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Abstract

data for the 7G8 and GB4 isolates.

Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue
copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the
sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting
regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection
methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the
underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson
hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to
describe different data patterns, whilst robust against deviations from the often assumed Poisson model.

Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3,
DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and
overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the
proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate
data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large
deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available
FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array

Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and
statistical rigour to CNV detection using sequence coverage data.

Background

Recent genome research have highlighted the role of
structural variants on natural phenotypic variations with
vital importance for human health [1,2]. The advent of
massively parallel sequencing technologies has resulted to
a drastic cost reduction per megabase of DNA sequence,
and is leading to unprecedented genomic resolution and
large sample size applications. In a single run, these tech-
nologies are able to generate millions of DNA fragments
(reads) from a target genome, which are then mapped
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onto a reference genome when available or undergo de
novo assembly. The resulting mapped data with poten-
tially high coverage is the core of structural variant detec-
tion, and several methods have been recently proposed
depending on the type of polymorphism to be identified,
as recently reviewed by Medvedev et al. [3].

The present work considers the detection of copy
number variations (CNVs), such as deletions and amplifi-
cations, using sequence coverage data when mapped onto
a reference genome. In theory, deletions are detected in
regions with extremely low coverage whereas amplifica-
tions are typically located in regions with exceptionally
high coverage [3]. The common strategy to analyse
sequence coverage data is to divide the reference genome
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into non-overlapping windows (or bins) of a given size
[3-6]. Since the GC content is known to influence the
resulting coverage distribution [7-9], the windows are
further subdivided according to this genomic parameter
and analysed separately. Finally, appropriate detection
limits are calculated. In this regard, there are two main
approaches to determine these thresholds. One approach
is to assume a Poisson distribution for coverage when
there is no copy number variation, as invoked by the
EWT method [4]. In theory, this assumption entails an
equality between the mean and the variance of the cov-
erage distribution. However, there is a growing number
of data sets whose variance of the coverage distribution
is clearly greater than the mean coverage [4,10]. This
statistical “overdispersion” implies that, at a given statis-
tical significance level, any Poisson-based method tends
to detect a higher number of CNVs in comparison to a
situation where overdispersion is deemed an intrinsic
property of the data, thereby increasing the false pos-
itive rate. Recently, the cn.MOPS approach has been
proposed, where the analysis is performed across sam-
ples and the resulting coverage distribution of a given
window (across samples) is modelled through a finite
mixture of Poisson distributions [6]. However, within a
window, this modelling approach reverts to the common
Poisson distribution (with different parameters along the
different segments comprising the genome) if there is
no CNV present. Another approach assumes a propor-
tionality between the underlying copy number and the
median coverage after being adjusted for the underlying
GC content, and smoothed by an appropriate segmen-
tation/aggregation algorithm, as available in the FREEC
software [5]. Notwithstanding its high computational
efficiency, this software critically relies on the analyst to
parameterise the underlying segmentation algorithm. If
prior information is available from the samples under
analysis, one can set key parameters tentatively until
obtaining results in line with previous findings. This fine-
tuning exercise becomes extremely time consuming in
a high throughput setting, especially as expected differ-
ences in the patterns of data between samples cannot be
captured by a single parameter set. Alternative method-
ologies are then required with the potential of being much
more generalisable and applicable to a high throughput
setting.

To improve current approaches for CNV detection, we
propose a new methodology based on a Poisson hierarchi-
cal modelling approach. Our data analysis strategy is now
outlined. First, we assume a Poisson distribution for cover-
age when there is no copy number variation, as previously
done in EWT [4] and cn.MOPS [6]. We then extend this
distribution to an overdispersion setting by allowing the
respective rate parameter to vary according to a Gamma
or a Lognormal distribution. The resulting models of

Page 2 of 12

this hierarchical structure are the Poisson-Gamma (also
known as the Negative Binomial) and Poisson-Lognormal,
respectively. In this way, different data patterns under
the hypothesis of no CNVs can be captured due to the
great flexibility of these second-level distributions. We
adjust the results for the GC content as implemented
elsewhere, i.e., we divide the reference genome into non-
overlapping windows and analyse those with similar GC
content separately. The formal CNV detection is based on
highest posterior density (HPD) credible intervals associ-
ated with the posterior predictive distribution for cover-
age. Hence the stringency of our method is controlled by
the credibility level — hereafter denoted by the parameter
y — specified for the analysis. The final stage of the anal-
ysis encompasses merging contiguous hits and excluding
putative deletions when the corresponding coverage per
nucleotide position is greater than zero.

To assess the performance of our methodology, we use
7 publicly available Plasmodium falciparum (Pf, causes
malaria) data sets. The choice of this real-world data
set shows two major advantages. First, it includes the
re-sequencing data of the 3D7 reference genome thus
allowing the direct estimation of the baseline false posi-
tive rate. We also used this reference sample to perform
a simulation study where data shows different read depth.
Second, it encompasses data of 4 laboratory strains for
which comparative genomic hybridization (CGH) array
data is available, thus enabling ‘external’ validation of the
CNVs detected via sequencing data analysis. All results
are compared to the FREEC and cn.MOPS softwares, two
potentially promising approaches when applied to human
genome data [6].

Results

Plasmodium falciparum genome data shows distinct
random patterns for the underlying coverage distribution
Data under analysis comprises Pf samples of 5 well-
characterised laboratory strains from different parts of
the world (3D7 - reference strain of African origin,
HB3 - Honduras, DD2 - Indonesia, 7G8 - Brazil, and
GB4 - Ghana) and of 2 clinical isolates from travellers to
Africa (OX005 - Ghana, and OX006 - Kenya). Each sam-
ple consists of millions of reads mapped onto the 3D7
reference genome (version 3.0, 23Mb, 19% GC content,
Table 1), which was divided into non-overlapping 100-bp
windows and filtered for the respective exome (120,309
100-bp windows in total). The resulting coverage distri-
butions exhibit distinct shapes and summary statistics
(Figure 1A and Table 1), thus the necessity of having flex-
ible approaches for CNV detection. The percentage of
windows with zero coverage or with coverage equal or
greater than 500 reads is up to 0.51% (DD2), suggesting
the presence of few CNVs in the samples.
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Table 1 Statistical description of the coverage distributions using 100-bp windows and after filtering the data for the Pf

exome

Coverage
Samples Origin Number of reads Mean Variance Range =0 <10 >250 >500
3D7 Africa 19,590,258 162.8 7674 0-794 1 3 25 14
HB3 Honduras 14,024,161 116.6 585.6 0-449 188 262 23 0
DD2 Indonesia 21,080,366 1752 1861.9 0-749 139 214 873 470
7G8 Brazil 13,736,522 114.2 21412 0-794 188 1419 365 29
GB4 Ghana 17,157,171 1426 2087.3 0-955 151 540 274 7
OX005 Ghana 17,214916 143.1 43879 0-1386 187 308 7691 109
OX006 Kenya 20,850,309 1733 10721 0-733 46 102 656 7

Coverage distributions are intrinsically overdispersed,
skewed, and long-tailed

A brief description of the empirical coverage distributions
led to two key observations. First, every coverage distri-
bution is characterised by extreme overdispersion as the
variance is greater than the mean in each sample (Table 1
and Figure 1B). This statistical property seems intrinsic

to coverage data because of its observation in the 3D7
resequencing data, where just a few hits should be iden-
tified under the assumption of no errors in sequencing,
mapping, and in the annotated genome. Second, these
distributions are skewed and long tailed as suggested
by the skewness and kurtosis coefficients (Additional
file 1).
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Figure 1 Empirical coverage distributions are intrinsically overdispersed and skewed. A. Observed coverage distributions. B. Overdispersion
defined as the ratio between coverage mean and variance (see also Table 1).
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Coverage distributions are described well by a
Poisson-Gamma model

To analyse the data, we devised a CNV detection strat-
egy based on Poisson-Gamma and Poisson-Lognormal,
two probability distributions known for their flexibility
in tackling overdispersion. To estimate these models, we
divided each coverage profile according to the respec-
tive GC content and analysed the corresponding data
separately. The Poisson, Poisson-Lognormal and Poisson-
Gamma distributions were then compared against each
other being the latter the best model for the data irre-
spective of the criteria used (Additional file 2). Accord-
ing to this model, the expected coverage distributions
are almost indistinguishable from the observed ones
(Additional file 3). Therefore, the Poisson-Gamma dis-
tribution was used to determine robust CNV detection
thresholds (shown in Additional file 4).

The Poisson-Gamma approach shows a low baseline false
positive rate

The baseline false positive rate of our method was first
assessed through the analysis of the 3D7 resequencing
data, where CNVs are known (e.g., GTP cyclohydrolase I
gene, PFL1155w), and few hits should be produced. The
corresponding data analysis led to a proportion of hits
lower than the statistical stringency used in the analy-
sis (e.g, 28 hits out of 120,309 100-bp windows using
y = 99.9%; see Table 2). Specifically, we obtained 11 win-
dows with too-low coverage, being sparsely distributed
across the genome. Conversely we found 17 windows
with too-high coverage, 13 of which are true positive hits
located in the GTP cyclohydrolase I locus (Additional
file 5), an amplified region already highlighted by CGH
array technology [11]. When applied the FREEC software
to the same data, there was a slightly lower proportion
of hits (15/120,309) but this proportion can be increased
by using alternative parameter settings. The cross-sample
¢n.MOPS approach was applied to all isolates (3D7, HB3,
DD2, 7G8, GB4, OX005, and OX006), leading to the
highest proportion of hits in 3D7 (358/120,309). Unlike
our approach and FREEC, cn.MOPS could only partially

Table 2 Analysis of real and simulated 3D7 resequencing data
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detect the amplification of the GTP cyclohydrolase I gene
locus (11 hits out of 13 possible windows).

We extended the above analysis by studying the influ-
ence of read depth on the false positive rate in a simula-
tion study. Ten independent samples were generated for
each of 3 read depths (10x, 20x, and 50x). The results
showed that the false positive rate of our method is lower
or in line with the corresponding statistical stringency
adopted in the analysis (Table 2). For example, using y =
99.9%, the proportion of hits was 0.19%, 0.11%, and 0.05%
for 10x, 20x, and 50x read depths, respectively. More-
over, our method was able to detect the amplified GTP
cyclohydrolase I gene locus in every generated data set.
Conversely the FREEC software produced no CNV calls
in each simulated data set, even when parameterised to
target a higher number of CNVs. The FREEC software
seems then less sensitive when using low read depth data
and there are just a few hits to be detected. We applied
cn.MOPS approach to the set of simulated samples with
the same read depth and found a lower mean proportion
of hits in comparison to our method running at y = 99%.
However, when we increased stringency of our method
(y = 99.9%), cn.MOPS was outcompeted. Finally, like-
wise FREEC, cn.MOPS could not identify the amplified
GTP cyclohydrolase I gene locus in any of the generated
samples.

The Poisson-Gamma modelling approach detects known
and novel CNV regions

The analysis of the remaining laboratory and clinical sam-
ples led to a total number of hits ranging from 257
(OX006) to 899 (DD2) using y = 99.9% (Table 3). The
Poisson-Gamma approach could detect a large ampli-
fication located between the PFL1125w and PFL1160w
genes (Figure 2A-D), which has been previously identi-
fied using CGH technology [11-13]. Another important
CNV hit is the amplified region spanning the PFE1095w
and PFE1160w genes in the Indonesian DD2 sample.
This locus includes the PEMDR1 gene (PFE1150w) whose
increased copy number is usually associated with multi-
drug resistance of Southeast Asian Pf parasites [14-16].

Overall hits PFL1155w locus
Method 10x* 20x* 50x* Real data 10x* 20x* 50x* Real data
PG with y = 99% 0.82% 0.58% 0.36% 0.08% 13 13 13 13
PG with y = 99.9% 0.19% 0.11% 0.05% 0.02% 13 13 13 13
FREEC 0.00% 0.00% 0.00% 0.01% 0 0 0 13
cn.MOPS™ 0.55% 0.16% 0.01% 0.30% 0 0 0 1

Results refers to the (mean) percentage of overall hits detected in relation to the total number of 100-bp windows (120,309) using real and simulated data from the
3D7 resequencing sample and the corresponding (average) number of 100-bp hits detected on the GTP cyclohydrolase | gene locus (PFL1155w, 1.3 kb in size).

“Results based on 10 independent simulated data sets.
" Analysis performed across samples (simulated or real where appropriate).
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Table 3 Summary of CNVs detected by the Poisson-Gamma model across different laboratory strains and clinical samples

Y = 99% y =99.9%
Sample Type of CNV # Hits # Loci # Gene # Hits # Loci # Gene Largest CNV (kb)
HB3 Deletion 322 109 60 305 101 56 PFI1475 (2.0)
Amplification 246 206 119 60 53 46 PF11_0503 (0.6)
DD2 Deletion 279 98 58 265 95 55 PFL2550w (1.7)
Amplification 678 84 63 634 59 43 PFE1120w (14.8)
7G8 Deletion 243 125 83 205 101 61 MAL7P1.64 (1.1)
Amplification 343 118 106 215 49 37 PFL1130w (6.7)
GB4 Deletion 262 98 48 253 92 45 PFCOT10w (2.5)
Amplification 108 84 79 47 38 36 PFL1155w (0.6)
OX005 Deletion 308 87 49 274 73 39 PFCO110w (2.8)
Ampilification 1019 772 516 192 140 118 PFD0669c (1.0)
OX006 Deletion 170 65 35 167 62 33 PF07_0013 (1.3)
Amplification 277 226 188 90 70 64 MAL8P1.42 (1.1)

Results refer to the number of individual hits (i.e., 100-bp windows) and loci (pooled hits where contiguous) using the credible levels y = 99% and 99.9% in the

analysis.

Finally, a large deletion of the CLAG3.2 gene (PFC0110w)
was also targeted in both Ghanaian samples (GB4 and
0X005), a result in agreement with field reports from
that country [17,18]. Other large hits can be found in
Additional file 6.

Comparison with FREEC and cn.MOPS approaches

The FREEC and cn.MOPS approaches were applied to the
same laboratory and clinical samples; see Additional file
6 for a list of hits identified by these alternative methods.
Table 4 shows the number of shared and exclusive hits of
FREEC and cn.MOPS in relation to our approach (see also
Additional files 7 and 8). For FREEC, the proportion of
shared hits varies with the sample under analysis, ranging
from 27.4% (GB4) to 63.9% (DD2) for deletions and from
4.2% (OX005) to 84.3% (DD2) for amplifications (using
y =99.9% in our method). The high proportion of shared
amplifications in the Indonesian DD2 sample is mainly
due to the strong signal derived from the PfMDRI1 locus.
Our method produced a higher number of exclusive hits,
most of them in loci not targeted by FREEC, including
a large amplification between PFL1125w and PFL1160c
genes in HB3 lab strain previously validated by CGH
technology [11]. Conversely the majority of the FREEC-
exclusive hits, except those from the OX005 sample, are
located in genomic regions targeted by our methodology,
filling 'gaps’ or increasing the size of the putative CNVs
(Additional file 7). The low frequency of FREEC-exclusive
hits in these 'shared’ loci shows that little is missed by
not including a formal merging algorithm in our method.
In fact, the procedure of simply merging adjacent hits
was enough to reduce significantly the number of hits
produced by our method (Table 3).

In the case of cn.MOPS, the proportion of shared hits
ranges from 21.4% (7G8) to 69.3% (OX005) for deletions
and from 5.7% (OX005) to 85.2% (DD2) for amplifica-
tions (using y = 99.9% in our method). Likewise in the
above comparison, the high proportion of shared ampli-
fications in DD2 laboratory strain also results from hits
in the PfMDRI1 locus. With respect to exclusive hits, our
method tends to produce a higher number of these than
cn.MOPS for deletions, but a lower number for amplifica-
tions. This observation suggests that our method tends to
define higher thresholds than cn.MOPS for deletions, but
lower thresholds for amplifications. However, it is difficult
to generalise this result due to differences in stringency
definition employed by each method.

Finally, the FREEC software running under default set-
tings could not detect a large amplification between
PFL1125w and PFL1160c genes in HB3 isolate identi-
fied by our method (Figure 2A) and validated by CGH
technology [11]. Similarly, the cn.MOPS approach could
not detect the amplification of the GTP cyclohydrolase I
gene in the 3D7 re-sequencing data. However, we could
recover some of these false negatives, and possible others,
using alternative (non-default) parameter settings (results
not shown). This result demonstrates the possibility of
missing important CNVs by applying these approaches,
specifically, when one needs to set them up ’blindly’ in
the case of new isolates, large sample sizes, or when their
underlying assumptions are not fully met by the data.

Validation of coverage-based hits using CGH array data

The validity of coverage-based hits produced by each
methodology was assessed using published CGH data
(Table 5). For HB3 and DD2 lab strains, where we used
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Figure 2 Copy number variation between the PFL1125w and PFL1160w genes across different laboratory and clinical samples. A. HB3
(Honduras); B. DD2 (Indonesia); €. 7G8 (Brazil); D. GB4 (Ghana); E. OX005 (Ghana); F. OX006 (Kenya). Note that the prefix PFL was removed from the
corresponding gene names as available at genedb database (www.genedb.org).
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Table 4 Hits shared and exclusively detected by the Poisson-Gamma (PG) model, the FREEC and the cn.MOPS approaches

PG with y = 99.9% vs FREEC

PG with y = 99.9% vs cn.MOPS

CNV Sample SPG-FREEC Era EFReEEC SPG-cn.MOPS Era Ecn.mops
Deletions HB3 175 (55.2) 130 (41.0) 12 (3.8) 195 (63.5) 110 (35.8) 2(0.7)
DD2 175 (63.9) 90 (32.8) 9(3.3) 152 (57.4) 113 (42.6) 0(0.0)
7G8 81(29.1) 124 (44.6) 73 (26.3) 120 (21.4) 85 (15.1) 357 (63.5)
GB4 72 (27.4) 181 (68.8) 10(3.8) 150 (50.0) 103 (34.3) 47 (15.7)
OX005 153(51.0) 121 (40.3) 26 (8.7) 205 (69.3) 69 (23.3) 22 (74)
0X006 93 (55.0) 74 (43.8) 2(1.2) 62 (37.1) 105 (62.9) 0(0.0)
Amplifications HB3 19 (29.7) 41 (64.1) 4(6.3) 23(12.2) 37(19.7) 128 (68.1)
DD2 586 (84.3) 48 (6.9) 61 (8.8) 608 (85.2) 26 (3.6) 80(11.2)
7G8 187 (37.6) 28 (5.6) 283 (56.8) 212(17.8) 3(0.3) 973 (81.9)
GB4 6(10.5) 41(71.9) 10(17.5) 38(11.8) 9(2.8) 274 (85.4)
0OX005 62(4.2) 130(8.8) 1291 (87.1) 168 (5.7) 24(0.8) 2473 (93.5)
OX006 27 (22.9) 63 (53.4) 28(23.7) 64 (20.9) 26 (8.5) 216 (70.6)

The frequencies (and the respective percentages in brackets) refer to the number of hits shared and exclusively detected by the PG model against FREEC and cn.MOPS,
where Spg.rreec and Spe-cn.mops denote the hits shared between the respective pair of methods, €pg, € rrerc and € cnmops denote the exclusive hits produced by the
corresponding methodology in the respective comparison. Percentages are in relation to the overall number of deletions and ampilifications identified by the respective

pair of methods.

a previously compiled list of CGH hits [19], the FREEC
software led to the highest concordance (92.9%) between
coverage- and CGH-based hits. This apparent best perfor-
mance of FREEC is mainly due to a lesser number of hits
produced by this software. The use of greater stringency
in our method (i.e., y = 99.9%) led to an increase in the
corresponding concordance, from 75.9% to 78.9% in HB3,

and from 89% to 92.6% in DD2. For 7G8 and GB4 strains,
where we re-analysed the original CGH data, our method-
ology outperformed FREEC and cn.MOPS overall and, in
the best case scenario (y = 99.9% in our method), we
could confirm 78.3% (7G8) and 54.0% (GB4) of our hits.
The cn.MOPS approach seems inferior to our method and
FREEC, with the lowest concordance rates irrespective of

Table 5 Hits shared between CGH and coverage data using the Poisson-Gamma (PG) model, the FREEC software, and the

cn.MOPS approach

Strain Methodology Deletions Amplifications Overall

HB3 FREEC — — 195/210 (92.9%
cn.MOPS — — 214/348 (61.5%

PG with y = 99% —
PG with y = 99.9% —
DD2 FREEC —
cn.MOPS —
PG with y = 99% —
PG with y = 99.9% —

( )
( )
— 431/568 (75.9%)
— 288/365 (78.9%)
— 792/831 (95.3%)
— 746/840 (88.8%)
— 854/957 (89.0%)
— 826/899 (91.9%)

( )

7G8 FREEC 89/154 (57.8%) 285/470 (60.6%) 374/624 (59.9%
cn.MOPS 91/477 (19.1%) 236/1185 (19.9%) 327/1662 (19.7%)
PG with y = 99% 164/243 (67.5%) 216/343 (63.0%) 380/586 (64.9%)
PG with y = 99.9% 153/205 (75.6%) 176/215 (81.9%) 329/420 (78.3%)

GB4 FREEC 32/82 (39.0%) 4/16 (25.0%) 36/98 (36.7%)
cn.MOPS 77/197 (39.1%) 28/273 (10.3%) 105/470 (22.3%)
PG with y = 99% 152/262 (59.0%) 24/108 (22.2%) 176/370 (47.6%)
PG with y = 99.9% 148/253 (58.5%) 14/47 (29.8%) 162/300 (54.0%)

CGH hits of HB3 and DD2 lab strains were taken from Samarakoon et al. [19], while CGH hits of 7G8 and GB4 lab strains were obtained by re-analysing the corresponding
original data available from Jiang et al. [37]. The percentages in brackets are in relation to the total number of coverage hits produced by the corresponding method.
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the lab strain and CNV type. This result may be explained
by the nature of the data under analysis (i.e., far from being
Poisson distributed when there is no CNV present) and
the small sample size.

Discussion

We have proposed a Poisson hierarchical modelling
approach for CNV detection, which is flexible and robust
to the common problem of overdispersed coverage data.
Using simulation and resequencing data of the 3D7 ref-
erence genome, we have demonstrated a low baseline
false positive rate of the methodology across different
read depth. However, this low baseline false positive rate
needs to be assessed in other genomic settings, prefer-
ably where reference resequencing data is available, or
potentially using a robust simulation strategy with realistic
statistical assumptions and parameter settings. In gen-
eral, one can reduce the baseline false positive rate of any
coverage-based method if mapping distance information
is also taken into account. True positive hits are then likely
to be those whose coverage and mapping distance anal-
yses agree with each other. In particular, strong evidence
for deletions is provided from genomic regions with too-
low coverage and average mapping distance greater than
expected, while amplified regions entail extremely high
coverage and average mapping distance less than expected
[3]. This integrated data analysis, whilst increasing robust-
ness and accuracy, remains to be developed.

The proposed approach was also applied to non-
reference strain data and identified a large number of
CNVs that could be validated by CGH data. The empir-
ical and simulation results have demonstrated that our
approach may be applicable to larger genomes where read
depths can be lower, or in settings where overdispersion
is present [4,10]. Recent deep sequencing technologies are
currently generating data with high coverage (>50-fold on
average) irrespective of the organism under study. Thus,
we do not expect that the accuracy and robustness of our
methodology shown here would change in these cutting-
edge data sets with similar genomic coverage. In practice,
the potentially high computational burden associated with
larger genomes or strong overdispersion is surmountable
by implementing parallel computing techniques.

Our method seemed to outperform FREEC and
cn.MOPS approaches with respect to concordance of hits
confirmed by CGH data for 7G8 and GB4 strains. How-
ever, a more accurate comparison was compromised by
difficulties in relating stringency. The stringency of our
method is controlled by the credibility level, a rigorous
statistical parameter, but more difficult to be inferred
in algorithms that do not consider a specific statistical
model, as in the FREEC software. Notwithstanding this
difficulty, we showed that increasing the stringency of
our methodology led to a high concordance with the
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FREEC-based hits. However, the FREEC software could
only detect a known amplification at the GTP cyclohydro-
lase locus in HB3 [11] using alternative parameter setting.
The dependency of findings on parameter setting is mit-
igated in our methodology as the analyst only needs to
specify the underlying stringency.

The Poisson hierarchical modelling approach has the
advantage of handling with different data patterns but, as
it stands, cannot estimate the corresponding copy num-
ber. To overcome this limitation, one can invoke a pro-
portionality between mean (or median) coverage and the
underlying copy number, as assumed elsewhere [4-6]. In
theory, this assumption requires modelling the coverage
distributions through a finite mixture of Poisson-Gamma
(or Poisson-Lognormal) distributions where each compo-
nent is associated with a given copy number, as imple-
mented in the cn.MOPS approach but using a Poisson
mixture model. A Monte Carlo Markov Chain method
with reversible jumps [20] can be applied to the corre-
sponding Bayesian estimation. Whilst the greater compu-
tational overhead involved in applying this more complex
model is surmountable, its utility would rely on having
sufficient data to estimate the additional parameters. In
our setting, the very low number of hits detected suggests
that data might be too scarce to fit models with increased
complexity. Our approach seems then the perfect balance
between model complexity and data information, thus a
potentially useful addition to bioinformatic toolkits used
to identify CN'Vs from sequence coverage data.

Conclusions

We have developed a robust Poisson hierarchical mod-
elling approach for CNV detection using sequence cov-
erage data. When applied to the Pf genome, the method
shows a low false positive rate in the 3D7 resequenc-
ing data, and is able to detect known and putative novel
CNV regions. This promising result suggests the appli-
cation of this approach to different settings, such as the
human or other micro-organism genomes. Because the
approach was developed under a strong but flexible sta-
tistical framework, it brings increased statistical rigour
and robustness into the problem of CNV detection. In
addition, it will allow important extensions, such as the
estimation of the underlying copy number.

Methods

Sequence data and processing

Data consists of 7 Pf genomes of which 5 are of well-
characterised laboratory strains (3D7 - reference strain
of African origin, HB3 - Honduras, DD2 - Indonesia,
7@G8 - Brazil, and GB4 - Ghana) and 2 are of clinical origin
(OXO005 - Ghana, OX006 - Kenya) [21]. The 3D7 reference
strain data was used to assess the baseline false positive
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rate. All seven genomes underwent whole genome
sequencing on the Illumina Genome Analyzer II (54/76-
base paired read) platform and processed as described
elsewhere [21]. In brief, multiple alignment (bam) files
were generated from fastq files of each whole genome
sequencing data set after mapping the reads onto the 3D7
reference genome (version 3.0) using the smalt software
(www.sanger.ac.uk/resources/software/smalt/). Using the
toolkit SAMtools, poorly mapped reads were removed
from the analysis. The corresponding raw data sets are
publicly available from the European Bioinformatics Insti-
tute website (www.ebi.ac.uk, SRA study ERP0000190) and
the PlasmoDB database (www.plasmodb.org).

Estimating coverage profiles

In each sample, calculation of coverage profile followed
the usual procedure for human data [4-6]. The 3D7 ref-
erence genome was first partitioned into non-overlapping
and equal-size windows. The size of each window was set
at 100 bp as it seemed a good compromise between suffi-
cient resolution for CNV detection and reasonable statis-
tical properties of the data. In each window, we calculated
the respective coverage as the number of mapped reads
using their starting mapped positions. Since coverage can
be confounded by the GC content, we also calculated the
underlying GC content profile using the FREEC software.
Windows within 100kb of subtelomeric and centromeric
regions, as well as windows with poor mapping score,
were excluded from the analysis, since they could intro-
duce bias due to putative mapping errors [22]. Windows
associated with antigenic diversity gene families (includ-
ing vars, stevors, and rifins) were also discarded owing to
the fact that they are intrinsically variable [11]. We also
filtered out non-coding regions, thus focusing the analy-
sis on the Pf exome as on average there is twice as much
coverage in coding regions [21]. After this filtering pro-
cess, the coverage profile of each target genome comprises
120,309 100-bp windows accounting for nearly 53% of the
3D7 reference genome. We adjusted our results for GC
content by splitting each coverage profile into separate
data sets comprising the coverage values of windows with
similar GC content and analysing them separately [4,5].
Since the GC content distribution does not follow a Uni-
form distribution in the 3D7 reference genome [23], we
divided the coverage profile according to the 5%-centiles
(5%, 10%, 15%, . . . ) of the GC content distribution as a way
to ensure similar statistical power across the different set
of windows.

Detection of CNVs using a Poisson hierarchical modelling
approach

When analysing each data set, we specified the follow-
ing Multinomial distribution for the coverage values of
windows with similar GC content
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where N, = ), g, is the total number of windows with
GC content g, ng; is the total number of windows with
coverage i and GC content g, pg(i) is the overall prob-
ability of mapping i reads onto any window with GC
content g. The probabilities py(i) are usually described
by a Poisson distribution as long as the reads are inde-
pendently and equally distributed across the genome [4].
Because of overdispersion, we extended this model by
varying its mean parameter according to another prob-
ability distribution. We chose the Gamma or Lognor-
mal distributions to model the variation of the Poisson
mean parameter due to their flexibility and successful
application across different scientific fields [24-27]. These
two second-level distributions, when conjugated with the
Poisson model, give rise to the so-called Poisson-Gamma
(with parameters « and ) and Poisson-Lognormal (with
parameters n and o2), respectively. Mathematically, the
Poisson-Gamma model is given by
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where « and B are the shape and rate parameters
of a Gamma distribution, respectively. The Poisson-
Lognormal distribution does not show closed-form
expression but good numerical algorithms exist for its
calculation when applied to a specific data set [28].

The estimation of these two models was performed
through Bayesian methods using non-informative prior
distributions for the respective parameters. With respect
to the Poisson-Gamma, we used a Gamma prior distri-
bution for the parameters « and 8. The respective shape
and scale parameters were set at 0.001, as often speci-
fied in Bayesian applications (see, for example, WinBUGS
online documentation at www.mrc-bsu.cam.ac.uk/bugs).
For the Poisson-Lognormal model, we set a Gaussian
prior distribution with mean 0 and standard deviation
10* for the parameter u, and a Gamma prior distri-
bution with the shape and scale parameters equal to
0.001 for the parameter 1/02, respectively. To obtain
posterior samples through parallel computing, we used
WinBUGS (www.mrc-bsu.cam.ac.uk/bugs) and JAGS
(mcmc-jags.sourceforge.net/) coupled with the R software
through the R2WinBUGS and R2JAGS packages [29]. The
respective R and WinBUGS/JAGS scripts are available
from the authors upon request.

After obtaining the posterior parameter samples, the
models were tested against each other using Bayes fac-
tors and the Deviance Information Criteria (DIC) [30].

pg(i) =
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With respect to Bayes factors, we calculated the under-
lying prior predictive probability (PPPs) of each model
using the so-called BIC-MC estimator, which seems to
provide robust and stable results under hierarchical mod-
elling [31]. To this end, we generated posterior samples
for the log-likelihood function required for the calcu-
lation of BIC-MC estimator. We performed this task
in WinBUGS/JAGS for the Poisson-Gamma distribution
since the corresponding likelihood function is known ana-
lytically. However, for the case of the Poisson-Lognormal
model whose probability distribution has no closed-form
expression, we calculated the posterior samples of the
log-likelihood function using subroutines available in the
package PAM for the R software [27].

For the formal CNV detection, we used the correspond-
ing posterior predictive distribution, which embodies all
uncertainty regarding coverage given the observed data
and prior information. The calculation was performed
through the simulation of 'new’ coverage values accord-
ing to the respective posterior parameter samples and the
best model for the data. We then determined the corre-
sponding HPD credible interval at y = 99% and 99.9%
using Chen-Shao method [32] in order to set appropri-
ate CNV detection limits. In particular, windows with
coverage greater than the upper bound of HPD cred-
ible interval are likely to contain amplifications. Con-
versely windows with coverage lesser than the lower
bound of HPD credible interval are deemed deletions. To
reduce the false positive rate associated with deletions,
we removed all putative hits whose coverage was greater
than zero in every nucleotide position. Data of total
coverage per position was obtained using the SAMtools
(samtools.sourceforge.net). The final step of the analysis
comprised merging contiguous hits. In theory, we could
have introduced a more formal merging stage by adapting,
for example, the popular Circular Binary Segmentation
algorithm [33] for sequence coverage data. In practice,
we did not intend forcing’ our method to generate larger
genomic regions artificially. A recent study shows that
simply merging contiguous hits is sufficient to generate a
small number of loci in relation to the total number of hits
[34]. Another reason for not including such formal proce-
dure is due to the fact that its application is in rigour com-
promised while studying the exome (i.e., a 'fragmented’
version of a genome) of a given organism. In this case,
formal merging can only be performed at the gene level.

Detection of CNVs using FREEC and cn.MOPS softwares

There are several CNV detection methods currently
available in the literature [6]. We chose to compare
our methodology against FREEC and the c¢n.MOPS,
two potentially promising approaches when applied to
human genome data [6]. However, the performance of the
cross-sample cn.MOPS approach is likely to be impaired
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because: (1) even that this approach invokes a finite mix-
ture of Poisson distributions for the read counts of a given
segment, it reverts to a Poisson distribution when there is
no CNV present, a distribution that does not fully agree
with our data; (2) since the corresponding analysis is per-
formed across samples, the accuracy of the method is
dependent on the sample size. In this regard, Klambauer et
al. [6] suggested a minimum number of 6 samples for the
c¢n.MOPS to work well. This minimum sample size seems
rather low in comparison to those typically found in the
literature of this type of modelling approach [35,36].

In general, the FREEC software divides the reference
genome into non-overlapping and equal-size windows,
and calculates the corresponding coverage profile of the
target sample. A polynomial regression model is then used
to describe the dependency between coverage and GC
content. The respective predicted values are first stan-
dardised and then smoothed out. The final stage of the
analysis consists of estimating the copy number in each
segment and merging the regions with similar copy num-
ber. With this purpose, the software assumes that the
ploidy of the organism under analysis is known and the
copy number of a given segment is proportional to the
median coverage of all the windows with similar GC con-
tent. For the Pf sequence coverage data, we specified
ploidy of 1 and used a quadratic regression model. We also
analysed the data through a cubic regression model, as
often suggested for human genome data [5], but obtained
unrealistic copy number distributions (results not shown).
The parameters of the segmentation algorithm were set at
their default setting.

The cn.MOPS approach is also based on sequence cov-
erage data partitioned into non-overlapping windows. It
assumes a finite mixture of Poisson distributions (with a
known number of components) for the coverage across
samples of any given window. In this approach, each com-
ponent of the mixture describes the coverage distribution
associated with a given copy number under the assump-
tion of a linear relationship between mean coverage and
copy number. The model is fitted to each segment via an
EM algorithm and the most probable component deter-
mined. To apply this approach to our data, we set the copy
number to be an integer from 0 to 4, where the value 1 is
the 'normal’ copy number (or the ploidy of the organism
under study). The remaining parameters were specified at
their default settings as explained in the documentation of
the respective R package (called cn . MOPS).

Simulation study based on 3D7 resequencing data

To assess the baseline false positive rate of our method, we
performed a simulation study based on 3D7 resequenc-
ing data. We generated 10 independent data sets from
the 3D7 resequencing sample according to read depths of
10x, 20x, and 50x, corresponding to a total of 1.25, 2.5,
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and 6 million reads, respectively. Each data set refers to
the coverage profile of 120,309 100-bp windows and was
simulated according to a Multinomial distribution with
a sample size given by the corresponding total number
of reads associated with a specific read depth and prob-
ability vector defined by the relative coverage profile of
the original 3D7 reference sample. We analysed each data
set separately using our method and the FREEC software.
In the former, we used the Poisson-Gamma (PG) distri-
bution and two different credible levels (y = 99% and
99.9%), while in the latter we analysed the data using the
default parameter setting; we tested alternative parameter
sets but the corresponding results were qualitatively sim-
ilar (not shown). To summarise the results, we calculated
the mean percentage of detected hits in relation to the
total number of windows under analysis. Finally, we anal-
ysed each batch of 10 independent samples of a given read
depth altogether using the cn.MOPS software and com-
pared the results to those obtained from the analysis of
each individual sample.

Comparative genomic hybridisation array data

To assess the reliability of the coverage-based hits, we
brought into the analysis available CGH data for the
HB3, DD2, 7G8 and GB4 laboratory strains. In the first
two strains, we used a pre-compiled list of CGH hits
[19], identifying the corresponding 100-bp windows used
in the coverage analysis. In the last two strains, we re-
analysed the original CGH data [37] accessible from
NCBI’s Gene Expression Omnibus through GEO Series
accession number [GEO:GSE25656]. Data refers to log,-
ratio between intensities of these two strains in relation
to those obtained from the 3D7 reference strain. We used
the software SnoopCGH as a visualisation tool [38]. After
removing probes in regions not considered in our cov-
erage data analysis, we applied the following strategy to
detect CNVs: (1) obtain a segmented profile of each indi-
vidual intensity data set using DNAcopy package for the
R software, (2) divide each segmented intensity profile
into non-overlapping windows of size 100-bp as done in
the coverage data analysis, (3) calculate the correspond-
ing empirical distribution of segmented intensities, and
(4) compute the respective highest probability density
interval with a given probability mass t (say t = 95%),
and (5) produce a CNV call whenever the intensity of
a given window is not included in this interval. In this
regard, a negative log,-ratio intensity was considered to
be indicative of a deletion while a positive log,-ratio was
deemed a putative amplification. For each pairwise com-
parison, concordance rates were calculated for each data
set and defined as the number of CNV hits identified
by coverage analysis and confirmed by the CGH tech-
nology divided by the total number of coverage-based
hits.
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Additional files

Additional file 1: Skewness and kurtosis of empirical coverage
distributions.

Additional file 2: Statistical model comparison between Poisson,
Poisson-Gamma, and Poisson-Lognormal distributions. The Poisson
and Poisson-Lognormal models were compared to the Poisson-Gamma
using the Deviance Information Criteria (DIC) [30] and Bayes factors (BF). In
the case of DIC, we calculated the ratio between that of the
Poisson-Gamma and those of the remaining models. With respect to BF,
they were estimated as the log-ratio between the corresponding
predictive prior probabilities via the BIC-MC estimator [31].

Additional file 3: Expected and empirical cumulative coverage
distributions. Expected coverage distributions refer to the corresponding
posterior predictive distributions for the set of all 100-bp windows used in
the analysis.

Additional file 4: Limits for CNV detection used on each sample as
function of the underlying GC content. CNV detection limits were
determined according to the posterior predictive probability distribution
of the Poisson-Gamma (the best model for every data set under analysis).

Additional file 5: A large amplification detected between PFL1125w
and PFL1160w genes in the 3D7 reference genome data using the
Poisson-Gamma model.

Additional file 6: CNVs larger than 500 bp detected using the
Poisson-Gamma model (y = 99%), the FREEC software, and cn.MOPS
approach.

Additional file 7: Comparison between hits detected by the
Poisson-Gamma model and the FREEC software.

Additional file 8: Ternary diagrams plotting the joint proportions of
shared and exclusively detected hits by the PG model, the FREEC
software, and cn.MOPS.
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