Hypothesized duplication/non-random loss model for derived gene order in the two Sinochlora species. Single letters refer to
tRNA genes for the corresponding amino acid. Genes are transcribed from left to right, except those underlined to indicate an opposite direction.
Gene lengths are not to scale.
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Conclusions
The two Sinochlora congeners represent the first two
orthopterans that have a large-scale translocation involv-
ing the CR. It seems that the present mitogenome
rearrangements are a consequence of tandem duplica-
tion followed by non-random loss of paralogs. However,
future research including additional taxon sampling is
needed to determine rearrangement mechanisms and
evolutionary processes. Comparison of the OR recogni-
tion sequences among Orthoptera and other insects will
aid in further understanding of mechanisms underlying
mtDNA replication. Divergence in nucleotide bias and
skew of mtDNA exists between the two suborders of
Orthoptera. Future studies on mtDNA-based phylogeny
of Orthoptera should therefore take into consideration
the base compositional heterogeneity, which could lead
to incorrect phylogenetic inferences [47,48].

Methods
Taxon sampling and mitochondria DNA extraction
Specimens of S. longifissa and S. retrolateralis were
collected from Wuyi Mountain, Fujian, South China in
2005. The specimens were preserved in 95% ethanol and
stored at 4°C. The mitochondria were isolated as previ-
ously described [49], and mtDNA was extracted with the
DNeasy Blood & Tissue Kit (Qiagen).
Genome determination
First, short gene regions within individual genes (cox1,
cox3, cytb, nad1, rrnL, and rrnS) were amplified and
sequenced using listed primers (Additional file 9). Then
the obtained sequences were used to design specific
primers for amplifying overlapping fragments spanning
the whole mitogenomes.
Fragments larger than 3 kb were amplified using

TaKaRa LA Taq™ (Takara, Dalian, China), with the
following cycling conditions: an initial denaturation at
94°C for 3 min, followed by 36 cycles of denaturation at
94°C for 30 s, annealing at 50–57°C for 30 s, and exten-
sion at 68°C for 3–8 min (1 kb/min), with a final elong-
ation at 68°C for 6 min after the last cycle. 16 fragments
smaller than 3 kb were performed using TaKaRa ExTaq™

or TaKaRa rTaq™ (Takara, Dalian, China), with the
following cycling conditions: an initial denaturation at
94°C for 3 min, followed by 36 cycles of denaturation at
94°C for 30 s, annealing at 45–60°C for 30 s, and exten-
sion at 72°C for 1–2 min (1 kb/min), with a final elong-
ation at 72°C for 6 min after the last cycle. After
purification with AxyPrep™ DNA Gel Extraction Kit,
most PCR products were directly sequenced by means
of primer walking, and other fragments were cloned into
the pGEM-T Easy vector (Promega, USA) prior to
sequencing.



Figure 6 Potential stem-loop structures adjacent to T-stretches in the superfamily Tettigonioidea. The nucleotides highlighted in red
represent the location of the T-stretch.
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Concerning the CR, long PCR amplicons were suc-
cessfully amplified, which encompassed the entire CR
from nad1 to cox2 genes for both species, but gel elec-
trophoresis showed multiple bands. The largest and
brightest band was chosen to clone into the pGEM-T
Easy vector for sequencing. Sequencing primers were
designed from flanking regions of the whole TR region
and subsequently a 400-bp sequence at each end was
obtained. The obtained TR units were analyzed with the
TRF4.0 software [50] in order to design suitable primers
for walking. For S. longifissa, the complete TR region
was sequenced using specific primers that was designed
based on a mutant poly C (8 continuous C) (Additional
file 4) in one of the TR units. For S. retrolateralis, the
length of the PCR product indicates that the TR region
is about 2,100 bp, suggesting that there are 12 complete
tandem repeats; however, only 5 of these tandem repeats
were sequenced.
Sequence assembly, annotation and secondary structure
prediction
The complete mitogenome sequences were assembled
using the SeqMan program from the Lasergene package
software (DNAStar, Madison, WI). tRNA genes were
identified by their cloverleaf secondary structures using
tRNAscan-SE 1.21 [51]. The locations of 13 PCGs and
rRNA genes were determined by comparison of homolo-
gous sequences with other sequenced orthopterans using
the CLUSTAL W programs [52]. Nucleotide composition
statistics, nucleotide bias and skew of the orthopterans
(Additional file 10) except those at P4fd, were retrieved
from the METAMiGA database [53]. Skewness was
calculated to describe strand bias [54], which measures the
relative number of As to Ts (AT skew = [A - T]/[A + T])
and Gs to Cs (GC skew = [G - C]/[G + C]). We obtained
codon usage from the SMS2 website [55] and computed
AT and GC skew at the P4fd on the J-strand. Potential



Figure 7 Potential stem-loop structures including T-stretch variants immediately upstream of ON. The structure in the superfamily
Grylloidea (A) and in the suborder Caelifera (B). T-stretch variants are highlighted in red.
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stem-loop structures of the polyneopterans (Additional file
10) were predicted by the Mfold software [56]. Repeat
sequences were identified with the TRF4.0 software. ORF
was detected using the MEGA5 software [57].

Phylogenetic analysis
Divergence and substitution rates between trnS(UCN)
genes and pseudogenes were investigated, using trnS
(UCN) of Myrmecophilus manni [33] as outgroup. Gapped
positions were eliminated from the resulted alignment.
The remaining 44 sites (including 26 parsimony inform-
ative) were used to reconstruct a distance phylogeny by
Minimum Evolution using JC distances [58], due to the
low number of sites analyzed. Relative-rate tests [59] were
used to calculate substitution rates employing RRTree ver-
sion 1.1.11 [60], presuming JC distances.
Additional files

Additional file 1: Nucleotide composition of functional regions in
the mitogenomes. Sl, S. longifissa; Sr, S. retrolateralis.

Additional file 2: Initiation codons of cox1 in Orthoptera. The
nucleotides highlighted in gray represent the location of trnY. The bases
in box indicate proposed initiation codons of cox1.

Additional file 3: Initiation codons of nad6 in Orthoptera. The
nucleotides highlighted in gray represent the location of trnP. The bases
in box indicate proposed initiation codons of nad6.

Additional file 4: Alignment of sequences of the TR motifs between
the two Sinochlora species. (A) Alignment of the nucleotide sequences;
(B) Alignment of the amino acid sequences. Sl, S. longifissa; Sr, S.
retrolateralis; repX: tandem repeat motifs, where X is the ordinal number.
Dashes indicate alignment gaps. Dots indicate nucleotides (A) or amino
acids (B) that are the same as the first repeat motif of S. retrolateralis.
Asterisks (B) indicate stop codons. Poly C sites are shaded.

Additional file 5: Alignment of the ORF sequences with cox1 (A)
and nad4 (B) in Sinochlora longifissa. Both cox1 and nad4 sequences
are from the J-strand. Conserved A and T bases are highlighted in yellow
boxes, whereas conserved G and C bases are in blue.

Additional file 6: Alignment of the non-coding spacer between trnS
(UCN) and nad1. The 7-bp conserved motif (THYTHDA) across
Orthoptera is boxed. However, the motif is not present in Mekongiella
xizangensis.

Additional file 7: Comparison among the sequences in the control
region of the template strands in Orthoptera. The portion is next to
the rrnS gene except that in the two Sinochlora species the sequences
are the portion that is next to nad2. Location of the free 5’ ends marking
the ON of L. migratoria [4] is indicated. Large arrowheads indicate the
sites where major signals were observed and small arrowheads show the
sites where minor signals were observed. Arrows indicate the direction of
replication. The nucleotide sequence of L. migratoria, which potentially
forms the stem-loop structure upstream of the ON, is underlined. The
nucleotides highlighted in red represent the location of T-stretch or T-
stretch variant.

Additional file 8: The potential stem-loop structure involving a
T-stretch or T-stretch variant in cockroaches (A) and termites (B).
The nucleotides highlighted in green represent the T-stretch variant.

Additional file 9: PCR primers used in the present study.

Additional file 10: List of taxa used in the present analysis.
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