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Abstract

Background: The functional and evolutionary diversification of insect cytochrome P450s (CYPs) shaped the success
of insects. CYPs constitute one of the largest and oldest gene superfamilies that are found in virtually all aerobic
organisms. Because of the availability of whole genome sequence and well functioning RNA interference (RNAI),

the red flour beetle, Tribolium castaneum serves as an ideal insect model for conducting functional genomics studies.
Although several T. castaneum CYPs had been functionally investigated in our previous studies, the roles of the
majority of CYPs remain largely unknown. Here, we comprehensively analyzed the phylogenetic relationship of all

T. castaneum CYPs with genes in other insect species, investigated the CYP6BQ gene cluster organization, function and
evolution, as well as examined the mitochondrial CYPs gene expression patterns and intron-exon organization.

Results: A total 143 CYPs were identified and classified into 26 families and 59 subfamilies. The phylogenetic trees of
CYPs among insects across taxa provided evolutionary insight for the genetic distance and function. The percentage of
singleton (33.3%) in T. castaneum CYPs is much less than those in Drosophila melanogaster (52.5%) and Bombyx mori
(51.2%). Most members in the largest CYP6BQ gene cluster may make contribution to deltamethrin resistance in
QTC279 strain. T. castaneum genome encodes nine mitochondrial CYPs, among them CYP12HT is only expressed in the
final instar larval stage. The intron-exon organizations of these mitochondrial CYPs are highly diverse.

Conclusion: Our studies provide a platform to understand the evolution and functions of T. castaneum CYP
gene superfamily which will help reveal the strategies employed by insects to cope with their environment.
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Background

Insects appeared more than 450 million years ago [1,2]
and have been known to be the unprecedented evolu-
tionally successful metazoans on the earth. One of the
factors that may contribute to this success is the ability
of insects to adapt to almost every ecological niche by
virtue of traits such as metamorphosis and flight [3,4].
In the meantime, the radiation of insects into diverse habi-
tats and food sources largely enhanced the risk for them to
be exposed to toxic or otherwise life-threatening condi-
tions. Insect CYPs impact on the ability of insect adaptation
to diverse habitats. On one hand, CYPs have very impor-
tant physiological functions during all life stages of insects.
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They might be involved in the biosynthesis pathway of
endogenous compounds, such as molting hormone (20-
hydroxyecdysone, 20E is the most active form) [3] and
juvenile hormone (JH) [5] that are the key factors in regu-
lating metamorphosis, development, and reproduction.
Some insect CYPs are also involved in the degradation of
pheromones [6,7] as well as catalysis and hydroxylation of
fatty acids [8], which are critical for chemical communica-
tion, behavior [7,9] and metabolism. On the other hand, as
a group of environmental response genes [10], some CYPs
protect insects by detoxifying xenobiotics including syn-
thetic insecticides [11-13] and plant allelochemicals [14,15],
resulting in the adaption of insects to the chemical stresses.
In a way, the functional and evolutionary diversification
(“bloom”) of insect CYPs has shaped the success of insects.
As microsomal pigments, CYPs have an absorption
peak at 450 nm when reduced and saturated with carbon
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monoxide [16]. The bacterial CYPs are water soluble
while eukaryotic CYPs are membrane-bound proteins
located either on the endoplasmic reticulum or the inner
mitochondrial membrane. P450s are hemoproteins and
act as the terminal oxidases in the monooxygenase sys-
tem [12]. The three components of the P450 mono-
oxygenase system are P450, which acts as the substrate
binding protein, NADPH-cytochrome P450 reductase
(CPR), which transfers electrons from NADPH to CYPs,
and cytochrome b5, which transfers electrons from NADH
to CYPs in some P450 monooxygenase systems as an add-
itional potential electron donor [11].

CYPs constitute one of the largest and oldest gene super-
families that are found in virtually all aerobic organisms
[17]. Insects typically contain tens to more than one hun-
dred individual P450 genes in their genomes (http://
drnelson.uthsc.edu/CytochromeP450.html). Genome anno-
tation efforts identified 90 CYPs in D. melanogaster [18],
111 CYPs in Anopheles gambiae [19], 84 CYPs in B. mori
[20], 48 CYPs in Apis mellifera [21], 164 CYPs in Aedes
aegypti [22], 204 CYPs in Culex quinquefasciatus [23], 38
CYPs in Pediculus humanus humanus [24], and 143 CYPs
in T. castaneum [25]. T. castaneum, commonly known as
the red flour beetle, is the first beetle having its genome
sequenced. T. castaneum is a notorious worldwide pest of
stored grains and farinaceous materials [26,27]. It has de-
veloped resistance to all five classes of insecticides and
fumigants used against it [25]. Moreover, the functional
genomics method, RNAi, works systemically in almost
every tissue and developmental stage of T. castaneum
[28,29]. These characters make 7. castaneum an ideal insect
model for conducting functional genomics, investigating
the mechanisms of insecticide resistance, and exploiting
potential new insecticide targets for pest control. Although
several T. castaneum CYPs, CYP6BQ9 [30], CYP306A1
[31-33], CYP314A1 [31-33] had been functionally investi-
gated in our previous studies, the role of the majority of
CYPs remains largely unknown. Here, we analyzed the
phylogenetic relationship of all T. castaneum CYPs with
genes in other insect species, examined the CYP6BQ gene
cluster organization, function and evolution, as well as in-
vestigated the mitochondrial CYPs intron-exon and gene
expression patterns which provide platform to understand
the evolution and predict the functions of T. castaneum
P450 genes.
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Results and discussion

Annotation of T. castaneum CYPs

Total 143 T. castaneum CYPs were annotated and ana-
lyzed based on the NCBI database (http://www.ncbi.nlm.
nih.gov), Beetlebase (http://beetlebase.org/) and Cyto-
chrome P450 homepage (http://drnelson.uthsc.edu/Cyto-
chromeP450.html). A full T. castaneum P450 gene list
with the most updated assembly and annotation infor-
mation including clan, name, accession number, symbol
synonyms, map position and amino acid length are pro-
vided in the Additional file 1 [34]. Among these 143 genes,
133 genes are putatively functional isoforms, and 10 are
pseudogenes. These genes fall into four clans, clan 2, mi-
tochondprial clan, clan 3, and clan 4 (see Additional file 1,
Table 1). These four clans are further classified into 26
families and 59 subfamilies. Nine new families were
discovered including mitochondrial family CYP353, CYP3
clan families CYP345, 346, 347, and 348, and CYP4
clan families CYP349, 350, 351, and 352 (see Additional
file 1, Table 1).

Phylogenetic analysis of T. castaneum CYPs

To inspect the evolutionary relationships of CYPs among
insect CYPomes across taxa which might provide evolu-
tionary insight for the genetic distance and function, four
phylogenetic trees were constructed with CYPs identi-
fied in T. castaneum, D. melanogaster, A. gambiae, and
A. mellifera (Figures 1A, B, C, D). T. castaneum P450s
CYP2 and mitochondrial clans present a high level of
1:1 orthology with those from other insect genomes, sug-
gesting functional conservation of these CYPs [1]. Within
CYP2 clan, two out of eight genes (CYP303A1 and
CYP306A1) show precise 1:1:1:1 orthologies (Figure 1A).
In D. melanogaster, CYP303A1 encoded by the gene
nompH is expressed specifically in the sensory bristles;
this gene product is known to play essential roles in
the development of external sensory organs associated
with the reception of vital mechanosensory and chemo-
sensory stimuli [35]. CYP306A1 encoded by Phantom
(or Phm) and expressed in the prothoracic glands of
D. melanogaster and B. mori was demonstrated to be
involved in the ecdysteroid biosynthesis [36,37]. In T.
castaneum, the CYP306A1 mRNA levels showed a similar
pattern as the ecdysteroids titer during five days after
adult emergence in male beetles, indicating a possible

Table 1 Number of T. castaneum CYP families, subfamilies, pseudogenes, and genes in each insect P450 clan

Number CYP2 Mitochondrial CYP3 CYP4 Total

Family 7 (CYP15, 18, 303-307) 8 (CYP12, 49, 301, 6 (CYP6, 9, 345-348) 5 (CYP4, 349-352) 26
302, 314, 315, 334, 353)

Subfamily 8 9 27 15 59

Pseudogenes 0 0 7 3 10

All genes 8 9 79 47 143
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Figure 1 Neighbor-joining consensus trees of the four P450 clans. (A) CYP2; (B) mitochondrial; (C) CYP3; and (D) CYP4. The phylogenetic
trees were generated by MEGA 5 using the amino acid sequences from T. castaneum (Tc), D. melanogaster (Dm), A. gambiae (Ag), and A. mellifera
(Am). Two-letter species designations followed the specific gene names. All nodes have significant bootstrap support based on 2,000 replicates.
The trees were created with cut-off value of 50%.

function in the ecdysteroid biosynthesis [32]. However,
the CYP306A1 RNAI did not block the primary oocyte
maturation which is regulated by ecdysteroids in female
beetles [33]. There are three other clades in CYP2 clan for
which functions had been investigated. CYPI8A1 with 26-
hydroxylase activity in D. melanogaster is essential for
proper insect development [38]. The Spook/Spookier CYPs
are involved in ecdysteroid biosynthesis [39,40] and
CYP15A1 was characterized as an ortholog of the juvenile
hormone epoxidase in the cockroach [5].

Within mitochondrial clan, four out of nine T.
castaneum CYPs show distinct 1:1:1:1 orthologies with
genes from other insect species (Figure 1B). The three
CYPs CYP302A1, CYP314A1, and CYP315A1 encoded
by D. melanogaster Halloween genes disembodied (dib),
shade (shd), and shadow (sad) respectively are involved
in ecdystroid biosynthesis [3]. Since the T. castaneum
CYP302A1, CYP314A1, and CYP315A1 share high se-
quence similarity with those of D. melanogaster, they
very likely have similar functions in T. castaneum. The
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T. castaneum genome contains a single CYPI2HI gene
in CYP12 family that includes genes associated with in-
secticide resistance in the house fly Musca domestica
[41] and D. melanogaster [42].

T. castaneum genome encodes largely expanded CYP3
(27 subfamilies, 79 individual genes) and CYP4 (15 sub-
families, 47 individual genes) clans, especially the families 4
(27 genes), 6 (40 genes), and 9 (23 genes) (Figure 1C and D,
see Additional file 1). Genes in these two clans appear
to undergo exceedingly species-specific radiations. The
CYP6 family is evolutionary related to vertebrate CYP3 and
CYP5 families [1,43]. T. castaneum CYP6 family merely
has one CYP6B subfamily. All CYP6 genes in 7. castaneum
and A. gambiae are clustered in one clade within species,
whereas CYP6 genes in D. melanogaster clustered into se-
veral clades in the phylogenetic tree (Figure 1C). In dip-
teran and lepidopteran insects, a number of CYP6 genes
were shown to be involved in resistance to a wide range of
insecticides and detoxification of plant allochemicals
through either constitutive overexpression and/or inducible
expression in resistant strains [11,1544,45]. In T. casta-
neum deltamethrin-resistant QTC279 stain, CYP6BQY, a
brain-specific P450, is constitutively overexpressed in re-
sistant strain and is responsible for the majority of delta-
methrin resistance [30]. D. melanogaster CYP6 gene,
Cyp6a20, is expressed in the non-neuronal support cells of
olfactory sensilla associated with pheromone-sensing, and
its expression level is correlated with the influence of social
experience on aggressiveness [7,9].

T. castaneum CYP9 family is the second biggest family
in the Clan 3 (Figure 1C). Several members in this family
are known to be associated with insecticide resistance
and metabolism of odorant compounds [46-50]. Genes
in CYP4 clan show high diversity in their sequences
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and functions. In Clan 4, CYP4 family is the largest gene
family that has members from the vertebrates and
insects as well as Caenorhabditis elegans [13]. It is the
only family in Clan 4 that has been studied in other
insect species (Figure 1D, see Additional file 1). Except
CYP4AA1, CYP4G7, CYP4GI4 have 1:1:1:1 orthologs
in three other species, all other CYP4 genes in T.
castaneum are clustered in several clades within species
(Figure 1D). Members of family CYP4 in other insects
are known to be associated with biosynthesis of en-
dogenous compounds [51,52], pheromone metabolism
[46,53], and pyrethroid insecticide resistance [49,54-56].
It is interesting that Antheraea yamamai CYP4G25 is
associated with diapauses in the pharate first instar lar-
vae [57], indicating that the large complement of CYP4
CYPs might have much more diverse functions beyond
what we appreciated, perhaps even more diversified than
the CYP3 clan [13].

Genomic distribution of T. castaneum CYPs

To gain a genome-wide view of chromosome location of
T. castaneum CYPs, a genetic map (Figure 2) was con-
structed to map the distribution of 99 T. castaneum
CYPs on 9 chromosomes. No P450 gene was found in
the LG1=X chromosome. Majority of CYPs (87 from 99)
are distributed on six chromosomes LG3, LG4, LG5, LG6,
LG8 and LG9. Locations of 44 other CYPs on the chromo-
some remain unknown. It is considered that the formation
of the substantial number of CYPs genes is due to a series
of gene duplication descended from a common ancestral
P450 gene [13,58-60]. Therefore, it is not surprising that
most of T. castaneum CYPs are located on chromosomes
in a tandem manner (Figures 2 and 3). There are nine
clusters, defined as groups containing at least three genes,
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Figure 2 Genetic map of the T. castaneum CYPs. The physical location of each P450 gene or cluster on the chromosome map is marked on
the left of the column which stands for the chromosome. Arrows indicate gene orientation: the up arrow is the reverse strand and the down
arrow is the forward strand.
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located on chromosomes LG3-6, LG8 and LGY. All the
genes in these clusters belong to CYP3 and CYP4 clans;
CYP6 family (LG4), CYP4 family (LG5 and LG9), CYP346
family (LG5), CYP351 family (LG6), and CYP9 family
(LGS). They are remarkable landmarks for the “bloom” of
the CYPome in CYP3 and CYP4 clans [2]. Only 33 out of
99 T. castaneum CYPs (33.3%) present as singletons. The
percentage of singleton in 7. castaneum CYPome is much
less (33%) compared with CYPomes of D. melanogaster
(52.5%) and B. mori (51.2%) (Figure 3) [13,20,43].

CYP6BQ cluster in T. castaneum

Clustering is a common phenomenon in the organization
of CYPs in insects [11]. Around 67% of T. castaneum
P450 genes reside in clusters (Figure 3). The largest cluster
containing 12 CYP6BQ genes with the same orientation
is located within a 30 kb region on the LG4 chromo-
some. One of the 12 members in this cluster, CYP6BQ9Y,
had been demonstrated to be responsible for the major-
ity of deltamethrin resistance observed in QTC279, a
deltamethrin-resistant 7. castaneum strain [30]. Further
studies on the function of other members in the del-
tamethrin resistance might mirror the origin and evolu-
tion of this cluster. The identity matrix of genes in the
CYP6BQ cluster showed amino acid homology between
two cluster members ranging from 52% to 87%, with the
exception of CYP6BQ2 and CYP6BQ4 sharing 95% amino
acid identity (see Additional file 2). Figure 4A shows
the phylogenetic relationships of 11 clustered genes (ex-
cept the pseudogene CYP6BQ3P). Earlier duplication
events generated three clans, which we have named clan I,
II, and III. Clan I includes two genes, CYP6BQ2 and
CYP6BQ4 with high percent sequence identities sug-
gesting that they may have evolved from a recent dupli-
cation event. Clan II includes three genes, CYP6BQ6,
CYP6BQ7 and CYP6BQI2. Clan III consists of 6 cluster
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CYP6BQI0, and CYP6BQ11, created by a series of tandem
duplications.

The tissue specific expression pattern of genes within
the same Clan is largely conserved in QTC279 strain
(Figure 4B). The only exception is CYP6BQ11I; this may
imply potentially novel physiological functions for this
gene. Genomic sequence analysis showed that the 12
members of CYP6BQ cluster share highly similar intron-
exon structures (see Additional file 3). Each gene con-
sists of three exons, with exon one having 1123-1147 bp,
exon two containing about 253-256 bp, and exon three
consisting of approximately 163-169 bp. There are only
two exceptions, CYP6BQ3P containing a single exon and
CYP6BQS5 containing two exons. The length of intron
ranges from about 44 bp to 54 bp. The first introns in
all genes follow the canonical GT/AG rule. The differen-
tial expression profiles of the cluster genes showed that
with the exception of CYP6BQ3P and CYP6BQS5, all other
10 genes have significantly higher mRNA levels in
QTC279 resistant strain than in the Lab-S susceptible
strain (see Additional file 4). Moreover, six out of these 10
genes were induced by deltamethrin (115 mg/48 cm? that
caused 50-60% mortality of beetles in QTC279 strain)
after 12 h exposure to the chemical (see Additional file 5)
suggesting a potential contribution of these cluster mem-
bers to the deltamethrin resistance in QTC279 strain.

Then we focused on four evolutionarily close genes,
CYP6BQS8, CYP6BQY, CYP6BQI0 and CYP6BQI1. We
cloned the full length sequences of these four genes from
LBS, GA and QTC279 strains and deposited them in the
GenBank (CYP6BQS8-Pyr, KC686848; CYP6BQ8-GA,
KC686849; CYP6BQS-LBS, KC686850; CYP6BQI-GA,
KC686851; CYP6BQ9-LBS, KC686852; CYP6BQ10-Pyr ,
KC686853; CYP6BQ10-GA, KC686854; CYP6BQ10-LBS,
KC686855; CYP6BQ11-Pyr, KC686856; CYP6BQI11-GA,
KC686857; CYP6BQ11-LBS, KC686858). Then we con-
ducted homology modeling and ligand docking studies.
The protein models for CYP6BQ8, CYP6BQ9, CYP6BQ10

genes, CYP6BQI, CYP6BQS5, CYP6BQ8, CYP6BQY,
-
50

v

g a0

Y]

[T:]

o 7

S 301 [

= .

s /

° :

o ﬁ

o 20 4w 7]

< 7 7

c a i

s Z i

8 1 [l 7

s “10 4 ’
i i ’ 7

= é a 7 %

N
W Anopheles gambiae

[ Bombyx mori

[ Drosophila melanogaster
Tribolium castaneum

RRRNIRRRRRRRN

Cluster Size

Figure 3 Clusters and singletons of CYPs in the A. gambiae, B. mori, D. melanogaster and T. castaneum genomes.




Zhu et al. BMIC Genomics 2013, 14:174
http://www.biomedcentral.com/1471-2164/14/174

Page 6 of 12

100— CYP6BQ10-LBS
CYP6BQ10-GA

53— CYP6BQ10-Pyr
CYP6BQ11-Pyr
CYP6BQ11-GA

53! CYP6BQ11-LBS
CYP6BQ9-GA
CYP6BQY-LBS
100 - CYP6BQ9-Pyr

34 CYP6BQS-Pyr
4100[(0\{95803-&
37 90l CYP6BQB-LBS

100

CYPGBQS-GA

CYP6BQ12-GA

CYP6BQ6-GA
CYP6BQ7-GA

99

100 '— CYP6BQ4-GA

—_—
0.1

.

CYP6BQ1-GA|

CYPeBQ10
CYP6BQ11
CYp6BQ9
CYP6BQ8
CYP6BQ1
CYP6BQS
CYP6BQ12

— CYP6BQ2-GA

Figure 4 Members in the CYP6BQ cluster. (A) Neighbor-joining tree of the cluster CYP6BQ genes. The sequences of CYP6BQS8, CYP6BQY,
CYP6BQ10, and CYP6BQ11 were cloned from QTC279 strain (Pyr), GA strain and LA strain as described in the Methods. (B) Tissue specific
expression profile of the cluster CYP6BQ genes in the deltamethrinresistant QTC279 strain. The rectangles are colored on the basis of results of
relative expression levels compared with that of ovary and normalized by the expression of rp49. The data shown are mean + SEM (n = 3). The
levels of relative expression are illustrated by a four- category color scale standing for 0-1, 1-10, 10-100, >100 fold, respectively.
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and CYP6BQ11 showed the P450 structurally conserved
helices D, E, 1, L, J, and K along with j sheets 1 and 3
(Figures 5A, C, E and G; see Additional file 6). We used
AutoDock Vina to investigate the binding of four insecti-
cide compounds DDT, imidacloprid, permethrin, and
deltamethrin (see Additional file 7, Figure 5). For each
predicted binding mode, estimated binding affinity and
insecticide putative hydroxylation site distance from the
heme iron were compared. The lowest binding energy ob-
served was for CYP6BQ9-Pyr and deltamethrin with the
4’ carbon hydroxylation site adjacent to the heme iron

(see Additional file 7, Figures 5C and D). All models dem-
onstrated favorable binding affinity and a putative substrate
hydroxylation site within 6.0 A [61] of the heme iron
with two or more of the insecticides tested (see Additional
file 7). Relevant binding modes for CYP6BQ11-Pyr were
found for all four insecticides suggesting an association
with resistance to all four insecticides (see Additional file 7).
Docking modes for deltamethrin are shown in Figure 5.
Residues in the catalytic pockets of CYP6BQS8, CYP6BQ9,
CYP6BQI10 and CYP6BQ11 within 4.5 A of deltamethrin
were examined. Hydrophobic residues Phel28, Phe248,

CYPEBQS-PYR CYPEBQI-PYR

Figure 5 Docking of deltamethrin in CYP6BQ catalytic sites. Docking models for deltamethrin (elemental colors in stick format) in the

CYP6BQ10-PYR

CYPEBQI1-PYR

predicated catalytic site of CYPEBQ8 (A), CYP6BQI (C), CYP6BQ10 (E) and CYPEBQ11 (G) are shown. Structurally conserved a helices and 8 sheets
are labeled and colored to match in four models. The distances from the heme center to putative hydroxylation site of deltamethrin are shown
in pictures for CYP6BQS (B), CYP6BQ9 (D), CYPEBQ10 (F), and CYP6BQ11 (H). Images were generated with PyMol pymol.org.
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Val320 or Leu320 and hydrophilic Lys390 were conserved
in the catalytic site of at least three proteins. The active
sites of all four models are rich in phenylalanine and other
hydrophobic residues (see Additional file 6) suggesting
these four proteins provide a favorable chemical environ-
ment for hydrophobic insecticide compounds. Although
the lowest binding energy was observed for CYP6BQ9-Pyr
and deltamethrin, which is consistent with our previous
study about the major function of CYP6BQ9 in del-
tamethrin resistance of QTC279 beetles [30], the predicted
catalytic sites are well conserved among CYP6BQ9 variants
in LBS, GA and QTC279 strains (see Additional file 6).
The predicted binding affinities to deltamethrin and in-
secticide putative hydroxylation site distance from the
heme iron do not differ much among CYP6BQ9 variants
in these three strains (see Additional file 7). These observa-
tions further suggest that the involvement of CYP6BQ9 in
deltamethrin resistance of QTC279 strain is not due to
changes in binding affinity but is likely due to an increase
in the expression of this gene. The mechanism of regula-
tion of CYP6BQ9 expression in the QTC279 strain is cur-
rently under investigation.

Mitochondrial CYPs in T. castaneum

The mitochondrial CYPs form a unique branch in the
phylogenic tree of animal CYPs [62]. To date, mitochon-
drial CYPs are only found in animals, but not in fungi
and plants [63]. There is a minor group in the total P450
family members of animals compared with the micro-
somal CYPs. In T. castaneum, only nine out of 143 CYPs
are found in mitochondria. In vertebrates, mitochondrial
CYPs are generally specialized in the metabolism of
steroid or vitamin D, in contrast with microsomal CYPs
that show considerably extensive substrate specificities
[1,62]. Whereas, insect mitochondrial CYPs show some-
what structural and functional diversity, which suggests
that they have undergone several blooms [1,2]. There are
at least two groups of mitochondrial CYPs in insects. One
is CYP12 family including variable number of genes across
different taxa that are rapidly evolving [1]. Three CYPI2A
genes were cloned from the house fly [41]. Among
them, CYPI2A1 is constitutively overexpressed in diazi-
non resistant strain and metabolizes insecticides and other
xenobiotics but not ecdysteroids. D. melanogaster has
seven CYPI2 members in its CYPome (Figure 1B). The
overexpression of CYPI2A4 in a natural population con-
fers the lufenuron resistance [64]. CYP12D1 was observed
to be overexpressed in a DDT-resistant strain and induced
by xenobiotics [42,65]. There are four CYPI2F genes in
A. gambiae CYPome (Figure 1B). It was reported that
CYPI2FI is constitutively overexpressed in both DDT-
resistant strain (ZAN/U) and permethrin-resistant strain
(RSP) [66]. The close association with xenobiotic resist-
ance in the group of insect CYPI12 genes demonstrates
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the evolutionary differentiation between insects and ver-
tebrates. The other group of insect mitochondrial CYPs
show sequence conservation (Figure 1B) and include
three Halloween genes that are the orthologs of the C22,
C2, and C20 hydroxylases that function in the biosynthesis
of ecdysteroids [3] as well as genes with unknown func-
tions. These genes are considered to perform essential
physiological functions during insect development and
reproduction [1].

To predict the functions of T. castaneum mitochon-
drial CYPs, temporal expression of these genes was de-
termined (Figure 6). Metamorphosis in holometabolous
insects is regulated by cross-talk between ecdysteroids
and juvenile hormones. Our previous studies showed
that the ecdysteriod titers remain low throughout the
final instar larval stage except for small increases at 60,
78 and 90 h after ecdysis into the final instar larval stage
[67]. The ecdysteriod titers showed another peak during
the quiescent stage. Afterward the levels remain low at
the beginning of the pupal stage and increase again be-
ginning at 42 h after ecdysis into the pupal stage and
eventually reached the maximum levels by 66 h [67].
The mRNA levels of nine mitochondrial CYPs during
the final instar larval stage (Ld0-Ld4), quiescent stage
(Q1-Q2), pupal stage (Pd0-Pd5), and adult stage (AdO-
Ad3) were quantified and normalized using rp49 mRNA
levels as the most stable reference gene (Figure 6) [68].
CYPI2H1 is only expressed in the final instar larval stage
which might point out that its function is restricted to
this stage. The mRNA level of shd (CYP314AI) in-
creased at the late period of the final instar larval stage
at the time of the ecdysteriod increases. The expres-
sion of sad (CYP315A1) showed two peaks during the
late periods of the final instar larval stage and pupal
stage when the ecdysteriod titers reach the maximum
levels (Figure 6). The mRNA levels of CYP334BI re-
mained low until the late period of the pupal stage and
afterward high levels were detected during the adult
stage. The expression level of CYP353A1 increased dur-
ing the final instar larval stage and reached a peak in
Ld4 and then Pdl and subsequently decreased during
the pupal and adult stages. CYP302A1 gene is expressed
ubiquitously.

The intron—exon organization of T. castaneum mito-
chondrial CYPs is also investigated which may help to
understand the evolution of these genes as well as the
origin of introns and genes [69]. As shown in Figure 7,
intron-exon organization of all nine 7. castaneum mito-
chondrial CYPs is highly diverse. The number and length
of introns vary extensively among these genes. For ex-
ample, CYP30IBI contains nine small introns, whereas
CYP315A1 has only two introns. Other members contain
3-8 introns. Three Halloween genes share well conserved
intron-exon positions among the different groups of
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Figure 6 Temporal expression patterns of T. castaneum mitochondrial CYPs. The mRNA levels of nine T. castaneum mitochondrial CYPs in
final instar larval stage (Ld0-Ld4), quiescent stage (Q1-Q2), pupal stage (Pd0-Pd5), and adult stage (Ad0-Ad3) were quantified and normalized
using rp49 as an internal control. There was no significant difference in the level of expression among samples designated with the same letter
based on one-way ANOVA followed by Duncan multiple mean separation (SAS v9.4).
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orthologous genes [3]. However, T. castaneum CYP314A1
and CYP315A1 have undergone significant intron losses
when compared to their orthologous genes. The massive
intron loss is considered as a result of an evolutionary
selection for compaction of insect genomes [70].

Conclusions

In summary, integrated studies including annotation,
phylogenetic analysis, gene expression as well as molecular
modeling and docking were conducted for T. castaneum
CYPs. 143 CYPs were identified and classified into 4 clans,
26 families and 59 subfamilies suggesting the CYP number
in T. castaneum is three fold higher than honeybee and
body louse, substantially higher than D. melanogaster
and A. gambiae but significantly lower than A. aegypti and
C. quinquefasciatus. The relatively large CYP gene super-
family in T. castaneum may contribute to the remarkable
ability of insecticide resistance in this beetle. Current stud-
ies provided insights into the evolution of T. castaneum
CYP gene superfamily and developed a valuable resource
for the functional genomics research which will help to

understand the strategies employed by insects to cope with
their environment and to exploit potential new insecticide
targets for pest control.

Methods

Red flour beetle strains

Three red flour beetle strains were used in this study.
QTC279, originally collected from wheat storage in Malu,
Queensland, Australia in 1984, was selected with pyrethroids
for 10 generations until it was homozygous for the major
pyrethroid resistance factor (2). LBS is an insecticide-
susceptible strain. GA strain was used in whole genome se-
quencing project. These three strains were obtained from
Dr. RW. Beeman (U.S. Grain Marketing Research Labora-
tory of USDA, KS). Beetles were reared in whole wheat flour
with brewers’ yeast (10% by weight) and maintained in dark-
ness at 32°C and 55+2% relative humidity.

Phylogenetic tree construction
All CYP sequences in insects which have the full open
reading frames (ORFs) were extracted from the National
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Figure 7 Intron-exon arrangement of T. castaneum mitochondrial CYPs. The white block represents the untranslated region, the black block
shows the exon, and the black line strands the intron. Arrows indicate gene orientation: the left arrow is the reverse strand and the right arrow is
the forward strand. The number beside the arrow shows the position of 5" and 3’ ends on the chromosome.
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Center for Biotechnology Information (NCBI) (Bethesda,
MD) (http://www.ncbi.nlm.nih.gov/). The insect CYP
amino acid sequences were analyzed using ClustalW align-
ment through Molecular Evolutionary Genetic Analysis
software version 5 (MEGA 5) (http://www.megasoftware.
net/) [71]. To significantly improve the alignments, the
pair-wise alignment was performed with the gap opening
penalty at 10 and the gap extension penalty left at default
0.1. The multiple alignment was conducted with the gap
opening penalty at 3 and the gap extension penalty at
1.8 [72]. The sites containing obviously missing data or
alignment gaps were eliminated in a pair-wise manner. A
p-distance < 0.8 when carrying out the compute overall
mean distance suggested the alignment was acceptable
[72]. Subsequently, the alignment result was converted to
a MEGA file (.meg) and submitted to construct the phy-
logenetic tree with neighbor-joining algorithm. A total of
2,000 bootstrap replications were used to test of phylog-
eny. Ultimately, the condensed tree was created with cut-
off value of 50%.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from adult beetles using TRI
reagent (Molecular Research Center Inc., Cincinnati, OH).
The qRT-PCR was performed in Applied Biosystems
StepOnePlus” Real-Time PCR System (Life technolo-
gies", Carlsbad, CA). Total RNA was isolated from 3
adult beetles or 3-30 tissues for each sample and the
RNA was treated with DNase I (Ambion Inc., Austin, TX).
c¢DNA was synthesized using iScript cDNA synthesis kit
(Bio-Rad Laboratories, Hercules, CA). DNase I treated
total RNA was used as a template. Each qRT-PCR reaction
(10 gl final volume) contained 5yl FastStart SYBR Green
Master (Roche Diagnostics, Indianapolis, IN), 1.0l of
c¢DNA, 3.6 ul ddH,O, and 0.4 ul each of forward and re-
verse gene specific primers (stock 10x#M). An initial

incubation of 95°C for 3 min, followed by 40 cycles of
95°C for 10 s, 55°C for 60 s settings were used. A fluores-
cence reading determined the extension of amplification
at the end of each cycle. The most stable reference gene,
rp49, was used for the housekeeping gene [68]. Both the
PCR efficiency and R2 (correlation coefficient) value were
taken into consideration in estimating the relative quan-
tities. Each experiment was repeated at least three times
using independent biological samples.

Gene fragment isolation

Total RNAs were isolated from beetles in QTC279, GA,
and LBS and cDNA was synthesized using iScript cDNA
synthesis kit as described as above. The PCR products
for CYP6BQ8, CYP6BQ9, CYP6BQI10 and CYP6BQI11
were amplified using primer pairs that were designed
based on the sequences in NCBI database. The PCR prod-
ucts were cloned into pGEM®-T Easy Vector (Promega)
and sequenced. Cloning and sequence analyses of P450
gene fragments were repeated at least three times with dif-
ferent preparations of RNAs. Three clones from each rep-
lication were sequenced.

Deltamethrin induction experiments

One to two weeks old resistant QTC279 beetles were
exposed to filter paper surface treated with deltamethrin
[26,27]. According to preliminary study, 115 mg/48 cm®
deltamethrin that resulted in 50-60% mortality for QTC279
beetles was chosen for the experiment. The surviving bee-
tles were collected for RNA extraction after 0, 6, 12, 24 h
exposure to deltamethrin. The experiments were repeated
three times. The statistical significance of the gene expres-
sion was calculated using a one-way analysis of variance
(ANOVA) for multiple sample comparisons (SAS v9.4 soft-
ware). A value of P < 0.05 was considered statistically
significant.
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Homology modeling and ligand docking

Initial protein models were constructed by submitting
the translated amino acid sequences to the I-TASSER
server [73]. The I-TASSER output includes up to 5 pre-
dicted models as well as predicted ligand binding sites.
In the case of the P450 proteins modeled for this study
the top scoring ligand binding site predictions all in-
cluded heme bound to the conserved iron binding cys-
teine. For further model refinement the top scoring model
was submitted to the FG-MD server for fragment guided
molecular dynamics structure refinement [74]. The coordi-
nates for heme were manually transferred to the refined
model PDB file and a covalent bond was created between
the heme iron and the conserved cysteine residue for each
P450 modeled in this study. Model quality was examined
by Ramachandran plots generated with Procheck [75].
Ramachandran plots of the P450 models gave a range of
97.8% to 98.9% of residues within the generously allowed
regions and 2.2% or less in disallowed regions. Molecular
docking was performed with Autodock Vina v1.1.2. [76].
Ligand (deltamethrin, permethrin, DDT, and imidacloprid)
structures were retrieved from the Zinc database [77]. Pro-
teins and ligands were prepared for docking with
Autodock Tools v1.5.4 [78] For all dockings a search space
with a grid box of 20 x 20 x 20 A, centered at the heme
bound Fe for each P450.

Additional files

Additional file 1: List of P450s in Tribolium castaneum.

Additional file 2: Identity matrix of genes in the CYP6BQ cluster
illustrating percentage identities among 12 cluster genes.

Additional file 3: Intron-exon constructions of CYP6BQ cluster
genes. Shaded bars and lines represent gene exons and introns to
scale, respectively.

Additional file 4: Differential expressions of clustered genes
between resistant QTC279 and susceptible LBS strains. The
expression levels were normalized by rp49, the endogenous control.
All data was averaged by three replicates. The result was shown as
the mean + SE.

Additional file 5: Induction of clustered genes in QTC279 strain
following treatment of deltamethrin. The expression of these genes
was analyzed by gRT-PCR as described in the methods. Relative
expression level was normalized by rp49. The result was shown as

the mean +SEM (n= 3). There was no significant difference in the level
of expression among samples with the same alphabetic letter

(ie.a b, ) (P<005).

Additional file 6: Sequence alignment for CYP6BQ8, 9, 10, 11.
Within 4.5 A of deltamethrin, the predicted CYP6BQ8, CYP6BQY,
CYPEBQ10 and CYPEBQT1 catalytic sites contact with residues which
were labeled in red color.

Additional file 7: CYP6BQ cluster genes binding mode energy
and distance.

Abbreviation

(CYP): Cytochrome P450; (RNAI): RNA interference; (20E): 20-
hydroxyecdysone; (JH): Juvenile hormone; (CPR): NADPH-cytochrome P450
reductase; (ORF): Open reading frame; (qRT-PCR): quantitative real-time PCR.
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