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Abstract

Background: The annotation of many genomes is limited, with a large proportion of identified genes lacking
functional assignments. The construction of gene co-expression networks is a powerful approach that presents a
way of integrating information from diverse gene expression datasets into a unified analysis which allows
inferences to be drawn about the role of previously uncharacterised genes. Using this approach, we generated a
condition-free gene co-expression network for the chicken using data from 1,043 publically available Affymetrix
GeneChip Chicken Genome Arrays. This data was generated from a diverse range of experiments, including
different tissues and experimental conditions. Our aim was to identify gene co-expression modules and generate a
tool to facilitate exploration of the functional chicken genome.

Results: Fifteen modules, containing between 24 and 473 genes, were identified in the condition-free network.
Most of the modules showed strong functional enrichment for particular Gene Ontology categories. However, a
few showed no enrichment. Transcription factor binding site enrichment was also noted.

Conclusions: We have demonstrated that this chicken gene co-expression network is a useful tool in gene
function prediction and the identification of putative novel transcription factors and binding sites. This work
highlights the relevance of this methodology for functional prediction in poorly annotated genomes such as the
chicken.
Background
Gene co-expression network analysis has recently
emerged as a new data analysis field that presents an
opportunity to extract gene interactions from the large
number of gene expression datasets available in the ever
growing public databases. Expression data from hun-
dreds of unrelated experiments, covering a range of con-
ditions, can be combined into a single analysis. However,
in most cases these data sets have only undergone basic
differential gene expression data analysis. This approach
has failed to capitalise on the abundance of information
available in each dataset since analyses are often limited
to a small subset of genes which are selected using arbi-
trary thresholds. This approach is prone to false findings
and, in many cases, hard to reproduce [1]. Gene
co-expression network analysis is a systems biology
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approach which complements traditional differential
gene expression analysis. Phenotypic variation is con-
trolled at many levels, some of which are independent of
transcript abundance. For example, Hudson et al. [2]
stated that transcription factor (TF) modifications such
as reversible phosphorylation and missense mutations
can act independently of TF expression levels and that
such a process can be overlooked by standard differen-
tial gene expression analysis. Hence, instead of exclu-
sively defining differentially expressed genes, the
identification of groups of highly co-expressed (CE)
genes or gene modules may facilitate the identification
of genes under a common regulatory mechanisms by
linking upstream sequence motifs with the known bind-
ing sites of transcription factors. By combining a high
number of experiments into a single robust analysis, it is
possible to minimise the effects of variables that can
plague individual experiments [1].
Two major types of co-expression networks have

emerged: 1) condition-dependant networks and 2)
condition-independent, or condition-free, networks. The
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former, requires careful selection of datasets to cover a
single experimental variable, for example, limited to
experiments that investigated environmental stresses,
such as temperature, pH, oxygen availability etc. The
aim being to identifying clusters of highly co-expressed
genes (modules) that control the stress responses. This
kind of analysis can be extended to yield new gene anno-
tations as in Childs at al. [3], and provide additional
insights into the connections between gene expression
and the investigated variable. The latter uses data from a
number of different tissues, conditions, strains, and
other variables. This type of network analysis has the
ability to identify genes whose co-expression is inde-
pendent of experimental variables and stable. This
approach is often used to investigate regulatory elements
[3]. Advances in module detection algorithms have
elevated microarray analysis to much higher levels than
simple identification of differentially expressed genes
and Gene Ontology (GO) enrichment analysis.
A hub gene, that is a gene which is among the most

highly connected within a module, is likely to be tightly
involved in the regulatory mechanisms of all those genes
with which it is tightly co-expressed. The identification
of common sequence motifs in a module and the inte-
gration with other biological metadata such as mRNA
databases, protein and metabolic networks can add to
our understanding of these networks.
In this study we have generated a condition-free

co-expression network to shed light on the rather poorly
annotated chicken genome through the investigation of
clusters of highly co-expressed genes. We have deter-
mined putative functions and possible regulatory
mechanisms. The network is available on IntegromeDB
Figure 1 Cytoscape view of chicken co-expression network. The node
public database (http://integromedb.org/) under the
present manuscript title.
Results
We used 1,043 publically available Affymetrix GeneChip
Chicken Genome Array hybridization results (Additional
file 1: Table S1) to construct a condition-free, gene
co-expression network using the Weighted Gene Correl-
ation Network Analysis (WGCNA) algorithm. We iden-
tified 15 clusters of highly co-expressed genes (modules)
containing 2,087 (24%) genes from the 8,650 most vari-
able genes used to construct the network. The resulting
network was sparse with 48,827 gene connections out of
a maximum of approx. 37.4 million pairwise connec-
tions. The resulting network is presented in Figure 1.
Network structure
Most of the 15 modules identified in the co-expression
network have a high level of intra-module connectivity
(as expected by the definition of a module) and low
inter-module connectivity. However, four of the larger
modules (1, 2, 4, and 6) possess a large number of inter-
module connections and are found to contain genes
involved in major cellular functions such as cell cycle,
transport, extracellular components, stress response,
protein processing, and DNA repair. Two further mod-
ules (9 and 12), containing genes enriched for actin cyto-
skeleton and alpha-catenin binding GO terms, are highly
connected to module 1. Such high levels of connectivity
between these three modules as well as their closely
related functional enrichment, suggest that these three
modules could be merged.
s are coloured by their module association.

http://integromedb.org/
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We found that modules 10 and 11, enriched for
genes annotated with antigen processing and im-
mune response functions respectively, possess genes
whose co-expression link the two modules together.
Several modules were found to contain little or no

connections to the rest of the network (i.e. stand-alone
modules), representing genes whose expression is not
linked to any other module either directly or via an
intermediary gene. Examples are modules 3 and 15;
enriched for genes involved in extracellular matrix and
muscle protein. The existence of stand-alone modules
does not imply that they are isolated from the biological
network, but rather that we do not have all genes
present in our network since we limited our analysis to
the most highly variable genes.
We found that the topology/structure of the network/

modules and biological interpretations were robust to
different network construction parameters and analyses
(data not shown). We found that increasing the number
of genes, from which to construct the network, tended
to increase the number of inter-modular connections
and thus reduce the number of stand-alone modules.
However, the main network topology/structure remained
unaffected.

Biological significance of network modules
The biological significance of the modules was investi-
gated by performing Gene Ontology (GO) enrichment
and clustering analysis using DAVID [4]. Most of
the 15 modules showed extremely high levels of GO
Table 1 Modules identified using WGCNA and a most enriche

Module Module size
(genes)

% of Genes with functional
annotation

1. Green 473 93.23

2. Brown 387 82.95

3. Yellow 256 62.89

4. Red 227 83.26

5. Turquoise 103 38.83

6.
Greenyellow

99 77.78

7. Blue 81 32.10

8. Magenta 67 28.36

9. Purple 58 86.21

10. Tan 58 87.93

11. Pink 57 80.70

12. Salmon 39 94.87

13. Black 33 69.70

14. Lightcyan 25 84.00

15. Cyan 24 91.67

Additional file 1: Table S1 contains full tables with all of the GO categories and clus
enrichment with GO categories enriched as much as
373 fold and p-values as low as 1.27e-22. This is sup-
ported by data given in Additional file 1: Table S1 and
summarised in Table 1. One of the DAVID features is
Functional Annotation Clustering that places similar
GO categories, based on the parent/child GO term
associations and the number of the shared genes, into
a functional cluster. The GO cluster enrichment score
is based on geometric mean of member's p-values
and is used to rank their biological significance. DAVID
only reports significantly enriched clusters; most
enriched clusters have the highest score and lowest
p-values. We used this feature to estimate the relation-
ship between the GO terms.
Module 2 contained 387 genes involved in a number of

cell cycle related biological processes such as cell cycle, cell
cycle phase, cell cycle process, M-phase, mitotic cell cycle,
nuclear division, mitosis, organelle fission and cell division
with p-values ranging from 2.44e-09 to 6.99e-28 and
enriched up to 21 fold. DAVID joined these into a single
GO cluster with an enrichment score of 16.8. Similarly,
DAVID also identified a second GO cluster containing
chromosome, centromere region of chromosome, chromo-
somal part, centromere, chromosomal protein, cytoskeleton
GO terms etc (p-values from 1.45e-23 to 1.46e-5). All signifi-
cant GO clusters were involved in crucial processes in the
mitotic cell cycle (Additional file 1: Table S1).
Although, module 15 is much smaller in size, with

only 24 genes, we still found it to be significantly
enriched (p-values from 7.94e-19 to 3.92e-06) with
d GO category in each module

Top enriched GO
category

Fold GO
enrichment

GO
enrichment
p-value

intracellular transport 3.90 2.75E-07

cell cycle 10.08 1.56E-25

extracellular matrix part 18.83 3.96E-17

cytoskeleton 3.88 1.75E-04

organ growth 92.03 4.01E-04

response to stress 7.58 8.30E-04

low annotation

low annotation

actin cytoskeleton 13.87 1.74E-02

antigen processing 69.02 1.46E-13

immune response 19.75 4.01E-07

alpha-catenin binding 314.76 5.89E-03

no GO enrichment

lipid biosynthetic process 38.52 1.97E-10

muscle protein 76.39 1.69E-20

ters of GO categories enriched.
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muscle related GO terms such as: muscle protein,
skeletal muscle, myofibril, contractile fiber, sarcomere,
cytoskeletal protein binding, muscle contraction, car-
diac muscle, heart etc.
Module 14 displayed strong lipid related GO enrich-

ment (p-value of 1.97e-10) with 42% of the module’s
genes belonging to lipid biosynthetic process (fold GO
enrichment of 38.5) while the steroid biosynthesis GO
term is enriched 120 fold (p-value of 3.25e-09). Module
14’s GO terms were clustered into 4 annotation clusters:
1) sterol metabolic process GO categories; 2) fatty
acid metabolism related GOs; 3) membrane biological
component and 4) nucleotide related GO categories
and binding.
Module 3 showed enrichment (p-value of 3.96e-17)

for extracellular region GO terms and this accounted
for more than 20% of the annotated genes in the
module. For example, 12 genes that encode collagen
constituents of the extracellular matrix all belong to
this module, namely COL1A2, COL2A1, COL3A1,
COL5A1, COL5A2, COL6A1, COL6A3, COL8A1,
COL12A1, COL16A1, COL24A1 and COL24A1///
LOC424525. The members of this module are all
very tightly co-expressed. The annotation clustering
of related GOs identified clusters such as extracellu-
lar matrix GOs (cluster 1, enrichment score 10.55),
basement membrane (cluster 2, enrichment score
8.02), cell adhesion (cluster 3, enrichment score
4.57), collagen (cluster 4, enrichment score 4.34),
glycosaminoglycan, heparin and carbohydrate binding
(cluster 5, enrichment score 3.4), growth factor bind-
ing (cluster 7, enrichment score 2.11) etc. All these
clusters of GO categories suggest genes involved in
the regulation and maintenance of membrane and
extracellular structures.
Two modules, 10 and 11, contained genes of high

importance for the immune response. Within module
11, 15.5% of the genes belonged to an immune response
GO (p-value 4.01e-07 and 19 fold GO enrichment) and
includes the genes BLB1, BLB2, TLR2-2, TLR7, TLR16,
CD74 and IL18. Other enriched (up to 154 fold) GO cat-
egories include Immunoglobulin-like, Toll-Interleukin
receptor, positive regulation of immune system process,
and antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II. Enrichment of
similar GO categories was seen in module 10 with anti-
gen processing and presentation (p-value of 1.46e-13 and
69 fold enriched), MHC class I protein complex (p-value
of 3.49e-12 and 119 fold enriched), and immune response
(p-value of 4.89e-12 and 18.8 fold enrichment).
Module 1 is the largest with 473 genes of which 21 are

involved in cell transport (p-value 2.75e-07), 60 are
involved in nucleotide binding (p-value 1.53e-04) and 19
are involved in protein localization (p-value 3.66e-04).
Based on the GO categories associated with this module
(Additional file 1: Table S1) it is possible that this is a
control module for the cell metabolism controlling tran-
scription and translation within the cell.
Major hubs in the chicken co-expression network
We identified 133 hub genes in the network and
found that GO assignment and clustering showed
overlapping ontology functions. For instance, the hub
genes were enriched by up to 103 fold for the follow-
ing GO clusters: cell cycle, binding (adenyl nucleotide
binding, purine nucleoside binding, ATP binding, nu-
cleotide binding, nucleoside binding), chromosome
segregation and sister chromatid segregation, cyto-
skeleton and microtubule organisation, condensed
chromosome, microtubule and motor activity and
DNA replication. All of this confirms well-known
associations of hub genes with expression regulatory
mechanisms and allows for speculation into the puta-
tive regulatory roles of hub genes which have previ-
ously been entirely un-annotated or not annotated
with a regulatory role. There were 7 hubs without any
functional annotations, 5 of those had Unigene IDs:
Gga.1334, Gga.8974, Gga.1245, Gga.13855 and Gga.44105.
Running blastn of all available sequences for the 5 Unigene
IDs on several databases (GeneBank, EMBL, DDBJ and
PDB) we found similarities between Gga.8974 and a num-
ber of parafibromin genes from different species with
sequence identity up to 99%. Alternative name of parafibro-
min is Cell division cycle protein 73 homolog and it is
involved transcriptional and post-transcriptional control as
reported on UniPort database. Unigene Gga.1245 showed
highest (97%) sequence identity to ubiquitin-conjugating
enzyme E2 from Meleagris gallopavo (wild turkey) and also
from rabbit, Guinea pig, horse, dog, rat etc. Remaining
Unigene IDs had no blast hits.
The top three hub genes, in order of connectivity,

in the chicken co-expression network are: 1) RING
finger protein 4 (RNF4) with connections to a total
of 468 other genes; 2) importin 5 (IPO5) with 463
connections; 3) splicing factor 5a (SRSF5A) with 453
connections. In addition, we also found hub genes
which were un-annotated. The most connected of
these un-annotated hub genes is Gga.1334 with 268
connections to other genes. Such highly connected
hub genes should be investigated more closely as
they are likely to have key roles in regulating gene
expression in the chicken.

Regulatory elements associated with network modules
In order to identify possible known transcription fac-
tor binding sites (TFBS) statistically overrepresented
among the genes from each module, the command



Table 2 Summary of the Clover analysis of statistically overrepresented (p<0.01) transcription factor binding sites
based on Jaspar Core database

Module Overrepresented TF binding sites

1 NHP6B, hb, Pax4, br_Z1, br_Z4, SP1, SFL1, NHP6A, id1, NFATC2

2 hb, Pax4, br_Z1, br_Z4, SFL1, NHP6A, id1, NFATC2, Dof2, HCM1

3 hb, Pax4, NFATC2, id1, br_Z4, Myf, Dof2, SFL1, SOK2, CUP2

4 hb, AZF1, br_Z1, br_Z4, id1, SFL1, NFATC2, HCM1, CUP2, SMP1

5 HMG-I/Y, Pax4, hb, br_Z1, Foxd3, SFL1, br_Z4, id1, NHP6A, NFATC2

6 CUP2, slp1, pan, PEND, Gfi, GABPA, NFYA, mirr, ARID3A, EDS1

7 AZF1, Pax4, br_Z1, id1, CUP2, D, Dof2, PHD1, MNB1A, Ubx

8 br_Z3, NFYA, HAP3, HAP5, Gfi, CG34031, TBP, pan, ARR1, CG11617

9 SFL1, id1, NFATC2, CUP2, Myf, SMP1, abi4, Dof2, br_Z3, SPIB

10 IRF1, IRF2, Myf, CUP2, NFATC2, Dof2, SOK2, Sox2, NHLH1, MNB1A

11 SPI1, Myf, MZF1_1-4, SOK2, EBF1, PHD1, RUNX1, achi, vis, ELF5

12 SFL1, id1, Dof2, RME1, ELF5, PEND, MGA1, MNB1A, Gata1, SOX10

13 PHD1, GSM1, MGA1, Ar, Lim1, abd-A, al, INO4, CG11294, CG32105

14 NFYA, HAP5, Myf, NFATC2, PEND, HAP4, TBP, slp1, Dof2, cad

15 Myf, PHD1, AGL3, MNB1A, kni, YAP5, ECM23, GAT4, RLM1, MAC1

HUBS hb, NHP6B, br_Z1, Pax4, br_Z4, NHP6A, SFL1, id1, NFATC2, HCM1

The table shows top 10 overrepresented motifs, complete table is provided in Additional file 1: Table S1. The motif names and capitalisation are as they appear in
Jaspar database.
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line version of the Clover software [5] and JASPER
CORE database [6] were used. The binding motifs
were considered significantly overrepresented in a
module if Clover p-value was lower than 0.01. The
results are summarised in the Table 2.

Motif discovery associated with network modules
The MEME software suite [7] was used to identify novel
upstream motifs which might account for the co-expres-
sion/regulation of gene expression of genes within each
module.
When module 11 genes were inspected for the pres-

ence of cis motifs, a very ordered structure in the up-
stream region of 30 un-annotated genes was observed.
Closer inspection of these genes using Ensembl and the
chicken genome viewer (WASHUC2), shows them to be
annotated only as novel genes and “protein coding
Ensembl ID”. All of these genes without functional
annotations show a surprising level of similarity:
Ensembl gene homologue search indicated that they are
all homologous to immunoglobulin-like receptors CHIR-
A2, CHIR-AB3, CHIR-AB-600, CHIR-AB3, CHIR-B1,
CHIR-B2, CHIR-B3, CHIR-B4, CHIR-B5 and CHIR-B6.
This confirms that sequence homology continues into
the upstream region which is unusually enriched in
cis-elements. However, closer gene by gene inspection
showed that one Affymetrix feature, Gga.17679.1.
S1_s_at, was mapped to 17 Ensembl Gene IDs from the
30 un-annotated genes above, indicating again high
sequence homology between these genes that allowed
binding to the same array probe. Considering that the
remaining well annotated genes from module 11 are
significantly enriched in immune response (p-value
4.01e-07), the fact that the un-annotated genes share
sequence homology with a group of immunoglobulin-
like receptors confirms the selectivity and validity of the
network modules. The analysis was also repeated using 1
Ensembl Gene ID per one array feature. We identified a
novel motif overrepresented with an e-value of 4.1e-14,
present in 80% of inspected module 11 sequences with
90 sites (Figure 2A). Using the Gene Ontology for Motifs
(GOMO) algorithm we found the motif was overrepre-
sented in the upstream regions of genes from GO
category “immune system process” (p-value of 1.69e-05)
and “immune response” (p-value 5.08e-04).
Module 14 contains genes from lipid biosynthesis and

sterol related GOs; we identified a novel motif
(Figure 2B) that is overrepresented (p-value of 2.54e-05)
in calcium-dependent phospholipid binding GO and
another motif (Figure 2C) overrepresented (p-value of
2.54e-04) in genes that make up the regulation of lipid
kinase activity GO.
The motif that showed the most significant GO associ-

ation (p-values 8.479e-06 to 5.935e-04) was detected in
muscle related module 15. This motif (Figure 2D) was
found to be overrepresented in cis regions of genes
annotated with the following GO categories: muscle
organ development, muscle cell differentiation, muscle
tissue development, striated muscle tissue development,
skeletal muscle tissue development, skeletal muscle



Figure 2 Novel motifs predicted using MEME software. Motif A was predicted using upstream sequences from module 11, B and C from
module 14 and D from the module 15.
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organ development, regulation of smooth muscle cell
migration, muscle fiber development, skeletal muscle
fiber development, muscle organ morphogenesis, cardiac
muscle tissue morphogenesis, muscle tissue morphogen-
esis, regulation of skeletal muscle fibre development,
striated muscle thin filament, and regulation of muscle
cell differentiation. This motif was enriched within the
module with an e-value of 2.50e-33. A number of other
novel motifs were discovered as significantly enriched in
different modules; however, the extent of the data far
exceeds the scope of this manuscript and allocations for
supplementary data. The complete motif analysis can be
provided on request to the corresponding author.

Discussion
The data published in the co-expression network area
has clearly confirmed that highly co-expressed genes are
enriched for certain cellular functions. One of the major
breakthroughs in our understanding of cellular networks
was finding that cellular networks display scale-free top-
ology [8,9]. Properties of scale-free networks are highly
dependent on a small number of hubs; the nodes with
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disproportionally high number of connections. It has
been demonstrated, using yeast co-expression networks,
confirmed with knockout strain studies, that these net-
work hubs are mostly essential genes [8,9]. This organ-
isation of cellular networks shows a surprising degree of
tolerance to random errors/perturbation [9,10]. The high
number of poorly connected nodes assures that most
faulty nodes are quickly by-passed. Even the loss of up
to 80% of the nodes will not destroy a scale-free net-
work. However, if such a node happens to be one of the
relatively small number of hubs, whether targeted or by
chance, the network topology will be seriously affected
and will result in network failure [11]. The present net-
work identified a number of key genes in control of
chicken gene expression. We found hub genes which
were un-annotated, the most highly connected of these
is Gga.1334. Such highly connected hub genes should be
investigated more closely as they are likely to have key
roles in regulating gene expression in the chicken.
The network presented here shows that gene expres-

sion in the chicken genome is highly organised and is
regulated in concert across a range of tissues and vari-
ables. It was previously shown that this “guilt by associ-
ation” heuristic is universal and preserved beyond
organism boundaries [12,13] and that transcriptional
control is overwhelmingly modular and appropriate for
characterizing gene functions based on module assign-
ment [14]. A human co-expression network, cited by
over 300 manuscripts, generated by Lee at al., [15] using
60 human public datasets and over 3000 arrays also
shows modularity through the hierarchical clustering
and cluster enrichment in certain biological functions.
The module functional association of this human net-
work is very comparable with the present chicken net-
work. Both networks contain modules or sub-modules
enriched in cell cycle, transcription regulation, immune
response, MHCII, transcription, RNA processing, metal
binding and cytoskeleton. This is not surprising consid-
ering the genome homology between the human and
chicken. It also confirms that, when using condition-free
networks across a large number of arrays, tissues and
conditions, the modules are likely to be associated with
universal and essential cellular processes shared across
organisms.
It has been shown that multiple shared transcription

factor binding sites are necessary for co-expression to
occur and that there is a positive correlation in sequence
similarity and co-expression [16]. There were a total of
154 TFBS of known experimentally proven transcription
factors, significantly overrepresented across the modules.
Some of TFBS were overrepresented in most of the
modules. Based on the fact that network modules are
associated with major cellular processes, transcrip-
tion factors acting on these TFBS are expected to be
of universal significance, independent of external
variables, involved in control of some of the major
cellular processes.
In modules enriched in more specialised GO categor-

ies the TFBSs matched the module assignment. Module
15 was enriched in muscle related GOs such as muscle
protein and skeletal muscle. This module had Myf,
known to be a muscle-specific transcription factor [17],
as the top scoring transcription factor (p-value 0). The
top scoring transcription factor in module 11, involved
in immune response, was SPI1 also known as PU-1
(p-value 0). SPI1 is known to activate gene expression
during myeloid and B-lymphoid cell development [18]
and controls macrophage differentiation [19]. In module
10, controlling antigen processing and immune response,
the top scoring transcription factors (p-value 0) were
IRF1 and IRF2. Both are members of interferon regula-
tory transcription factor (IRF) family. This provides
confidence that novel and un-annotated transcription
factors found to be linked to specific GO categories, are
involved in the regulation of gene expression within a
module. De novo cis element searching also provided
additional information confirming exclusive immune
response assignment of module 11. Novel motifs found
in this analysis can be further investigated and matched
to aid in the discovery of novel transcription factors.
Conclusions
The chicken co-expression network is a useful tool for
generating gene function predictions, especially since the
chicken genome is relatively poorly annotated. The pre-
sented network points to important and essential genes
(hubs), novel transcription factors and their binding
sites, and predicts likely functional roles of a large num-
ber of currently un-annotated chicken genes.
Methods
Datasets used
We selected data from 1,043 Affymetrix GeneChip
Chicken Genome Arrays (platform number GPL3213),
representing 67 different experiments from, ArrayEx-
press and the Gene Expression Omnibus (GEO). This
data covers a wide range of chicken tissues, environmen-
tal and health conditions, information on all of the
experiments and corresponding arrays is provided in
Additional file 1: Table S1. This microarray provides
expression data on 32,773 chicken transcripts from over
28,000 genes and 684 transcripts from 17 avian viruses.
Sequence information used in feature selection were

derived from GenBankW, UniGene (Build 18; 15 May
2004), and Ensembl (version 1, released May 2004).
Affymetrix annotations were downloaded July 2011 and
were last updated in May 2006.
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Dataset pre-processing
CEL files were downloaded for the 1,043 microarrays
and a series of pre-processing steps were performed in
order to normalise, filter and remove batch-effects.
Firstly, data was normalised using RMA background
subtraction and quantile normalised using the Affy pack-
age [19] in Bioconductor. We then removed batch
effects using the nonparametric CombatR algorithm [20]
and then retained only the most variable genes, based on
standard deviation of each gene, as suggested by Hahne
and Huber [21], using GeneFilter [20] R package. A
total of 8,650 genes were identified as most variable
and hence suitable for inclusion in the network
building process.
We used the WGCNA algorithm [22,23] to identify 15

condition independent modules of highly co-expressed
genes. A total of 8,650 genes were identified as most
variable and hence suitable for inclusion in the network
building process. Out of the 8,650 features, 2,087 were
assigned to co-expressed modules to build a network
with 48,827 gene connections. The resulting network is
presented in Figure 1.

Network construction and module detection
We took the 8,650 genes which were retained after the
pre-processing steps to construct a gene co-expression
network using the WGCNA R package [22,23]. The ad-
jacency matrix was calculated using the absolute Pearson
correlation coefficient raised to the power β. The coeffi-
cient of β was 4 and was selected based on the scale-free
topology criterion which aims to balance scale independ-
ence and mean network connectivity [22,23].
The Topological Overlap Measure (TOM) was calcu-

lated for performing module detection. Module detec-
tion was done using the static tree cutting algorithm
[22,23] on the TOM dissimilarity measure using a
minimum module size of 25 nodes/genes. All of the
remaining arguments were set as recommended in pack-
age vignettes.
The co-expression network was visualised using

Cytoscape v 2.8.0 [24] and analysed using the
NetworkAnalyser Cytoscape plugin.

Hub gene detection
Hub genes are defined as those genes in the network
that are among the most highly connected. They are
important nodes in the network as they provide it with
structure and are an inherent feature of scale-free net-
works. We detected hub genes using NetworkAnalyser
Cytoscape plugin.

Biological relevance of modules and hub genes
Modules and hub genes were analysed in a variety of
ways in order to ascertain their biological relevance.
Firstly, GO enrichment and GO clustering of the genes
within each module was performed using DAVID [4].
Unless otherwise stated, p-values are multiple-test cor-
rected using Bonferoni correction. Secondly, we looked
at whether there were any significantly overrepresented
sequence motifs, using MEME [7], in the CIS regions of
the genes within each module and using all suggested
default settings unless stated otherwise. Thirdly, we
looked at whether known transcription factor binding
motifs from the Jaspar database [6] were overrepresented
(p<0.01) in the CIS regions of the genes within each
module. The overrepresentation of known transcription
factor binding motifs was calculated using Clover [5]
with 2 backgrounds: 2,000 bp upstream of orthologues
on human and mouse genomes.
Unless stated otherwise, we define CIS regions to our

module genes as being 200 bp downstream and 1,000 bp
upstream of the start of exon 1. The sequence data for
these motif analyses was obtained via Toucan [25,26],
from the Ensembl database. Sequences corresponding to
genes on reverse strand were reverse complimented.
The putative roles of overrepresented sequence motifs,

found by MEME, were identified by linking GO terms in
upstream regions of orthologous genes in human,
mouse, dog horse and rat using MEME’s GOMO algo-
rithm. This would indicate the possible role of novel
motifs in the regulation of gene expression for a specific
GO category.

Additional file

Additional file 1: Table S1. The file contains a number of tables
organised in sheets. The overview of the datasets used in network
construction, GO categories enriched in each of the modules and Clover
TFBS and MEME analysis.
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