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Abstract

some, but not all cases.

biocontrol at alkaline pH.

Background: In fungi, environmental pH is an important signal for development, and successful host colonization
depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species
of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore,
Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a
critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH
adaptability is an important step in broadening the activity spectrum of these economically important fungi.

Results: We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a
constitutively active allele (pacC?). ApacC mutants exhibited reduced growth at alkaline pH, while pacC® strains grew
poorly at acidic pH. In plate confrontation assays ApacC mutants showed decreased ability to compete with the
plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacC® strain exhibited an overgrowth of R. solani that
was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is
dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens
genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript
levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a
set of pacC-dependent genes was increased in the constitutively-active pacC® strain, and was pH-independent in

Conclusions: PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the
transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite
biosynthesis and ion transport are among the relevant gene classes. We suggest that ApacC mutants may have lost
their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The
results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and

Background

Fungi, whether they are saprophytes or pathogens, are
able to detect and adapt to a wide range of environmental
pH values. The ability of fungal cells to maintain homeo-
stasis is exemplified in their capacity to grow in both acid
and alkaline pH conditions. Furthermore, pH levels often
serve as crucial external cues, providing information about
the local environment. It is known that fungi respond to
ambient pH levels via activation of a dedicated transcrip-
tion factor, PacC [1-5]. This response is initiated by a
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signaling cascade which begins with a cell surface sensor,
PalH, a protein with seven transmembrane helices. PalH
probes the extracellular pH level. PalF, an arrestin-like
protein which interacts with PalH, is ubiquitinated in
response to alkaline pH [6]. The cascade leads to the acti-
vation of PacC by proteolytic cleavage and, finally, to tran-
scriptional regulation [3,7-10].

Fungal pathogens of animals and plants need to sense
and respond to local pH. In addition, several fungal
pathogens of plants were shown to raise or lower the
local pH during the establishment of the disease. It is
also known that pH signals program gene expression in
the pathogen [11-18]. For instance, Colletotrichum
gloeosporioides attacks unripe avocado fruits, but these
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remain resistant to the fungus until the fruits ripen.
During the ripening process, the pH of the avocado
pericarp increases from pH 5.2 to pH 6.3, and following
this increase in pH, the decay symptoms become
evident. Furthermore, the pathogen itself contributes to
alkalinization. Thus, the host pH can affect the progress
of disease via the production of virulence factors [19].
There are several other examples which indicate the
importance and relevance of PacC to this process: first,
the pacC ortholog of Colletotrichum acutatum is essen-
tial for virulence on citrus, at the penetration stage
[20]. Second, in the vascular wilt pathogen Fusarium
oxysporum, constitutive-active pacC strains were found
to be less virulent than wild type strains on the tomato
host [5]. In contrast, pacC null mutants of the foliar
pathogen Sclerotinia sclerotiorum were less virulent
than wild type on Arabidopsis and tomato [21]. This
contrasting regulation suggests that in different species,
PacC may play different roles in determining virulence.
Another interesting example is Candida albicans, a
commensal that can become pathogenic in susceptible
hosts. This organism colonizes the oral-pharyngeal,
gastrointestinal, and urogenital tracts as a commensal.
Following this colonization, C. albicans can become a
pathogen, infecting these tissues. It may then enter the
bloodstream and disseminate to almost any tissue in the
body. The C. albicans sites of action are characterised by a
diversity in pH levels, e.g., acidic pH levels in the gastro-
intestinal and vaginal tracts, and neutral-to-alkaline levels
in the oral-pharyngeal tract and in the bloodstream. Thus,
a successful response to extracellular pH is critical for
virulence [22]. Trichophyton rubrum, a dermatophyte,
responds to the pH level of human skin by expressing
enzymes that have acid pH optima [23]. PacC has been
shown to serve as a virulence factor for Aspergillus
nidulans in a mouse model: null mutants showed
reduced virulence, while a constitutively active pacC
allele conferred hypervirulence [24]. The insect patho-
gen Metarhizium anisopliae uses pH as a signal to pro-
duce specific enzymes whose pH optima correspond to
the ambient pH levels [25]. A wide variety of genes and
activities are controlled by PacC, including xylanases
[26], permeases [27], siderophores [28], antibiotic and
toxin production [29], and involvement in pathogenic
processes [4,21,24].

Fungi can also attack other fungi (either by direct
mycoparasitism or, to give a more inclusive definition,
mycotrophy [30]). Prominent examples of this are found
among soil fungi of the genus Trichoderma, which are
being applied worldwide as biocontrol agents against
soil-borne and foliar plant diseases [31]. The biocontrol
fungus antagonizes host fungi in a variety of ways:
mycoparasitism, antibiotic production, induction of sys-
temic resistance in the plant, competition for nutrients
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and space, modification of the local environment, and
degradation of pathogen germination stimulants which
are released by seeds. Trichoderma also increases the
plant’s tolerance to stress by promoting growth and vigor
[32-34]. Moreno-Mateos et al. [35] have shown that sev-
eral Trichoderma harzianum genes which are thought to
be involved in the antagonism of host fungi (chitinase,
protease, glucose permease, and the cell wall protein
qid74) are regulated by pH. In T. harzianum, PacC pro-
motes the expression of chitinase and qid74, and represses
protease and glucose permease. PacC also negatively regu-
lates the production of inhibitory metabolites. Contrary to
what might have been expected in view of the increased
production of inhibitors, however, mycoparasitism is de-
creased in the null mutant [35]. In several Trichoderma
species, conidiation depends on pH; the mode of regula-
tion varies from one species or isolate to another [36].
Conidiation has previously been correlated with intra-
cellular acidification [37], providing an explanation as to
why the pH must be low in order for conidiation to
occur on buffered media [36]. In this study, we exam-
ined an isolate of Trichoderma virens which is an ag-
gressive mycoparasite on the sclerotia of S. rolfsii and
on the hyphae and sclerotia of Rhizoctonia solani [38].
The genome sequence of this species has recently been
made available [39,40], thus allowing a first complete
analysis of pH- and PacC-regulation in a mycotroph at
the level of the transcriptome.

Results and discussion

Construction of loss- and gain-of-function mutants in the
pH-sensitive regulator pacC

T. virens pacC gene

Having initiated this study before the 7. virens genome
project, we used sequences from other filamentous asco-
mycetes to identify a T. virens ortholog of pacC. Degener-
ate primers for nested amplification (Additional file 1)
were designed from the amino acid sequences of the re-
gions most conserved in several pacC orthologs (Aspergil-
lus nidulans, Aspergillus oryzae and Fusarium oxysporum).
A product of ~400 bp was obtained and cloned, and four
additional primers were designed for PCR-based genome
walking. We obtained a genomic clone including ~2 kb of
upstream and downstream sequences, sufficient for the de-
sign of gene replacement constructs. The gene contains a
2094 bp ORF with three predicted introns. The predicted
protein product has a molecular mass of 67 kDa and con-
tains 617 amino acid residues. When this sequence was
compared to GenBank-deposited sequences from several
organisms, the best BLAST similarity scores were obtained
with the PacC proteins of the Ascomycete fungi Fusarium
oxysporum, Acremonium chrysogenum and Gibberella
moniliformis (62%, 64% and 67% similarity, respectively).
Like Trichoderma virens, all of these species belong to the
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class Sordariomycetes. The consensus binding site for
PacC identified from Aspergillus nidulans [41], GCCARG,
is found 9 times within the 1 kb upstream of the predic-
ted translation start of T. virens pacC. The strong, pH-
independent expression of the truncated, active, pacC*
allele that we constructed suggests that PacC indeed regu-
lates the expression of the gene that encodes it (see below).
The sequence of the T. virens IMI 304061 pacC gene (this
study, and genomic re-sequencing data, R. Normand, T.
Katz-Ezov, N.T. and B.A.H., unpubl.) exhibits 24 SNPs
relative to the corresponding gene model in T. virens
Gv29.8 (the published reference strain [39]). These SNPs
result in six predicted differences in protein sequence,
four encoding amino acids with strongly similar proper-
ties to those of the sequence predicted from the refer-
ence genome, and two with weakly similar properties
(Additional file 2). Thus, there are variations between two
Trichoderma virens isolates in the amino acid sequence
encoded by this well-conserved gene. It is unclear whether
these SNPs have any functional significance.

pacC deletion mutants

To determine the function of pacC, deletion mutants
(ApacC) were obtained by homologous integration
resulting from double-crossover integration events. To
this end, 7. virens protoplasts were transformed with line-
arized plasmid DNA, using the polyethylene glycol-Ca*™*
method. Of about 100 transformants screened by PCR
amplification with primers specific for homologous inte-
gration, we obtained two, ApacCl and ApacC2, in which
the pacC gene was replaced by the hygromycin resistance
cassette. Transformants were purified by single-spore iso-
lation, and homologous recombination was confirmed by
PCR. The primer pairs, expected sizes, and PCR products
obtained are provided in Additional file 3.

Construction of constitutively active pacC mutants

Constitutively active mutants (pacC®), are expected to
bypass the need for the ambient pH signal, resulting in a
phenotype that mimics growth under alkaline conditions
[3,42-45]. Based on the known characterization of the
proteolytic cascade activating A. nidulans PacC, we pre-
dicted that the truncation allele in 7. virens that we
designed (see below), would lead to a gain-of-function
behavior, ie. as a bona fide pacC allele. Indeed, tran-
scriptional data, including data on the pacC gene itself,
provide strong support for this assumption. To this end,
we constructed a pacC® line using the split-marker
method ([46]; Additional file 4). To construct the pacC*
allele we designed a construct in which the C-terminal
part of pacC (encoding amino acids 504—617, which are
removed in processing upon activation in the cell) was
replaced by the hygromycin resistance cassette. The con-
struct also included flanking regions upstream and
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downstream of the gene, of ~1.1 kb each, to allow for
double-crossover recombination. The transformants
were isolated, purified, and confirmed by PCR amplifica-
tion (Additional file 3).

Comparison of loss and gain-of function mutants to wt

During the first 24 h after inoculation, ApacC and wild-
type strains exhibited nearly identical growth rates when
inoculated on standard PDA (starting pH, 5.6) plates.
After this initial time period the mutant displayed a
slower growth rate than the wt strain, so that 48 h after
the inoculation this resulted in a ~20% reduction of
colony diameters of the ApacC mutant colonies grown
in the light, and ~18% for diameters of colonies grown
in the dark, when compared to wt colonies (Additional
file 5). In addition, differences were apparent in the
morphology of the colony surface. Colonies of the
ApacC mutants conidiated less in the light (Additional
file 6); in the dark, wild type colony surfaces were con-
vex, whereas mutant colonies were flat. Wild type, pacC*
and ApacC strains were then assayed for their ability to
grow on PDA media buffered to different pH values
(buffer concentration 20 mM) (Figure 1A). The most
striking phenotype of ApacC was observed at alkaline
pH: there was a dramatic reduction in growth when the
initial pH of the plates was 7 or higher (Figure 1A). For
the pacC® strain no such effect was evident, and its
growth rate at alkaline pH was only slightly reduced in
comparison to the wt (Figure 1A). Confrontation assays
are often used as a measure of the ability of Trichoderma
to compete with, to antagonize, and to overgrow a fungal
host. We thus tested the wt, ApacC and pacC® strains for
their ability to overgrow and parasitize two plant patho-
gens, Rhizoctonia solani and Sclerotium rolfsii. ApacC
overgrew Rhizoctonia solani more slowly than did the wt
(Figure 1B; note that Trichoderma has not yet sporulated
over the surface of Rhizoctonia solani at the left side of
the plate: photo from above at 12 days). The interaction
with Sclerotium rolfsii was more complex, with some
hyphae of this pathogen initially overgrowing wt
Trichoderma after the two colonies met, but with a
complete prevalence of wt over S. rolfsii, and a covering
of the sclerotia formed in the oldest region of the S.
rolfsii colony, later on. ApacC initially followed the
same pattern as wt, eventually overgrowing S. rolfsii,
yet was unable to cover the sclerotia. As seen in
Figure 2, sporulation of wt (green conidia, arrows, left
inset), but not sporulation of ApacC (right inset), was
visible on the sclerotia. The ambient pH was similar in
interactions with wt or with ApacC (note the similar
distribution of indicator color: photos from below in
Figure 2). At alkaline pH, pacC® showed wild type viru-
lence in confrontation with Rhizoctonia solani, despite
its slightly reduced growth rate. At acidic pH, the
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Figure 1 A. Growth and colony phenotypes of loss and gain of function mutants in pacC on media of different pH. Wild type, pacC" and
ApacC were assayed for ability to grow on PDA media buffered to different pH. For visualization of pH changes, the indicator Phenol Red was
incorporated into the media, showing acidic (yellow) to basic (red) pH. Cultures were photographed after 5 days growth. B. Confrontation assays
with R. solani. T. virens was coinoculated with R. solani by placing mycelial discs at the opposite sides of PDA plates. Overgrowth of R. solani by
the different T. virens strains is evident from the production of green conidia; R. solani does not sporulate and appears white. The upper set of
pictures was taken after 3 days, and the lower set after 12 days of growth. A, photos from above showing colony morphology and conidiation;

B, photos from below showing pH gradients formed by the growing colonies.

growth rate of pacC® was markedly reduced compared to
wt (Figure 1A). Perhaps due to this slower growth, pacC*
was ineffective in confrontation assays against S. rolfsii
(Figure 2). Both wt and pacC® colony growth resulted in
an alkalinization of the PDA medium, as has been ob-
served previously for several Trichoderma species, when
secondary nitrogen is available [36,47]. In comparison
with the wt, the increase in pH was less extensive for
ApacC (Figure 1B, 3 days, photo from below, bottom
panel). Microscopic examination of the samples re-
vealed mycoparasitic coiling in interactions of all three
strains - wt, ApacC, and pacC® - with Rhizoctonia solani.
Furthermore, no morphological alterations or difference
in the extent of coiling were evident when the three
strains were compared (data not shown).

Genome-wide study of PacC function

The phenotypes of the loss- and gain-of-function mutants
in pacC that were studied here point to central roles for
PacC in mycoparasitism. The PacC and pH-dependent

transcriptomes provide insights into a variety of processes
controlled by pH signaling, and into the mechanisms
underlying pH homeostasis. To date, the transcriptomic
consequences of pH signaling have only been studied in a
relatively small number of fungal species [2,14,48,49]. The
diversity of signal processing among fungal species sug-
gests that a conserved regulatory factor can have different
targets in different biological models. Thus, we reasoned
that the Trichoderma virens transcriptome could provide
insights into the role of pH signaling in fungal-fungal
interactions. To this end, T. virens cultures were exposed
to a one-hour alkaline or acidic pH step by transferring
them to medium titrated to pH 8.4 or pH 4 (see Methods),
and subsequently harvested.

Prior to performing microarray analysis, we chose 12
genes whose expression was previously reported to be
regulated by pH in other fungi, and identified their
orthologs in T. virens (Table 1). Expression of these
genes in wt and ApacC was compared following expos-
ure to the alkaline and acidic pH steps (we will refer to
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Figure 2 Confrontation assay with S. rolfsii. T. virens was coinoculated with S. rolfsii by placing mycelial discs at the opposite sides of PDA
plates. Overgrowth of S. roffsii by the different T. virens strains is evident from the production of green conidia; S. rolfsii does not sporulate and
appears white. The picture was taken after 15 days of growth. Ellipses are magnified in the lower images in order to show sclerotia. Arrows in the
wt image point to sclerotia which are nearly invisible because they are overgrown with sporulating T. virens. The indicator Phenol Red was
incorporated into the media, showing acidic (yellow) to basic (red) pH. A, photos from above showing colony morphology and conidiation;

B, photos from below showing pH gradients formed by the growing colonies.

these as pH 8 and pH 4, respectively). The results we
obtained for six of these genes are shown in Figure 3. As
expected, pacC transcripts were not detected in the dele-
tion mutant because the entire coding sequence was de-
leted (Additional file 3). In accordance with what has
been reported for other fungi, we found that in the wt,
exposure to alkaline pH resulted in an upregulation of
pacC transcript levels. Of the genes listed in Table 1, the
only one, other than pacC, to exhibit PacC-dependent
expression was a P-ATPase gene, ID 67662. PacC-
dependent expression was reported previously for the
Fusarium oxysporum ortholog of this gene, ENAI [5].
We note that “protein ID” numbers are used throughout
this report to designate both the gene and the predicted
protein, because these identifiers conveniently lead to
the complete information in the 7. virens genome
website (see Methods). Two genes were found to be
upregulated by alkaline pH, but not via PacC: these were
ID 87714 (an acid phosphatase) and ID 86768 (a high
affinity glucose transporter). Acid phosphatase is a
known acid-expressed gene in Aspergillus nidulans [3].
It is intriguing, therefore, that this gene was found here to
be upregulated by the alkaline pH shift (or downregulated,
perhaps, at the acidic pH where its activity would have
been expected to be optimal). We found that two iron
uptake-related genes: SidA (which catalyzes an early step
in siderophore biosynthesis) and a predicted siderophore
transporter were upregulated by the pH 8 step. Since Fe
solubility decreases with increasing pH, it is possible that

increased expression of siderophore biosynthesis-related
genes may reflect an adaptation to limited iron availability.
The other genes we examined (Table 1) did not show any
significant dependence on pH. This is consistent with the
existence of variations in pH and other signaling networks
between different species (see also [43]). The results in
Figure 3 show the similarity in the pH-regulation of T.
virens pacC expression to that of its well-studied Aspergil-
lus nidulans ortholog. In summary, these data demon-
strated that the pH step signal was transduced to changes
in gene expression, and we thus proceeded to a full-scale
transcriptomic analysis.

Microarray analysis

Oligonucleotide microarrays were hybridized with
probes synthesized from RNA samples from the pH 4
and pH 8 treatments. Plotting the signals from wt or
ApacC at pH 8 against those at pH 4 (scatter plot in
Figure 4) revealed that most of the signals were distrib-
uted within + 2 standard deviation limits around the
trendline. Treatment-dependent genes found below or
above the trendlines deviate from what would be
expected from random fluctuations in the transcript
levels. Thus, this graphic analysis of the data shows that
a large number of genes were regulated by the pH step
treatments. A complete statistical analysis of the tran-
scriptional profiles with LIMMA using a cutoff of >2-
fold change and a p-value of P < 0.05 revealed that in
the wt, more than 650 genes were differentially regulated
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Table 1 Genes selected for initial studies of pH regulation in T. virens

Protein ID Sequence Function Species

40391 s ACGCCGAGACGCTCTATGAAC Transcription factor PacC T. virens, this study
as GGTGGTGCGACAAGAGTTCC

33825 s CGAGACAGACCAGGGAGAGC L-ornithine N5-monooxygenase SidA (2.5E-124) Aspergillus nidulans
as GAGTGTCGCTCAACCCATGA

43838 s GTTGGGTACAACGGCTTGGA Siderophore-transporter (9.02E-57) Aspergillus nidulans
as CAAGAAGGCGTTGGAGATGG

111866 s CCGATTTGGTGGCTTCAGAT Chitinase (0) Trichoderma harzianum
as ATTGGTGCCGACATCATTCC

67662 as ATTGGTGCCGACATCATTCC ATPase, P-type (0) Fusarium oxysporum
s GCTGACCTCCGACTGATTGAAG

87714 as GCCAGTGGCATCATCAAAGA Acid phosphatase (6.50E-95) Aspergillus nidulans
s GCCTTTGACCGCTTTGTTGT

53036 as AGTTGGGCTCAGAAGGGTGA Alpha-L-arabinofuranosidase (0) Aspergillus nidulans
s TTCGCCGAAGATGCTACGTT

59192 as ATGTGTGAACACCGCCATTG P-ATPase T. virens
s CTGGCCGTCATTCTCCTCAA
as GGGTTTCTGCCTTGACGGTA

72838 s CCAGGCACCAAGAATAAGGTCAT Xylanase (8.00E-76) Aspergillus nidulans
as GCCAGTGGATGGGTTGTAGG

76958 s GTGTCATCTGGGTCGTTGGTT Glucose permease (0) Trichoderma harzianum
as AGGGACCTGAGCAGATTCGAT

81777 s GCACCAGCAAACCGGAAGC Asparty!l protease (0) Trichoderma harzianum
as GTAACCGGTGGCAGTGAAGC

86768 s GGTCTCGGTGTCGGTTTCG High affinity sugar/H+ symporter (0) Aspergillus niger

as GCAAGAAGCGAGGAGGATACC

Candidate genes whose expression might depend on pH and/or PacC were chosen from published studies in Aspergillus nidulans [28], Fusarium oxysporum [5] and
T. harzianum [35]. A T. virens P-type ATPase (ID 59192) was already available from a differential library for transcripts expressed preferentially in cultures grown on
autoclaved R. solani material. Protein ID numbers refer to the T. virens v1.0 sequence. E values (in parentheses) are from BLASTP searches of the T. virens genome
with the corresponding genes indicated in the next column (species, GenBank accession).

in response to pH. The significantly regulated classes de-
fined by LIMMA analyses are depicted in Figure 5. Of these
pH-dependent genes, 157 were differentially expressed
after exposure to the alkaline pH step in wt relative to
ApacC (64 genes downregulated, Figure 5A, and 93
upregulated, Figure 5B). The 650 genes regulated by pH
comprise ~about 5% of the 12,427 predicted protein-
encoding transcripts, indicating that 7. virens has a far-
reaching transcriptomic response to external pH. PacC is
responsible, either partially or entirely, for the pH regula-
tion of 1% of all protein-encoding genes. This large number
makes PacC a global transcriptional regulator in 7. virens.
NRG1 and SMP1, negative regulators which transduce the
signal downstream of Rim101/PacC in yeast [48], were not
found in the set of downregulated genes in our analysis.

Validation of microarray results by qPCR
Two qPCR data sets were used for validation of the
microarray data. The first set has been described above

(Table 1, Figure 3). In Figure 3, data of qPCR amplifica-
tions from the same three independent RNA samples
that we used to generate the probes for microarray ana-
lysis are presented. For the second qPCR data set, we
performed an additional biological repeat under identical
conditions, and the constitutively-active pacC® mutant
was also included (a total of 3 biological repeats). We
then checked the expression of 13 candidate PacC-
dependent genes (Table 2) using qPCR. The results are
shown in Figure 6. In general, we found the regulation
patterns determined by qPCR agreed well with the
microarray hybridization data. As shown in Figure 6, the
expression pattern of the panel of genes tested in the
constitutively-active pacC* strain (for both the pH values
examined) was largely similar to that of the wt at pH 8.
The expression level of most of these genes, however,
was higher in pacC® than in the wt. This suggests that
activation of PacC in the wt does not reach saturation
levels under ambient alkaline conditions, and that
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according to ANOVA of the data for each gene (significance: post-ANOVA Tukey's test, P<0.05).
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further activation is possible, and might occur in nature
at unusually high pH values. Alternatively, since the con-
stitutively active allele is present throughout growth
whereas in wt the activation of PacC occurs only during
the pH step, the response in the latter might then
(depending on the lifetime of each transcript) be inte-
grated over a relatively short time.

Classification of regulated transcripts

Enrichment in KOG classes was measured by comparing
the expected number of genes representing each KOG
class with the observed numbers. When we compared
the genes that were upregulated in the wt at pH 8 as
compared to pH 4 (Figure 7), we found that there was a
clear enrichment in the expression of genes involved in
carbohydrate and inorganic ion transport, metabolism,
and “deficiency” in classes related to transcription, repli-
cation, translation, and cell cycle control. Comparison of

genes that were downregulated in wt at pH 8 vs. wt at
pH 4 (Figure 8) showed that there was an enrichment in
genes involved in secondary metabolite biosynthesis,
transport and catabolism; energy production and conver-
sion; carbohydrate transport and metabolism. In addition,
we found there were fewer genes than expected belonging
to the following groups: transcription; translation, ribo-
somal structure and biogenesis; replication, recombin-
ation and repair; intracellular trafficking, secretion and
vesicular transport; RNA processing and modification.
PacC upregulated genes should meet two criteria: those
whose expression is significantly greater in wt pH 8 vs.
wt pH 4, and also significantly greater in wt pH 8 vs.
ApacC pH 8. This set showed enrichment in carbohy-
drate and inorganic ion transport and metabolism
(Figure 9). Conversely, PacC downregulated genes are
those whose expression is significantly lower in wt
pH 8 vs. wt pH 4, and in wt pH 8 vs. ApacC pH 8. This

A

+25D

~

+250

-25D

ApacC pH 4

wtpH 8

Figure 4 Scatter plot representation of microarray data from wt (A) and ApacC (B) at pH 8 compared to pH 4. Each dot represents the
microarray signal of the particular gene. The best-fit linear trend and the + 2 standard deviation (SD) lines (dashed) are indicated.

ApacC pH 8




Trushina et al. BMC Genomics 2013, 14:138
http://www.biomedcentral.com/1471-2164/14/138

Page 8 of 21

344 genes
wt pH8<wt pH4

64 genes
wt pH8< ApacC pH8

46 genes
ApacC pH8= ApacC pH4
ApacC pH4 > wt pH4

16 genes
ApacC pH8<ApacC pH4

ApacC pH4>wt pH4

-

Figure 5 Venn diagram of classes of significantly regulated genes. The diagram shows subclasses of downregulated (A) and upregulated
(B) genes for wild type and ApacC, and their overlap. > indicates greater transcript levels in the treatment shown at the left of the symbol; < indicates
decreased transcript levels. The lists of genes in each class are given in Additional file 7.
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set showed enrichment in secondary metabolite biosyn-
thesis, transport and catabolism, and in nucleotide
transport and metabolism (Figure 10).

Secondary metabolite biosynthesis is finely tuned, and
there is previous evidence for its regulation by ambient
pH [45,50,51]. One of the proteins included in the PacC-
dependent, down-regulated secondary metabolite-related
gene class is a non-ribosomal peptide synthase, protein ID
37142. The gene coding for this protein, named tex15
[52], is related to CENPS4 of Cochliobolus heterostrophus,
which has a role in conidial surface hydrophobicity [53].
The Alternaria brassicicola ortholog of this gene is im-
portant for the development and integrity of conidia
[54]. Inspection of the T. virens genomic region near
tex15 revealed a cytochrome P450 (protein ID 13148),
which was also significantly down-regulated (Additional
file 7). Additional members of this putative ChNPS4-
like cluster were not significantly down-regulated (data
not shown). Members of secondary metabolite biosyn-
thetic clusters are known to be PacC-regulated in other
fungi as well [50]. It would be rather surprising if all of
secondary metabolism were to be downregulated at
alkaline pH in Trichoderma. Two genes related to sidero-
phore biosynthesis and import are indeed upregulated at
alkaline pH in T. virens (Figure 3) and in other fungi as
well (see Table 1). The SidA gene, ID 33825, is located
near a predicted NRPS gene: ID 85582, Tex10 [52]. Tex10
is the ortholog of C. heterostrophus NPS2, and is respon-
sible for the biosynthesis of the intracellular siderophore
[55]. However, although Tex10 is clustered with SidA, it is
not coregulated with it. The siderophore transporter ID

43838 shown in Figure 3 is clustered in the genome with
ID 44273, a predicted NRPS gene showing 41% identity
with ChNPS6 of C. heterostrophus. The transcript corre-
sponding to ID 44273 is co-regulated with the siderophore
transporter ID 43838 (Figure 3). We note that there is no
functional information for the gene corresponding to pro-
tein ID 44273. The most closely related NRPS to ChZNPS6
in T. virens is a different gene, which corresponds to pro-
tein ID 57567 [52], and unfortunately is not represented
in the microarray probe set. T. reesei also has two paralo-
gous NPS6-like genes [53].

Eight clearly-annotated genes encoding ion transporters
were in the alkaline-upregulated, PacC dependent group
(Additional file 8). These are of interest because of the im-
portance of maintaining ion homeostasis, which is also
tightly linked to pH homeostasis. The P-type ATPase
Enal of Fusarium oxysporum (ortholog of T. virens 1D
67662), for example, is known to be required for growth
at alkaline pH and high salt [5]. ENA1 was one of the first
targets of Rim101 (PacC) to be studied in Saccharomyces
cereviseae [1]. Protein ID 89677 is annotated as a ZIP zinc
transporter. These zinc transporters have been studied in
fungal pathogens: for example, zrfA—-C of A. fumigatus are
regulated by pH and by available Zn levels [56]. Zrtl of
Candida albicans is important for virulence, possibly via
the maintenance of cell wall integrity.

To test whether enal is involved in the pacC related
phenotypes, we proceeded to construct a knockout
mutant, Aenal, in which this gene was replaced by the
hygromycin B resistance cassette, using the split-marker
procedure [46] as described above for pacC. Growth on
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Table 2 Genes selected from microarray data for validation by qPCR

Protein ID Sequence Gene homology

10799 s CGACCGGCCAGGAGAGCAC regulation of pH - Na/H exchanger
as GGCTTGAACACGGGCTTGG

27509 s CCCAGAACTACCGCCTTGAA CVNH domain-containing protein
as TCAACCCAGCTACCGTCCAC

28147 s GCAAGAACATCCGCGACGAG C-type lectin
as CGCATAGCCTTCCTGAGCAT

28324 s GCCAACGAAGAACGAAGCAG Hypothetical
as CTGATCGCCCTGTCCCATAA

34827 s CCGAGTCTCTTGTTGCTGTCCTA ATPase
as TCGGAGCAGATGTTGGTGAC

56294 s CCGCAGGTGAGAATCAGAGAGT ATPase
as CGTCTTCGTCTGTCGGTGTG

68068 s TGAGGATCACTGGCATTGCTC predicted small secreted cysteine-rich protein
as GGTAGGTGGGAGATGGCACA

74915 s TTCGTCATGGAGGCTGCTG ATPase
as ACCGCAGATGACACCGAAAT

75759 s AATGATACGATGAACACACGACCT pH-response regulator protein palC
as GTGAATCTCACGGCCCGAAG

77023 s TTCCACCTCGGCAAATATGATG methyltransferase
as TCCTGGCCGTATCAATGAAGA

79497 s TCTCGTTGGTGCCTGGATTG H+/oligopeptide symporter
as CAGAGGCGACGAGGATAACG

89677 s GCGCTGATACCTACTGCCTTGA Fe2+/Zn2+ regulated transporter
as ATCGGGATCTGCAGTGTCGT

40391 s ACGCCGAGACGCTCTATGAAC Transcription factor PacC
as GGTGGTGCGACAAGAGTTCC

67662 s GCTGACCTCCGACTGATTGAAG ATPase, P-type
as GCCAGTGGCATCATCAAAGA

43392 s CCTCTGTAACCTCGATTCCAACG peptidylprolyl isomerase A [PPIA] - normalization gene
as AGCTCTGGCTCCTGGGTAGG

77851 s CGTACTACAGCCGCTACCAGACC ribosomal protein L5 [RPL5] - normalization gene
as AGGCGGTACTTGGGAGCATT

88010 s ACTTCAACGAGGCTTCTGGCAAC Tubulin - normalization gene
as CGGAACAGCTGGCCAAAGG

91925 s AGGAAGAAGTTGCTGCCCTCGTCATCGACA Actin - normalization gene

as CCCATACCGATCATGATACCATGGTGACG

Following microarray analyses, genes were chosen based on fold change and relevance. Protein ID numbers refer to the T. virens v1.0 database.

acidic and alkaline pH and colony morphology of Aenal
were normal. Likewise, Aenal performed similarly to wt
in confrontation assays with R. solani, and with S. rolfsii
(Additional file 9). It is not surprising that the deletion
of a single gene did not account for the effect of a global
regulator like PacC. Thus, we reason that either there
may be redundant P-Type ATPase genes, or that a loss

of a combination of factors may be required to account
for the ApacC phenotype.

Some additional examples of pH and/or PacC-regulated
genes are given in Table 3. An ortholog of DFG5, a cell-
wall glycoprotein involved in tolerance to alkaline pH in
Candida albicans, is upregulated 324-fold by alkaline pH
in wt, but not in ApacC. In S. cerevisiae, expression of this
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Figure 6 Expression profiles of selected genes from the microarray data, measured by qPCR. Expression profiles of 13 genes (Table 2)
chosen from the microarray data were followed by qPCR. Error bars indicate + SD for three experiments (biological repeats). The cutoff level of
the y-axis was set by the highest signals obtained in no-template controls.

gene depends on alkaline pH stress and on the cell wall in-
tegrity MAPK Slt2 [57], suggesting joint control of gene
expression in response to high pH by PacC and by the cell
wall integrity pathway. Protein ID 72478 is similar to
GPR1/FUN34/yaaH, an ammonia exporter (AMET) gene
which is upregulated by alkaline pH in Colletotrichum
gloeosporioides [14]. To gain a more comprehensive bio-
logical interpretation it will be necessary to carry out a
functional study of pH-regulated genes.

Secondary metabolite biosynthesis genes whose
expression is not necessary at high pH could be
expected to be downregulated. This would occur if inter-
action with particular soil microorganisms did not pose
a threat (or if the soil microorganisms targeted by a
particular metabolite were not available as hosts for the
mycoparasite) in an alkaline environment. In contrast,
siderophores are necessary for Fe uptake, which be-
comes increasingly difficult at higher pH. The export of
ammonia increases pH. The increase in the level of the
transcript for an ammonia transporter (Table 3) suggests
that ammonia export is upregulated with increasing
pH. This would indicate a quorum-sensing like feed-
back mechanism, in which local alkalinization is self-
reinforcing. In this respect, it would be interesting to
compare a foliar pathogen (C. gloeosporioides) with a
rhizosphere resident (7. virens).

Predicted PacC binding sites
In Aspergillus nidulans, PacC binds 5-GCCARG-3
sequences upstream of pH-responsive genes, and can
activate or repress transcription of those genes [41]. To
determine whether this target sequence could be con-
served in T. virens, we quantified the number of pre-
dicted PacC binding sites in the 1 kb regions upstream
of the start codon of each of the PacC-regulated genes
(Additional files 8, 10). We found that there were 3.1 in-
stances per 1 kb for genes upregulated via PacC (shown
schematically in Figure 11A). The frequency at which
this site appeared in random promoters, 1.3 instances
per 1 kb (Figure 11B), is clearly much lower. No such
enrichment was found for the PacC-downregulated
genes (1.5 instances per 1 kb, Figure 11C). This suggests
a different mode of regulation, i.e., direct for activation,
and indirect for repression, of the PacC target genes.
Cluster analysis performed on the averaged microarray
data for each experimental treatment indicates a well-
defined group that is upregulated at alkaline pH in wt
but not in ApacC (Figure 12, Cluster 1); this cluster
includes enal (see above). pacC itself also belongs to
Cluster 1: pacC transcript abundance is increased at
pH 8 in wt. There is a small group of genes whose
expression is PacC-dependent at pH 4 (Table 4). Acidic
pH is not expected to promote proteolytic activation of
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Figure 7 KOG Classes represented in differently expressed gene lists. wt pH8 > wt pH4. Asterisks indicate significant differences. X-axis
(KogClasses) indicates the functional categories.

the unprocessed, long form of PacC. This suggests the
existence of a novel mechanism which could be studied
by promoter analysis of this group. An additional group
of genes responds to pH essentially as the wild type
does, but their expression level is lower (Table 4). Thus,
for this gene group, a PacC-dependent process regulates
overall expression level. This regulation could consist of
a gating process in which PacC increases the expression
of genes that are initially regulated by a different tran-
scription factor.

Trichoderma spp. are widely used as biofungicides. Even
though approximately 60% of all registered biofungicides
are Trichoderma-based, the market size of biopesticides is
only a small fraction of the total pesticide market, which is
largely dominated by chemicals [31,60]. Bioefficacy of
Trichoderma, like any other biocontrol agent, is bound to
be strongly influenced by environmental factors. One of
the major limitations of applying Trichoderma in agricul-
tural settings is its inability to operate in alkaline condi-
tions, since the pH optima for Trichoderma growth,
development, and activities is in the range of 4—6 [61]. In
this respect, an understanding of the pH signaling

pathways might be instrumental in improving the
bioefficacy of Trichoderma spp. Thus, this study was
carried out with the goal of elucidating the role of the pH-
responsive transcription factor PacC and the gene regula-
tion network mediated by this transcription factor in the
commercially used biofungicide T. virens. The phenotypes
of loss- and gain-of-function pacC mutants studied here
reveal the importance of this signaling pathway in devel-
opment, and in the mycoparasitic interaction of T. virens
with two important fungal pathogens, R. solani and S.
rolfsii. The present study also indicates that pH regulation
does not depend entirely on PacC, since we found a num-
ber of up- and downregulated genes whose dependence
on pH was similar in the ApacC mutant and wild type
(despite the fact that steady-state growth of the mutant is
very slow at pH 8). This result points to the possible exist-
ence of a pH-sensing mechanism other than the PacC
pathway, by which normal regulation takes place during
the one-hour alkaline pH step, despite its adverse effect on
the growth rate. It will be interesting to identify such alter-
native pathways. The pathway for transduction of pH sig-
nals in A. nidulans has been described as “mechanistically
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Figure 8 KOG Classes represented in differently expressed gene lists. wt pH8 < wt pH4. Asterisks indicate significant differences. X-axis
(KogClasses) indicates the functional categories.

dissimilar to all other known eukaryotic signal transduction
pathways” [62]. This makes it an attractive target for anti-
fungals, as has been proposed, for similar reasons, for the
two-component signaling pathways of bacteria [63]. In bio-
control, however, growth of the (mycoparasite) pathogen is
beneficial, so the reasoning usually applied to host-
pathogen interactions would need to be reversed. Strains
could be selected for growth at different ambient soil pH
or for growth in the rhizosphere of different crop plants.
Detection of ambient pH through PacC and other mecha-
nisms, and the resulting ability to maintain pH homeosta-
sis, are likely general requirements for a mycoparasite to
attack the host, explaining the loss of biocontrol ability in
T. harzianum pacC mutants [35]. Genetic manipulation of
the global pH-dependent regulator PacC or some of its
downstream target genes may be relevant for optimization
of biocontrol strains according to the local environment,
crop plant, and fungal host.

Conclusions

Our genome-wide analysis of PacC and pH regulation
identified some genes that are well-known targets of
regulation by pH, for example pacC itself and enal. We
also found a large number of novel genes that are

promising candidates for construction of loss-of-func-
tion mutants. Several hypotheses can be proposed to ex-
plain why pH (both PacC dependent and independent)
regulation is important for mycoparasitism: pH homeo-
stasis in the face of host-mediated changes in ambient
pH, a signal provided by the host, and programming of
expression of hydrolytic enzymes to be expressed near
the pH optima for their activity. The results, while com-
patible with all these mechanisms, also indicate a more
complex picture. For example, several genes encoding
enzymes predicted to have acid pH optima are expressed
at alkaline pH. Thus, an initial alkaline pH signal may
anticipate varying pH during the fungal-fungal inter-
action. Measurement of local pH at the microscopic
level, in real time during the interaction, could provide
further insight. We anticipate that gene knockout and
overexpression of candidate genes identified here will be
helpful in improving the pH adaptability of the most
popular biofungicides, i.e., Trichoderma spp.

Methods

Fungal strains and culture conditions

T. virens [38,64] is deposited as IMI 304061. Local iso-
lates of R. solani and S. rolfsii were kindly provided by
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Figure 9 KOG Classes represented in differently expressed gene lists. wt pH8 > wt pH4 and wt pH8 > ApacC pH8. Asterisks indicate
significant differences. X-axis (KogClasses) indicates the functional categories.

Dr. Ada Viterbo, Faculty of Agriculture, Hebrew University
of Jerusalem, Rehovot. Wild type T. virens and R. solani
were grown on potato dextrose agar (PDA; Difco) at room
temperature unless otherwise indicated. Complete medium
(PDYC) contained 24 g/l potato dextrose broth, 2 g/l yeast
extract and 1.2 g casein hydrolysate (all from Difco). For
long-term storage, a dense conidial suspension in PDYC,
20% glycerol was stored at —70°C. For hygromycin B selec-
tion, PDA was prepared with 100 pg/ml hygromycin B
(Calbiochem). For phenotype assays on different pH-
buffered media, the following buffers were used: for pH 4
and 5 - potassium hydrogen phthalate (Sigma-Aldrich), for
pH 6 - KH,PO,, for pH 7, 8 and 9 -Trizma base (Sigma-
Aldrich). For visualization of pH changes, Phenol Red
(Riedel-de Haén) was added to the plates (final concentra-
tion 0.01%). The growth rate of the mutants relative to the
wild type was determined by placing a 5-mm-diameter
mycelial disk of the fungus in the centre of a PDA plate
and measuring the colony diameter at the indicated times.
For confrontation assays, 7. virens was co-inoculated with
host fungi by placing 5-mm-diameter mycelial discs at the

opposite sides of PDA Petri dishes. Overgrowth of the host
by the different T. virens strains is evident from the pro-
duction of green conidia and the disappearance of the nor-
mal morphology of the host colony. For pH step
treatments, shake cultures in PDB (initial pH 4.5) were
grown for 3 days, and reached pH 5.2-5.9. The mycelia
were collected by filtration and transferred to fresh
medium titrated to either pH 8.4 or pH 4. Measured
immediately (within minutes) after the addition of myce-
lium, the pH was 7.7-7.9. At the end of harvesting, the pH
was 6.7-6.9. In the acidic direction, there was only a slight
upward shift (less than 0.1 unit) upon addition of myce-
lium, and at most by 0.4 units after the experiment.

RNA isolation

Total RNA was isolated from mycelia ground in liquid ni-
trogen with Tri-reagent (Molecular Research Center,
Cincinnati, OH) according to the manufacturer’s protocol.
Alternatively, mycelia were lysed by homogenization
together with Tri-reagent in a Mini-bead Beater (Biospec
Products, Bartlesville, Oklahoma), using 0.2 g of 0.5 mm-
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Figure 10 KOG Classes represented in differently expressed gene lists. wt pH8 < wt pH4 and wt pH8 < ApacC pH8. Asterisks indicate
significant differences. X-axis (KogClasses) indicates the functional categories.

diameter zirconia/silica beads (BioSpec Products). RNA
yield was evaluated using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop, Wilmington, DE). Samples
for microarray analysis were further evaluated using the
Agilent 2100 Bioanalyzer and RNA 6000 Nano kit
(Agilent, Santa Clara, CA) according to the manufac-
turer’s instructions. Samples with electropherograms

exhibiting sharp 18S and 28S rRNA peaks and showing
no evidence of degradation were retained.

Real time qPCR

For cDNA synthesis, 2 pg of RNA were used for reverse
transcription with random primers following the proto-
col supplied with the High Capacity cDNA Reverse

Table 3 Additional pH regulated genes with functional annotation

Protein Regulation in T. virens Homology Species and regulation

ID

72478 upregulated at alkaline pH GPR1/FUN34/yaaH ammonia exporter upregulated at alkaline pH in
Colletotrichum [14]

76718 upregulated at alkaline pH glucose-repressible protein (GRGT1) upregulated at alkaline pH in
Colletotrichum [14]

58111 upregulated at alkaline pH, DFGS5, a cell-wall glycoprotein involved in Upregulated at alkaline pH in Candida

PacC dependent tolerance to alkaline pH albicans [58,59]; in S. cerevisiae, expression

depends on alkaline pH stress and the cell
wall integrity MAPK SIt2 [57]

83099 downregulated at alkaline pH like NAD™ epimerase/dehydratase family, EPME alkaline pH downregulated in
Colletotrichum [14]

73483 downregulated at alkaline pH high affinity glucose transporter alkaline pH downregulated in

(2.5 downregulation trend, though
below the level of significance for our
cut-off criteria)

Colletotrichum [14]
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underexpressed in ApacC vs wt pH 8. B. Random promoter sequences from T. virens. C. Promoters of genes downregulated in wt pH 8 vs. wt
pH 4 and underexpressed in wt vs. ApacC at pH 8.
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Figure 12 Representative results of cluster analysis. Average microarray signals were clustered (Genesis, http://genome.tugraz.at/).

J

Transcription Kit (Applied Biosystems). Abundance of
transcripts was measured by real-time qRT-PCR reac-
tions performed in an Applied Biosystems 7000 cycler; ap-
proximately 15 ng of cDNA were used as template. The
15 pl reaction volume included 7.5 ul of 2XABsolute SYBR
Green ROX MIX (ABgene, Surrey, U.K.) and 75 nM final
concentration of specific primers for the gene of interest.
Assays were run in duplicate or triplicate, using the follow-
ing protocol: initial activation at 95°C for 10 min; 40 cycles
of 95°C for 15 s, 60°C for 60 s, followed by a gradual
increase in temperature from 60°C to 95°C during the

dissociation stage. Tables 1 and 2 detail the genes vali-
dated by qPCR and assay conditions. The transcript
abundance was calculated using the ABI software
DataAssist. Prior to quantitative analysis, a standard
curve was constructed using serial dilutions of RT
product and the efficiency of each primer set was
determined using the equation [(10CY/51°P)_1).100].
Efficiencies near 100% were required to include the
qPCR assay in array validation. For balancing the
amount of cDNA, the following were tested for stable
expression across all experimental treatments using

Table 4 Groups of genes with expression patterns that have not been studied previously

Acid regulated

Gating process

ApacC pH4>wt pH4 ApacC pH4<wt pH4 ApacC pH8<ApacC pH4 ApacC pH8>ApacC pH4
69432 72458 53730 33937 91616 74915 62760 88246
52534 85743 37142 33666 18327 62940 44387 71577
48610 36701 49894 18327 72350 79910 58495 13148
34822 88246 82648 74915 51804 55793 34822 79145
53582 13148 85436 49577 85436 53582 53581
89740 79145 79497 16120 79497 72390 92435
85675 53581 66108 88928 66794 81957 53730
78759 92435 66038 85743 37142

Acid-regulated, PacC dependent (left); expression gated by PacC at both pH 4 and pH 8 (right).
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DataAssist software (ABI): tubulin (protein ID 88010),
peptidylprolyl isomerase A (PPIA, protein ID 43392),
actin (protein ID 91925) and ribosomal protein L5
(RPL5, protein ID 77851). Tubulin, PPIA and L5 were
chosen as “housekeeping” genes.

Gene replacement: ApacC

A fragment of the pacC gene was cloned by amplification
with degenerate primers, as described in the Results. We
used a PCR-based genome walking method (Universal
Genome Walker kit, Clontech) to clone the unknown
(prior to assembly of the T. virens sequence at the Joint
Genome Institute) genomic DNA sequences adjacent to
our known sequence. Genomic libraries were prepared
and amplifications were done according to the manufac-
turer’s instructions. The deletion construct was made by
replacement of the coding region with the selection
marker gene for hygromycin resistance, hygromycin
phosphotransferase (iph) under the control of the Asper-
gillus nidulans TrpC promoter and TrpC transcription
termination signals (Additional file 11). 1.5 kb upstream
and 1 kb downstream flanking sequences of the pacC gene
were amplified with the following primer pairs: (5" flank s
and 5’ flank as primers) and (3" flank s and 3" flank as
primers) respectively (Additional file 12), by PCR using
BIO-X-ACT high fidelity enzyme (Bioline). The resulting
1.5 kb upstream PCR fragment was cloned into pUC57
(Fermentas), and the resulting plasmid digested with
Acc65I and EcoRIL. The 1 kb downstream PCR fragment
was digested with NotI and EcoRIL. The Hph cassette was
excised from pUC-ATPH [65] with Acc651 and Notl. For
pacC replacement, pUC57 plasmid containing the up-
stream fragment was ligated in one step using T4 DNA
ligase (NEB) to the downstream flank and Hph cassette
fragment (Additional file 11). Transformation to HIT
DHb5a (UBI) competent cells was performed according
to the manufacturer’s protocol. Plasmid DNA was iso-
lated from bacterial cultures using the Qiagen Plasmid
Mini Kit. Linear DNA for transformation was prepared
by cleavage of the plasmid with EcoRI (New England
Biolabs).

Split-marker method: pacC*

The pacC® mutant was constructed using the split-marker
method [46,66]. A linear DNA construct was made by
overlapping PCR reactions. The construct, upon integra-
tion into the genome, inserts the hygromycin selectable
marker flanked from one side by the truncated pacC gene
(constitutively active) ended with an inserted TAA stop
codon, and 3" UTR [46] (Additional file 4). Reactions with
primer pairs 1 and 2 (Additional file 13) were carried out
using T. virens genomic DNA as template. Reactions with
pairs 3 and 4 were carried out using pBlueScript-Hyg
(derived from pUCATPH [65]) plasmid DNA as template.
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The product obtained with primer pair 3 or pair 4 is part of
the gene (hph) encoding hygromycin phosphotransferase.
The second round of PCR joins the 5" flank (truncated
pacC gene) or 3’ flank with the partial #ph coding se-
quences amplified in the first round, by annealing of
the complementary sequence present in the reverse pri-
mer of pair 1 or the forward primer of pair 2, respect-
ively. To construct the 5" side of the final sequence, the
products of pairs 1, 3 were used as template for amplifi-
cation with primers FP1 and NLC37; for the second
half, the products of pairs 2 and 4 were used as tem-
plate for amplification with primers NLC38 and RP2. The
two final products were integrated into the T. virens
genome by double-crossover recombination, resulting
in reconstruction of the complete hygromycin resist-
ance cassette and replacement of the 3" coding region
of pacC. Fungal protoplasts were prepared as described
below; transformants were selected for hygromycin resist-
ance, and tested for homologous integration by amplifica-
tion with primer pairs 5 and 6 (Additional file 13) and
others (Additional file 3).

Transformation

Transformation was performed essentially as described by
[67], optimized for T. virens. The protoplasts were re-
leased from germinating conidia by 2 to 2.5 h of digestion
at 30°C with gentle shaking (70 rpm, rotary shaker) in an
enzyme mixture which consisted of 0.2 g of p-D-glucanase
(InterSpex, San Mateo, CA - we note that InterSpex prod-
ucts are no longer available; replacements are currently
being tested and calibrated), 0.4 g of Driselase (InterSpex),
and approximately 2 mg of chitinase (Sigma, catalog num-
ber C6137). The mixture was stirred for 5 min at room
temperature in 70 ml of 0.7 M NaCl, centrifuged for
10 min at 8,000 rpm (Sorvall SS34 rotor), and sterile fil-
tered (0.22-pum-pore-size filter). Protoplasts were counted,
and mycelial fragments were removed by filtering through
three layers of sterile gauze followed by one layer of Nytex
50 monofilament nylon mesh. Protoplasts were washed
in STC (sorbitol, 1.2 M; Tris pH 7.5, 10 mM; CaCl2,
50 mM). About 10® protoplasts were taken for trans-
formation with 20 pg of plasmid DNA or linearized
fragments for double-crossover integration. Selection
was on 200 pg/ml of hygromycin B in PDA. Single
spore isolates were obtained from transformants that
formed conidia.

Acid/alkaline pH conditions

For each line (wt, ApacC and pacC*), spores were col-
lected from a 4-day old culture growing on a 90 mm
PDA Petri dish (for mutants, PDA amended with
100 pg/ml Hygromycin B) and 10’ spores were inocu-
lated into 100 ml potato dextrose broth (PDB; Difco) in
six 250 ml Erlenmeyer flasks (three repeats for each pH).
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After 3 days of shaking at 170 rpm at 29°C under continu-
ous light, the medium in each Erlenmeyer flask was re-
placed with fresh PDB at pH 4 or pH 8 (the pH was
adjusted with HCl and NaOH, one hour before the experi-
ment started), by filtering the mycelium onto one layer of
Nytex 50 monfilament nylon mesh. The mycelium was
immediately transferred into PDB at the desired pH, and
the culture returned to shaking. After 1 hour, each myce-
lial sample was vacuum-harvested on a Buchner funnel
and frozen in liquid nitrogen.

Microarrays and sample preparation

A custom microarray was designed (Genotypic, Bangalore,
India) from the complete set of filtered transcript models
(Trichoderma virens v1.0, JGI http://genome.jgi-psf.org/
Trivel/Trivel.home.html, [39]) and printed as 15 K arrays
(Agilent, Santa Clara, CA, USA). To 1 pg total RNA, we
added RNA from a spike-in kit (Agilent). cDNA synthesis
was primed with oligo dT, and the double-stranded
template was used for amplification and labelling by
in vitro transcription using the MessageAmplI kit from
Ambion (Austin, TX, USA). Amplified RNA (aRNA) was
labeled with Cy3 and hybridized onto the custom
microarrays. Microarray hybridization and washing steps
were performed following the Agilent protocol for single-
channel arrays. The arrays were scanned at 10% laser
power to avoid signal saturation. Agilent’s Feature Extrac-
tion software was used to extract the data.

Normalization of the expression data

Microarray signals were normalized to allow comparison
of samples with different RNA amounts, using the spike-
in data. First, the log;o microarray data were normalized
so that signals for one of the spike-ins (E1A_r60_a20)
with a log relative concentration of 3.83 had the same
values across all samples. Next, as described previously
[68,69], the log;y expression data were normalized by
linearly interpolating to concentrations using the ten
spike-in measurements for each sample and subse-
quently normalizing to the 75th percentile signal inten-
sity. To summarize the replicate data for each gene, the
mean for the three values (three biological replicates for
each treatment) was computed. The complete data set
and array platforms are provided in Additional file 14.

Statistical analyses

Statistical analyses for qPCR were performed with the
GraphPad Prism software version 5.00 (GraphPad Soft-
ware, San Diego, California, USA, demo version). Unless
otherwise indicated, the threshold level chosen for com-
parison of means was P<0.05 by Student’s t-test (one-tailed,
non-paired, equal variance). Adjusted P values for micro-
array data were calculated using LIMMA implemented in
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R, and the cut-off was at an adjusted P value <0.05. Cluster
analysis was done using Genesis, http://genome.tugraz.at/.

Additional files

<
Additional file 1: List of primers not included in Tables 1 and 2. The
primers listed here are referred to in the text. Degenerate primers, gene-
specific primers (GSP) and adaptors were used to clone and sequence
pacC prior to release of the genome sequence. Actin primers were used
for normalization (housekeeping gene); “standard” primers were used in
construction and validation of transformants. In the degenerate primers,
| indicates inosine.

Additional file 2: Alignment of PacC protein from T. virens IMI
304061 and T. virens Gv29.8, the published reference strain. Protein
sequence alignment.

Additional file 3: Verification of double-crossover events in
transformants. This is a set of data confirming gene successful double
crossover integration events. The linear map shows the pacC genomic
region, with the relevant genes and markers indicated. Primer names are
shown, with their locations and directions indicated by small arrows. PCR
products are shown in the gel images; the source of the template DNA is
shown in bold text below each lane, and the primer pairs used for the
amplification are noted below the image, referring to the corresponding
set of lanes. The primer names are also listed in the table (Expected sizes
of PCR products from mutant validation), along with the predicted
ampicon sizes.

Additional file 4: Split-marker gene replacement strategy. This
figure illustrates the split-marker strategy. In the first round of PCR
reactions, the flanking regions are amplified; in the second round, they
are each fused to part of the hygromycin resistance cassette (HYG). For
primer sequences see Additional file 14; the strategy and diagram are
adapted from [46].

Additional file 5: Growth rate of wild type and ApacC. This graph
shows growth rate of the ApacC strain relative to the wild type. Growth
was measured by placing a 5-mm-diameter mycelial disk of the fungus in
the center of a PDA plate and measuring the colony diameter at the
indicated times. Values represent an average of 4 replicates. Error bars
represent the standard deviation.

Additional file 6: Morphology of wild type and ApacC mutant T.
virens. This figure is a photo of cultures, showing colony morphology. A
5-mm-diameter mycelial disk of the fungus was inoculated in the center
of a PDA plate. The plates were incubated in the light and dark and
colonies were photographed at the indicated times.

Additional file 7: Lists of differentially expressed genes from
statistical analysis (Figure 5). List of protein ID numbers for each
category of the genes shown in Figure 5 of the main text.

Additional file 8: Expression profiles of PacC-dependent, alkaline
pH upregulated genes, and available annotation. Details of regulated
genes are given here. Secreted proteins are indicated by a + if predicted
at a SignalP score of at least 0.7. The number of predicted PacC binding
sites (GCCARG, see text) in the 1 kb region upstream of the start codon is
given in the last column. Expression profiles (fold expression at pH 8
compared to pH 4, and wt compared to ApacC at pH 8) are given.
Annotation by homology: entries are best hits by BLAST, E values are
given in the following column.

Additional file 9: Mutants in P type ATPase Aenal are similar to wt
in plate assays for growth and confrontation. Photos of cultures
grown on PDA plates, taken at 11 days from above to show overgrowth
and sporulation (A), or below to show pH indicator color (B). The wt and
Aenal strains were grown in confrontation with two plant pathogens.

Additional file 10: Expression profiles of PacC-dependent, acid pH
upregulated genes, and available annotation. Details of regulated
genes are given here. Secreted proteins are indicated by a + if predicted
at a SignalP score of at least 0.7. The number of predicted PacC binding
sites (GCCARG, see text) in the 1 kb region upstream of the start codon is
given in the last column. Expression profiles (fold expression at pH 8
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compared to pH 4, and wt compared to ApacC at pH 8) are given.
Annotation by homology: entries are best hits by BLAST, E values are
given in the following column.

Additional file 11: Disruption of pacC by homologous integration.
The diagram shows the scheme used for replacement of the entire pacC
coding sequence. HYG indicates selectable marker cassette (for full
details, see Methods, main text).

Additional file 12: Primers for gene knock-out. Sequences and
names of the primers used for knock-out of pacC and confirmation of the
integration event are given.

Additional file 13: Primers for split-marker gene replacement
strategy. This is a primer list for split-marker gene replacement. In the
Table, lower case indicates sequences that are not complementary to the
template in the first PCR step. In the second PCR step, these sequences,
which are complementary to the ends of the selectable marker, allow
joining of the fragments.

Additional file 14: Complete microarray data. The complete
microarray data are provided as a comma delimited file (Excel
compatible). The first column gives the Protein ID. This number, when
entered into the “search” box in the T. virens v1.0 web page, leads
conveniently to all the available gene model, transcript and protein
information. The second column gives the number of (identical)
oligonucleotides spotted on the microarray for this gene. The following
columns give the signal values for each independent experiment, after

background subtraction and normalization (see Methods, main text).
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