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Abstract

Background: Mycobacterial interspersed repetitive units (MIRUs) are minisatellites within the Mycobacterium
tuberculosis (Mtb) genome. Copy number variation (CNV) in MIRU loci is used for epidemiological typing, making
the rate of variation important for tracking the transmission of Mtb strains. In this study, we developed and assessed
a whole-genome sequencing (WGS) approach to detect MIRU CNV in Mtb. We applied this methodology to a panel
of Mtb strains isolated from the macaque model of tuberculosis (TB), the animal model that best mimics human
disease. From these data, we have estimated the rate of MIRU variation in the host environment, providing a
benchmark rate for future epidemiologic work.

Results: We assessed variation at the 24 MIRU loci used for typing in a set of Mtb strains isolated from infected
cynomolgus macaques. We previously performed WGS of these strains and here have applied both read depth (RD)
and paired-end mapping (PEM) metrics to identify putative copy number variants. To assess the relative power of
these approaches, all MIRU loci were resequenced using Sanger sequencing. We detected two insertion/deletion
events both of which could be identified as candidates by PEM criteria. With these data, we estimate a MIRU
mutation rate of 2.70 × 10-03 (95% CI: 3.30 × 10-04- 9.80 × 10-03) per locus, per year.

Conclusion: Our results represent the first experimental estimate of the MIRU mutation rate in Mtb. This rate is
comparable to the highest previous estimates gathered from epidemiologic data and meta-analyses. Our findings
allow for a more rigorous interpretation of data gathered from MIRU typing.

Keywords: Mycobacterium tuberculosis, Mycobacterial interspersed repetitive units, MIRU, Molecular epidemiology,
Copy number variation, Whole-genome sequencing, Read depth, Paired-end mapping, Mutation rate
Background
The ability to genetically differentiate among microbial
strains facilitates tracing the origins and spread of bacterial
pathogens, including Mycobacterium tuberculosis (Mtb),
the causative agent of tuberculosis (TB). Various methods
for genetically typing clinical strains of Mtb have been
developed [1-4]. This includes typing strains through copy
number variation (CNV) in mycobacterial interspersed
repetitive units (MIRUs), which are minisatellite loci in the
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Mtb genome [5]. This approach, termed MIRU-VNTR
(variable number of tandem repeats; hereafter, MIRU)
typing, distinguishes genetically divergent strains rapidly
and with relatively high accuracy [6]. As a result, MIRU
analysis has been employed in a wide array of epidemio-
logical studies [7-10], where an identical MIRU profile
between isolates is interpreted as a recent transmission
event [11]. This is based on the assumption that over short
periods of time, a change in MIRU copy number is
unlikely. Therefore, accurate estimation of the MIRU
mutation rate is essential to infer the relationship between
transmitted strains based on typing profile. The limits
of this approach are highlighted by a recent study of a
TB outbreak in British Columbia, where MIRU typing
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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identified a single clonal outbreak, yet higher resolution
WGS established two separate, simultaneous outbreaks
[12].
Approximating the rate of MIRU CNV based on the

profiles of clinical strains has proven to be a challenge.
The approaches taken by various groups to estimate a rate
have relied primarily on modeling of epidemiological data
and meta-analyses [13-16]. The discrepancies in method-
ology, loci analyzed, and underlying assumptions between
different studies have resulted in estimates ranging over
two orders of magnitude. For example, Grant et al. (2008)
analyzed copy number changes between Mtb lineages and
used previous research estimating the time of the most
recent common ancestor between lineages to estimate a
MIRU mutation rate, yielding a per locus, per year rate of
1.05 × 10-5. Reyes and Tanaka (2010) used an infinite
alleles model to define a relative rate and then
benchmarked this rate against estimates of the IS6110
mutation rate to infer a MIRU mutation rate (7.00 × 10-4-
1.50 × 10-2). More recently, Aandahl et al. (2012) devel-
oped a stepwise mutation model for MIRU evolution
and utilized Bayesian statistics to estimate the MIRU
mutation rate of previously gathered epidemiological
data (3.55 × 10-3), supporting the estimates provided by
Reyes and Tanaka (2010).
Here, we seek to experimentally determine a mutation

rate by assessing CNV in Mtb strains isolated from
cynomolgus macaques [17], an animal model of Mtb
infection that closely recapitulates the course of human
disease [18]. The genomes from Mtb isolated from
infected macaques were previously sequenced using the
Illumina platform [17]. While protocols on detecting
single nucleotide polymorphisms (SNPs) and small inser-
tion/deletions (indels) using Illumina sequencing data are
well established, it is less clear how to best determine the
copy number in minisatellite loci. As WGS becomes
increasingly common in epidemiological studies, the abil-
ity to establish MIRU copy number from sequencing data
becomes important for the analysis of new WGS data in
the context of previously existing typing data.
The length of Illumina reads fails to span the majority

of MIRU repeats in a locus, which range from one to
five or more repeats of 40–100 basepairs each in Mtb.
Thus, short read sequencing cannot capture unique
sequence and define copy number. Recently, researchers
have utilized read depth (RD), a measure of the density
of sequencing reads at each nucleotide in the genome, in
order to identify CNV [19,20]. This approach relies on
the observation that the absolute number of sequencing
reads mapped to a reference genome is proportional to
the copy number of a particular strain [19]. However,
this approach has been primarily utilized to identify
large (> 1 kb) variants in human tandem repeats, and
RD has not been successfully applied to assess smaller
minisatellite variation in microbes. Similarly, attempts to
identify structural variation, including CNV, using mate
pair distance have been previously employed in human
genome studies [21-23]. This approach, termed paired-
end mapping (PEM), utilizes the likely distance between
paired reads from Illumina sequencing to identify struc-
tural variants. When mapping back to a reference
genome, if the distance between paired reads is discord-
ant from the expected value, it is suggestive of CNV
relative to the reference genome. PEM has been success-
fully employed to identify large insertions or deletions.
However, bacterial minisatellite CNV produces only
small discordances relative to the reference genome
which fall within the expected distribution of mate pair
distance, making such events difficult to detect.
In this study, we sought to define a WGS methodology

useful for identifying MIRU CNV by mapping sequen-
cing reads to a single copy-number reference genome.
We validated the WGS analyses by resequencing all
MIRU loci via Sanger sequencing, which allowed us to
assess the accuracy of using RD and PEM approaches to
identify minisatellite variations. We then used our WGS
and Sanger resequencing data to estimate a MIRU muta-
tion rate during the course of infection. This rate will
help guide the analysis of epidemiological data and
provide a preliminary understanding of site-specific
mutability in Mtb.

Results
Identifying MIRU CNV’s using WGS
We analyzed WGS data from 16 sequenced strains [17]
for CNV at 22 of the 24 MIRU loci currently standard-
ized for strain typing [6]. The remaining two loci showed
poor read density and were excluded from this portion
of the analysis. We utilized RD and PEM, both of which
have been shown to correlate with copy number, to
identify MIRU CNV. We hypothesized that any strain
containing a MIRU insertion would exhibit an increase
in RD and a decrease in mate pair distance relative to the
input strain, while a deletion would exhibit decreased RD
and increased mate pair distance [19,20]. However,
either method is complicated by the inherent limita-
tions of mapping short reads.
Illumina reads corresponding to MIRU regions often

cannot be mapped unambiguously. This poses a chal-
lenge to identifying MIRU CNV, as it may reduce or
alter signal at these loci. Different sequence alignment
software packages have attempted to circumvent the
challenge of assigning reads that map to multiple sites
(termed multi-reads) [24-29]. Algorithms may discard
multi-reads, place all of them at one potential mapping
site, or randomly distribute them to multiple mapping
sites (for a review of mapping multi-reads see [30]). We
reasoned that directing multi-reads to a single repeat
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unit in the reference genome would result in more
discrete and predictable mapping. Therefore, we sought
to reduce ambiguity in mapping repetitive elements by
constructing a reference Mtb H37Rv genome with only a
single MIRU copy at each locus. This approach resulted
in 16 loci with a single MIRU copy and 6 loci with two
unique MIRU copies, which we subsequently treated as
independent MIRU loci (A and B, where at least 5 SNPs
distinguish A & B) for mapping purposes (Table 1). As
expected, comparing the average mate pair distance for
Table 1 List of CNVs identified via WGS and Sanger
resequencing

MIRU
locus

Read depth candidate
strains

Mate pair candidate
strains

Copy
numbers

154-A None None 1

154-B None None 2

424 None None 2

577 None None 2

580 A-3 None 3

802 H-3 H-3 3; (H-3 = 4)

960-A I-2 None 3

960-B None None 1

1644 None None 3

1955-A None None 1

1955-B None None 1

2059 None None 1

2163b None None 3

2165* None None 3

2347 None None 1

2401-A None None 3

2401-B None None 1

2461 None None 2

2531-A None None 1

2531-B None None 1

2687-A None None 1

2687-B None None 1

2996 None C-1 5

3007 None None 3

3171* None None 2

3192 G-3 C-1 2; (G-3 = 1)

3690 None C-1 5

4052 None None 3

4156 None None 3

4348 None None 2

Loci containing asterisks (2165 and 3171) were only analyzed using Sanger
sequencing. Bolded strains (H-3 at locus 802 and G-3 at locus 3192) were
confirmed insertion and deletion events, respectively, via Sanger
resequencing. Discrete copy numbers for each strain were determined by
Sanger sequencing. Previous strain notation is used [17].
reads mapped to the H37Rv genome and the single
copy-number genome reveals a significant difference in
mapping at the MIRU site (p = 1.40 × 10-04; Table 2,
Additional file 1: Figure 1a, 1b). Mapping differences
were restricted to reads at the MIRU, as the average
mate pair distance of reads flanking the MIRU region
(+/− 100 bp) is not significantly different when compar-
ing the two reference genomes.
After mapping to a single copy-number genome, RD

and mate pair distance for each strain were mean
normalized at each MIRU locus (+/− 100 bp) in our 16
strain panel. We classified strains which varied two
standard deviations (SD) from the mean value for over
60% of a MIRU site as putative variants. To ensure this
effect was limited to the MIRU locus, we assessed
whether these strains also varied over two SD for more
than 20% of the 100 basepair window surrounding the
MIRU. Using these requirements, seven putative MIRU
variants were identified, three by RD, three by PEM, and
one by both approaches (Figure 1a, b, Table 1).
In order to assess the validity of the RD and PEM

approaches we used Sanger sequencing to quantify the
number of MIRU repeats at each of the 24 standard
MIRU loci described previously [6]. To improve our esti-
mate of the MIRU mutation rate, we assessed copy num-
ber in 17 additional strains isolated from cynomolgus
macaques that were experimentally infected with the
Table 2 Comparing mean mate pair distance between
H37Rv and single copy reference genomes

Strain H37Rv
(MIRU)

Single copy
(MIRU)

H37Rv
(+/− 100 bp)

Single copy
(+/− 100 bp)

A-1 165 128 157 146

A-3 188 137 178 165

B-1 163 124 153 142

C-1 156 120 148 138

C-2 206 159 190 174

E-1 205 159 188 173

F-1 174 161 172 169

G-1 157 119 147 137

G-3 235 168 203 177

H-2 201 159 188 174

H-3 199 155 184 170

I-1 218 180 208 193

I-2 230 187 218 200

I-3 223 183 204 198

I-4 224 176 212 193

I-6 204 157 184 171

I-7 202 151 182 166

Mean mate pair distance values were calculated for each strain at MIRU locus
3192. Values were gathered for the MIRU coordinates as well as the
surrounding (+/100 bp) region.
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Figure 1 Identifying MIRU CNV utilizing RD and mate pair. (a) Mean normalized RD values at MIRU locus 802 (+/− 100 bp). Mean RD values
represented by dashed blue line while two standard deviations above and below the mean RD values corresponds to red and green dotted lines,
respectively. Strain H-3, containing a MIRU insertion relative to the inoculum strain, is represented by the black line. Shaded area corresponds to
the MIRU coordinates. (b) Mean normalized mate pair distance values at MIRU locus 802 (+/− 100 bp). The color scheme is identical to plotted
read depth values. Strain shown is again H-3.
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Mtb strain Erdman. All 33 strains were assessed at the
24-MIRU loci previously described. From the 792 loci
sequenced, two of the four putative indels identified by
PEM were confirmed, and no new variants were discov-
ered (Table 1). Locus 802 in strain H-3 increased from
three to four repeats and was identified by both RD and
PEM, and locus 3192 in strain G-3 decreased from two
to one copy and was identified solely by PEM.
With the number of repeats at each locus defined by

Sanger sequencing, we determined the relationship be-
tween MIRU copy number and RD and PEM (Figure 2a, b,
Table 1). Our results indicate a strong inverse correlation
(r2 = .943) between MIRU copy number and mean normal-
ized mate pair distance. Additionally, we find a positive
correlation between mean normalized RD and MIRU copy
R² = 0.493
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Figure 2 Correlation between MIRU copy number and RD/mate pair.
was determined by averaging RD across the entire locus. All loci containing
subsequently binned and averaged, providing a single RD value for each c
average mate pair distance. Average mate pair distance values were gener
number, though the correlation is weaker (r2 = .490). This
is likely a reflection of the variance in read depth across
the genome and between strains. This data suggests
that PEM more closely correlates with MIRU copy
number, consistent with more accurate detection of
indels using PEM.

Estimation of the MIRU mutation rate during the course
of disease
We have estimated the per locus, per year, mutation rate
by assessing MIRU CNV during the course of infection.
The mutation rate, μMIRU, was calculated based on the
number of MIRU indels identified by Sanger sequencing
and the length of infection for each macaque, allowing
us to estimate a per locus, per unit time rate. The rate
R² = 0.940
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(a) MIRU copy number vs. mean RD. The mean RD value for each locus
the same copy number as determined by Sanger sequencing were

opy number observed in the data. (b) Graph of MIRU copy number vs.
ated as described for RD.



Table 3 Values of published MIRU mutation rates

Author Mean MIRU
mutation rate

Lower
bound

Upper
bound

Estimated rate,
macaque model

2.70 × 10-3 3.30 × 10-4 9.80 × 10-3

Aandahl et al. 2012 3.55 × 10-3 8.51 × 10-4 1.15 × 10-2

Reyes and Tanaka 2010 None 7.00 × 10-4 1.50 × 10-2

Wirth et al. 2008 1.23 × 10-4 1.96 × 10-5 7.93 × 10-4

Grant et al. 2008* 1.05 × 10-5 None None

*Grant, et al. 2008 rate was converted from a per generation to a per year
mutation rate.
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was estimated by dividing the total observed CNVs by
the total length of infection for each macaque, t(a-i), the
cumulative number of sequenced isolates per macaque,
g(a-i), and the cumulate number of MIRU loci sequenced,
l (methods, equation 1). The MIRU mutation rate of our
in vivo isolates was found to be 2.70 × 10-03 per locus, per
year (95% CI: 3.30 × 10-04- 9.80 × 10-03). Our rate is most
similar to the highest previous estimates derived from
epidemiologic data, though the confidence interval overlaps
with other estimates (Figure 3, Table 3).

Discussion
Here we have utilized both conventional and next-
generation sequencing approaches to define the number
of copy variants at MIRU loci that arose during the
course of macaque infection. Approaches to detect
MIRU CNV by Illumina sequencing are increasingly
important given the expanding use of WGS in molecular
epidemiology. However, mapping ambiguities due to the
repetitive nature of MIRU loci complicate copy number
assessment by WGS. In this work, we sought to reduce
mapping ambiguity and identify CNV in Mtb by map-
ping to a single copy-number genome. Sequencing tech-
nologies have advanced since the sequencing of these
strains, and longer reads with less coverage variability
may improve specificity in future work [31,32]. Add-
itionally, it is thought that variability in both RD and
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Figure 3 Comparison of published MIRU mutation rates. The
per locus, per year published estimates of the MIRU mutation rate.
Previous estimates shown in shaded grey. Error bars for all estimates
shown represent 95% confidence intervals. *Reyes and Tanaka, 2010
provided a range of values but no mean value **Grant, et al. 2008
provided a single estimate and no confidence intervals.
PEM arises from local disparities in GC content [25,33].
Future work may exploit advances in correcting for GC
bias [19,32,34-36], in combination with the approaches
described here, to more reliably detect MIRU CNV from
WGS data.
With the MIRU CNV identified in strains isolated

from cynomolgus macaques, we have estimated the mu-
tation rate at MIRU loci. Our in vivo MIRU mutation
rate, 2.70 × 10-03 per locus, per year, is most consistent
with the highest published estimates. Variability in these
estimates may be partially driven by differences in MIRU
loci analyzed, the epidemiology of the strains used, and
differences in the assumptions of the models used to es-
timate a rate. The resulting differences in rate estimates
have motivated extensive debate in the literature
[15,37,38]. Our estimate is derived from an alternative,
experimental approach, relying on the cynomolgus
macaque model of TB infection to assess the mutation
rate of the 24 loci standard used in MIRU typing.
Though our analysis is somewhat limited by a relatively
small signal, strikingly, our estimate closely aligns with
previous rates.
What are the biologic consequences of a high muta-

tion rate at MIRU loci? Interestingly, most MIRUs are
located in intergenic regions and are hypothesized to be
transcribed as part of a polycistronic operon. Several
MIRU elements are located within the coding region of
well-described two-component regulatory systems as
well as genes essential for virulence and host adaptation
[5]. It is interesting to hypothesize that rapid genetic
variation at these MIRU loci may have effects on the
transcription of the regulon, thus generating population
diversity. Some evidence exists that CNV variation at
MIRU loci may result in transcriptional changes of the
downstream gene within a MIRU locus [39,40], though
further characterization is required to establish the bio-
logic relevance of these loci and the role of variation in
MIRU elements.
Repeat variation is a well-established means of gener-

ating locus specific mutation in other microbial genomes
[41,42]. The rate established here is comparable to
tandem repeat variation rates in other organisms. For
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example, in Bacillus anthracis the estimated mutation
rate of tandem repeat loci is reported to be roughly 10-05

to 10-04 per generation [43], while in pathogenic E. coli
O157:H7, the rate is reported to be roughly 6.4 × 10-04

per generation [44]. The MIRU per generation mutation
rate is between 5.6 × 10-06 and 7.64 × 10-05, using the
lower (18 hours) and upper (240 hours) estimates of
generation times previously described [17]. It is import-
ant to note the loci analyzed in this study were selected
from the larger set of MIRU loci for their relative stabil-
ity, making them ideal for typing. The rate of variation
in the remaining loci may vary from the rate reported
here, especially in loci previously identified as hypermut-
able [6]. While further work is needed to determine the
biological consequences of MIRU variation, we have
shown that there is potential for detecting MIRU
variants by WGS and that the rate uncovered from ma-
caque infection is consistent with the highest previous
estimates.

Conclusions
CNV in typing markers is an essential tool to differenti-
ate and classify clinical strains, and quantitation of
marker variation allows for enhanced interpretation of
epidemiological data. In this study, we have used the
macaque model of Mtb infection to estimate the MIRU
mutation rate during the course of disease, and we have
explored the use of WGS to assess MIRU copy number.
Subsequent Sanger resequencing confirmed two of the
four MIRU indels identified by PEM to a reduced copy
genome, and from this we have estimated a per locus,
per year mutation rate of 2.70 × 10-03. This value agrees
with the higher published estimations of MIRU mutation
rates. Further assessment of RD and PEM as indicators
for copy number may streamline minisatellite detection
via WGS.

Methods
Preparation of isolates and Illumina sequencing
Infection of macaques and isolation of strains was
performed as previously described [45]. Briefly, cynomolgus
macaques were infected with a low dose (roughly
25 CFU/macaque), virulent strain (Mtb Erdman) by
bronchoscopy. Infected macaques were allowed to
progress to either latent or active disease. Nine infected
macaques were selected (four active, three latent, two
reactivated) and 33 bacterial isolates from 17 different
lesions were chosen for study. Colonies were expanded
for extraction of genomic DNA as described previously.
Minimal expansion occurred between strain isolation
and genomic extraction. An Illumina Genome Analyzer
(Illumina) was used for WGS of isolated strains. A
detailed protocol of WGS data analysis has been previ-
ously published [17].
WGS analysis of MIRU regions
75 basepair paired-end read data gathered from sequen-
cing at the Broad Institute of MIT and Harvard were ana-
lyzed for MIRU CNV. Only strains containing sufficient
sequencing coverage at the MIRU locus were analyzed.
Sequences were mapped to a single copy H37Rv reference
genome. This genome was created by reducing MIRU
elements to a single copy at the 24 loci analyzed in the
H37Rv genome [GenBank: AL123456]. If two MIRUs at
the same locus contained a greater than 4 SNP difference,
they were treated as unique MIRUs (denoted A and B)
and were not collapsed to a single unit. Illumina fastq files
were mapped to this reference genome with SSAHA2
using the Solexa defaults and allowing for paired end
reads up to 700 bp [46]. Proper pairs were extracted using
samtools. RD was calculated by including mate pairs tra-
versing each reference coordinate with a perl script [47].
The two-sided Wilcoxon rank sum test was used to com-
pare the difference in mate pair distances when mapping
to the H37Rv genome versus the single copy-number
genome (Mathworks, Natick MA). This analysis was done
both on reads mapping within the MIRU and reads map-
ping in the surrounding +/−100 bp. For this comparison
Illumina fastq files were mapped to the H37Rv genome
using the same parameters as used when mapping to the
single copy-number genome.
To identify CNV in MIRUs, RD and mate pair distance

values were obtained for 16 strains at 24 MIRU loci and
100 basepairs upstream and downstream of the MIRU
element. Values at each coordinate were normalized to its
mean RD and mate pair distance values for the window
assessed. MATLAB was used to generate plots, mean RD
values and standard deviations (MathWorks, Natick MA).

Sanger sequencing of isolates and estimation of MIRU
mutation rate
33 strains were PCR amplified at the 24-MIRU locus set.
Primers sequences for these were previously published
[6]. Amplification was performed with the following
reagents- 5 μl PCR buffer, 2% DMSO, 3 μl of 2.5 mM
dNTPs, 3 μl of 10 mM of each primer, 20 ng of
template, .5 μl of 250 U Taq polymerase, and water up
to 50 μl. Thermocycler conditions were as follows: 95°C
for 10:00, 30 cycles of: 95°C for :45, 68°C for :30, 72°C
for :30, 72°C for 10:00. The MIRU mutation rate (μMIRU)
was estimated from the number of indel events observed
by Sanger sequencing (Genewiz, Cambridge MA).
Equation 1 describes the estimation of the MIRU

mutation rate:
µMIRU ¼ n indels=
P

t a�ið Þ � g a�ið Þ � l
� �� � ð1Þ
Where n indels = total number of MIRU insertion or
deletion events, t(a-i) = duration of infection per macaque
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(in days), g(a-i) = number of strains analyzed per
macaque, and l = total number of MIRU loci analyzed. n
indels is divided by the sum of the product of t, g(a-i),
and l(a-i) per macaque. Because infection length and
isolates acquired is variable between macaques, the for-
mula must sum the product acquired for each individual
macaque. A Poisson distribution was used to model the
number of indels and estimate the 95% confidence inter-
val. Estimation of the mutation rate and the confidence
interval was generated using MATLAB (MathWorks,
Natick MA).

Additional file

Additional file 1: Figure 1. Comparison of mate pair distance
distribution from reads mapped to H37Rv versus single copy MIRU
genome. (a) The distribution of mate pair distances from each
sequencing read spanning the 3192 MIRU locus (+/− 100 bp) for strain
G-2, for reads mapped to the H37Rv genome. (b) The distribution of
mate pair distances from each sequencing read (for same strain and
locus as (a)), for reads mapped to the single copy MIRU genome. For
both (a) and (b), the bin size is set to 100. Bars in blue represent all MIRU
sequencing reads +/− 100 bp while bars overlaid in green represent only
the MIRU sequencing reads.
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