
Hua et al. BMC Genomics 2013, 14:179
http://www.biomedcentral.com/1471-2164/14/179
RESEARCH ARTICLE Open Access
miRConnect 2.0: identification of oncogenic,
antagonistic miRNA families in three human
cancers
Youjia Hua1, Niels Larsen2, Shanker Kalyana-Sundaram3, Jørgen Kjems2, Arul M Chinnaiyan3 and Marcus E Peter1*
Abstract

Background: Based on their function in cancer micro(mi)RNAs are often grouped as either tumor suppressors or
oncogenes. However, miRNAs regulate multiple tumor relevant signaling pathways raising the question whether
two oncogenic miRNAs could be functional antagonists by promoting different steps in tumor progression. We
recently developed a method to connect miRNAs to biological function by comparing miRNA and gene array
expression data from the NCI60 cell lines without using miRNA target predictions (miRConnect).

Results: We have now extended this analysis to three primary human cancers (ovarian cancer, glioblastoma
multiforme, and kidney renal clear cell carcinoma) available at the Cancer Genome Atlas (TCGA), and have
correlated the expression of the clustered miRNAs with 158 oncogenic signatures (miRConnect 2.0). We have
identified functionally antagonistic groups of miRNAs. One group (the agonists), which contains many of the
members of the miR-17 family, correlated with c-Myc induced genes and E2F gene signatures. A group that
was directly antagonistic to the agonists in all three primary cancers contains miR-221 and miR-222. Since both
miR-17 ~ 92 and miR-221/222 are considered to be oncogenic this points to a functional antagonism of different
oncogenic miRNAs. Analysis of patient data revealed that in certain patients agonistic miRNAs predominated,
whereas in other patients antagonists predominated. In glioblastoma a high ratio of miR-17 to miR-221/222 was
predictive of better overall survival suggesting that high miR-221/222 expression is more adverse for patients than
high miR-17 expression.

Conclusion: miRConnect 2.0 is useful for identifying activities of miRNAs that are relevant to primary cancers. The
new correlation data on miRNAs and mRNAs deregulated in three primary cancers are available at miRConnect.org
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Background
miRNAs are small noncoding RNAs that regulate gene
expression by causing degradation of mRNAs or by
inhibiting protein translation [1]. The emerging conven-
tional view is that miRNAs are deregulated in all human
cancers [2]. miRNAs act by targeting a short sequence
(the seed match) in the 3'UTR of targeted mRNAs. Nu-
merous algorithms have been developed that allow pre-
diction of miRNA targets. However, the prediction
accuracy is low and includes a large number of false pos-
itives and false negatives [3]. From our analysis of the
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miR-200 family of miRNAs and its biological activities
we realized that the combination of differentially
expressed genes (both up and downregulated genes) can
be used to deduce the biological activities of miRNAs
[4]. We and others found that miR-200 regulates the
epithelial-to-mesenchymal transition (EMT) by sup-
pressing the expression of mesenchymal genes and indu-
cing expression of epithelial genes [5-8]. We recently
developed a new method (summed (s)PCC) to better
correlate miRNAs and gene expression with the goal of
predicting biological activities of miRNAs. We tested
this method by analyzing gene array and miRNA expres-
sion data sets available for the 60 cell lines of the drug
screen panel at the National Cancer Institute (NCI60
cells) [4]. By comparing genes that positively correlate
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with miRNAs and miRNA families we clustered miRNAs
into functional groups. One group of miRNAs, which
was preferentially expressed in epithelial cells, contained
all 5 members of the miR-200 family. Another group an-
tagonized the members of the epithelial group of
miRNAs. In addition, we identified and validated three
other miRNAs that regulated EMT: miR-7, miR-203 and
miR-375 [4]. The data sets are available in a searchable
form at miRConnect.org.
Multiple studies have reported correlations of miRNA

and mRNA data in NCI60 cell lines [9-14] as well as in
primary tumors [15-29]. Most of these studies identified
targets of individual miRNAs in a specific cancer back-
ground, while some also identified miRNA functions
across multiple tumor origins [25-29]. However, the pri-
mary goal of most studies was to predict targets of indi-
vidual miRNAs and to use this information to predict
function. In contrast, our approach is independent of
miRNA target predictions.
Certain miRNAs (oncomiRs) can act as tumor suppressors

or as oncogenes [30]. Not all oncomiRs are deregulated in all
cancers suggesting that miRNAs have specific activities in
different cancers and/or cancer stages. As well, different
tumorigenic activities found in cancer could even be antag-
onistic. A putative example of such antagonistic activities
might be cell proliferation and "stemness". Thus, we pre-
dicted the existence of functionally antagonistic, oncogenic
miRNAs. To test this hypothesis in a cancer relevant context,
we extended our analysis using the sPCC method to primary
cancer data sets available at The Cancer Genome Atlas
(TCGA): ovarian cancer (OvCa), glioblastoma multiforme
(GBM), and kidney renal clear cell carcinoma (KIRC). The
new data have now been incorporated into version 2 of
miRConnect. Using the sPCC analysis and by comparing the
expression of miRNA and mRNAs with expression data for
158 well described oncogenic signatures, we have identified
large groups of miRNAs that antagonize each other in cancer
cells. Two of these antagonizing miRNA groups are consid-
ered to be oncogenic. One group (the "agonists") is domi-
nated by members of the miR-17 gene clusters, the other
(the "antagonists") contains miR-221 and miR-222. Pathway
analysis suggests that both agonists and antagonists are
tumorigenic and regulate different cancer relevant signaling
pathways. In GBM, we found that patients in whom the ex-
pression of the antagonists predominates have poorer overall
survival, which suggests that while both miR-17 and its rela-
tives and miR-221/222 may be good biomarkers for detecting
tumor cells, high miR-221/222 expression maybe a better
predictor of poor outcome.

Results
Identification of antagonistic miRNAs in the NCI60 cells
We recently used miRNA and mRNA data sets available
for the NCI60 cells to identify groups of miRNAs with
similar biological functions [4]. For this purpose, we
have developed a novel PCC analysis (summed (s)PCC)
that mimics an in silico titration assay. Using this
method, we found that 136 miRNAs significantly
expressed in at least 30 of the 59 NCI60 cell lines clus-
tered not only according to their seed sequences, gen-
omic organization, and tissue specific expression but
also according to their biological function. When the
miRNAs were clustered according to the genes with
which they were positively correlated, a total of 13 clus-
ters were defined (Figure 1A) using a threshold of 12.5%
correlating genes to define a cluster as described [4].
miRNAs in cluster I contained the 5 miRNAs of the
miR-200 family known to be strong EMT regulators.
These data were based on three independent EMT sig-
natures: EMT signature 1, normal tissue induced to
undergo EMT by addition of TGFβ, EMT signature 2,
RAS transformed cells induced to undergo EMT by
addition of TGFβ, and EMT signature 3, metaplastic ver-
sus ductal breast cancer. Since the three signatures were
very similar, we based the analysis on the average of the
three signatures (Figure 1A). Again, cluster I was corre-
lated with the epithelial genes in the combined EMT sig-
nature (p < 10-7). In addition to the miR-200 family
members, the EMT signature also contained miR-7,
miR-203, and miR-375, which we previously identified
and validated as novel EMT regulating miRNAs [4].
With the same level of significance, we now identified
miRNAs in cluster XIII as miRNAs that correlated with
the expression of mesenchymal genes. These data sug-
gest that the miRNAs in cluster XIII in the NCI60 cell
lines may have opposing functions when compared the
miRNAs in cluster I. In addition, we previously identi-
fied the miRNAs in cluster V as miRNAs that positively
correlated with c-Myc induced genes and negatively cor-
related with c-Myc repressed genes [4]. This was also
evident when we plotted the data using a combined fac-
tor of c-Myc regulation (Figure 1A, see method section
for details). We also showed recently that miRNAs in clus-
ter V are most strongly regulated by c-Myc. The most
prominent miRNA family present in cluster V are family
members of the miR-17 ~ 92 cluster and its related
paralogs, the miR-106 ~ 363 and miR-106 ~ 25 clusters.
All of these clusters of miRNAs are known to be regulated
by c-Myc [24,31,32]. Interestingly, the cluster of miRNAs
most negatively correlating with c-Myc induced genes and
strongly correlating with c-Myc repressed genes are in
cluster XIII, which contains the miRNAs that correlated
with mesenchymal genes. miR-17 and all its homologues
are widely recognized as highly oncogenic miRNAs [33],
while the cluster I epithelial specific miRNAs are viewed
as tumor suppressive in most solid cancers [34].
So how is it possible that the cluster XIII miRNAs can

be antagonists to the epithelial miRNAs in cluster I and
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Figure 1 Identification of antagonistic miRNA clusters using the NCI60 data sets. (A) Correlation of gene signatures with 136 miRNAs
grouped into 13 miRNAs clusters according to their positively correlating genes as recently described [4]. Left panel, average EMT gene signature
(see Methods). M, mesenchymal genes; E, epithelial genes. Right panel, c-Myc-repressed (repr.) and c-Myc-induced (ind.) genes. Three clusters that
had highly significant correlations in the Wilcoxon rank analysis (p < 10-7) are highlighted in different colors. The X-axis displays a factor that
indicates the level of correlation with the gene sets as explained in the Method section. (B) PCA (Principal Component Analysis) of the 136
miRNAs in A. The miRNAs identified in the three clusters are circled in similar colors as in A. (C) Correlation network based on miRNA groups and
gene signatures (E genes, M genes, and oncogenic signatures). Only correlations that were found in the analysis of positively and negatively
correlating genes are shown (see Additional file 4: Table S4 and Additional file 6: Table S5). Red box, epithelial; blue box, agonistic; green box,
mesenchymal and antagonistic. miRNAs: red, miR-200 family; blue, miR-17 family; orange, other EMT-related miRNAs recently identified [4] (miR-7,
miR-203, and miR-375). EMT genes: light green box, E genes; light red box, M genes. Oncogenic signatures: light green, positively correlated with
agonistic miRNAs; light red, negatively correlated with agonistic miRNAs. Epithelial specific miRNAs are highlighted in red and members of the
miR-17 family of miRNAs are highlighted in blue.
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at the same time antagonists to the oncogenic miRNAs
in cluster V? This result suggested that in the context of
cancer miRNAs cannot be simply divided into oncogenic
and tumor suppressive miRNAs. This insight became
more evident when we reassessed a principal component
(PC) analysis of miRNAs based on the genes with which
they positively correlated [4] (Figure 1B). In this analysis,
miRNAs grouped in a two dimensional space according
to the similarity with which they correlated with the
18,000 genes available for the NCI60 cells. Of the 136
PCs, the combination of the first two described about
50% of all variance among miRNAs (data not shown).
All miRNAs in the three clusters (I, V and XIII) in
Figure 1B are labeled in the colors shown in Figure 1A.
The PCA clustering produced the shape of a three
bladed propeller in which the members of the three
clusters occupied the tips of the three blades. The first
PC separated agonists from mesenchymal antagonists,
while the second PC separated epithelial miRNAs from
both agonists and mesenchymal antagonists. The three
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fold symmetry of the PCA plot suggested that the
miRNA world is divided in at least three cancer relevant
activities whereby epithelial miRNAs are antagonized by
mesenchymal miRNAs, which are c-Myc repressed, and
epithelial miRNAs functionally antagonize c-Myc in-
duced miRNAs, most notably members of the miR-17
family. In order to assess the nature of the correlating
cancer specific genes for each miRNA cluster, we se-
lected 158 different oncogenic gene signatures each
containing from five to several hundred different genes
(Additional file 1: Table S1). In order to increase the
stringency, we then selected the set of overlapping genes
and miRNAs that either positively (Additional file 2:
Table S2) or negatively (Additional file 3: Table S3) cor-
related with each other. We found that genes in 9 onco-
genic signatures positively correlated and 15 signatures
negatively correlated with a group of agonistic miRNAs
that were dominated by members of the miR-17 family
(p < 0.001) (Figure 1C). A number of miRNAs belonging
to the "mesenchymal" cluster showed a correlation that
was exactly opposite to these agonistic miRNAs. We
called these antagonists. The antagonist miRNA cluster
(which contained three members of the let-7 family)
negatively correlated with epithelial genes (in all three
EMT signatures) and positively correlated with mesen-
chymal genes. Exact functional opposites were found in
the miRNA group that contained the miR-200 families
plus miR-7, miR-203, and miR-375 (Figure 1C). In sum-
mary, the data suggest that in cancer cell lines miRNAs
can be grouped according to their function, and at least
three major, mutually antagonistic functions can be
assigned.

The primary cancer data sets
While the data obtained from NCI60 cells identified
miRNA groups that could function as antagonists, the
analysis had a number of limitations: 1) Because the ana-
lysis was based only on cancer cell lines without com-
parison to normal tissue, it was uncertain how relevant
these connections were to cancer. 2) The data were
based on a high quality but limited set of only 208
miRNA quantified by real time PCR. 3) The relevance of
the findings to primary human cancer remained unclear.
To address all three shortcomings, we turned to the
large database of The Cancer Genome Atlas (TCGA). At
the time of our analysis, the TCGA database contained
information on 19 solid cancers. Additional file 4: Table
S4, column 1 lists the number of available tumor sam-
ples for each cancer. Column 2 shows the number of
samples for which both mRNA and miRNA data were
available. In order to limit our analysis to high quality
data, we elected not to consider any patient sample with
a tumor content of less than 70%. Tumor content in the
TCGA samples is determined by a pathologist who
evaluates a slice from the top and a slice from the bot-
tom of the tissue block used for RNA isolation to quan-
tify the percent tumor content. In Additional file 4:
Table S4, column 3, the number of samples is listed for
which information from the bottom and top of the block
was available. Column 4 gives the number of patient
samples with more than 70% tumor content (average of
top and bottom analysis >70%). To maintain a robust
sample size, we did not further consider cancers with
fewer than 100 patient samples. Only 4 cancers
remained: breast cancer (BRCA), glioblastoma (GBM),
ovarian cancer (OvCa), and clear cell renal cancer
(KIRC). For each of the cancers, pathology data were
available (i.e., tumor stage, grade or histology). In order
to have a homogenous patient population and to give
the analysis sufficient statistical power, we focused on
the largest group of patients with similar features for
each cancer. In breast cancer, we selected the 143 infil-
trating ductal ER positive BRCA. For GBM, we included
353 patients with untreated primary GBM. In KIRC we
selected all 142 treated patients with tumor grade G2-
G4 and all tumor stages. In OvCa we selected 320 un-
treated patients with primary cancer in the ovaries,
grade 3 and stages IIIB, IIIC, and IV. We proceeded with
the analysis including these four solid cancers. However,
early analysis indicated that the breast cancer data sets
were not giving consistent correlations. This was likely
because the breast cancer samples corresponded to more
than one disease [35]. Therefore, we elected to perform
the analysis on three cancers: OvCa, GBM, and KIRC.

miRConnect 2.0: identification of antagonistic miRNAs in
primary cancers
The number of genes and miRNAs for each cancer with
expression data provided in the TCGA data sets is given
in Additional file 4: Table S4. In Additional file 4: Table
S4 column 7 the number of normal controls is given. In
order to focus only on genes and miRNAs that are can-
cer relevant we excluded for each cancer all genes and
miRNAs which were less than 1.5 fold deregulated when
their average expression in tumor and normal samples
were compared. The number of miRNAs/mRNAs
deregulated for each cancer was 173/2046 (for OvCa),
121/3890 (for GBM) and 260/9288 (for KIRC). The
number of genes and miRNAs that were similarly
deregulated in all three cancers was low (Additional file 5:
Figure S1) suggesting major cancer-specific differ-
ences. The data and correlation analysis between all
miRNAs and mRNAs deregulated >1.5 fold in the three
cancers can be accessed in a searchable form at
miRConnect.org or miRConnect.net. In addition to the
data on NCI60 cells based on a set of real-time PCR
miRNA data (miRConnect-Q) and LNA array data
(miRConnect-L), data on ovarian cancer are found under
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miRConnect-OvCa; GBM is under miRConnect-GBM,
and renal cancer is found under miRConnect-KIRC.
To test whether the genes and miRNAs specifically

deregulated in each cancer were functionally connected,
we correlated the expression of the deregulated miRNAs
with expression of the mRNAs using the sPCC method
previously developed to analyze the NCI60 data. When
the cluster analysis of the deregulated miRNAs was
performed with the positively correlating cancer-specific
mRNAs using the same 12.5% threshold to identify clus-
ters (see [4] and Figure 1A), the 173 miRNAs in OvCa
fell into 14 clusters; for GBM we found 11 clusters, and
for KIRC 8 clusters (Additional file 5: Figure S2). The
same analysis was repeated with all genes that negatively
correlated with the expression of the miRNAs. The
complete lists of miRNAs in each of the identified clus-
ters in all analyses (NCI60 plus three cancers) are shown
in Additional file 6: Table S5. The genes that correlated
with each cluster of miRNAs were compared to the
three EMT signatures and the signature of c-Myc regu-
lated genes, and a number of miRNA clusters were
OvCa GBM
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contain miRNAs that significantly correlated with the
expression of mesenchymal (M) genes (highlighted in
yellow in Figure 2). For OvCa this was cluster I; for
GBM it was cluster XI, and for KIRC it was cluster I.
However, there was no overlap among these miRNAs
between any of the three cancers (data not shown), again
suggesting that this activity was regulated by different
cancer-specific miRNAs.
The situation was very different for c-Myc induced

genes. In all three cancers, the cluster that most signifi-
cantly correlated with the expression of c-Myc induced
genes contained a large number of miR-17 miRNAs:
cluster XI in OvCa, cluster XI in GBM, and cluster III in
KIRC (highlighted in blue in Figure 2). These signifi-
cantly overlapped with the agonistic miRNAs previously
identified in the NCI60 cell analysis (Figure 1). This
raised the question of whether more than two antagonis-
tic miRNA cluster occurred in primary cancer cells, as
had been observed in NCI60 cells. Therefore, we
performed an integrated miRNA/mRNA analysis to de-
termine if any of the different miRNA clusters identified
in the three cancers correlated with gene expression pro-
files associated with the three EMT signatures or the 158
known oncogenic gene signatures (Additional file 7:
Table S6 and Additional file 8: Table S7). To increase
the stringency, we performed two analyses for each com-
parison, one in which the clustering was based on posi-
tively correlating genes and one based on negatively
correlating genes. The goal of this analysis was to iden-
tify miRNA clusters that were positively correlated with
a number of gene signatures (the agonists) and other
clusters that would have an opposite correlation (the an-
tagonists) with the same gene signatures. Details on the
analysis are found in Methods and in Additional file 8:
Table S7. The results of the complete analysis for each
cancer are summarized in Figure 3A-C. All significantly
antagonizing miRNA clusters are shown. In all three
cancers, the major agonistic miRNA group contained
members of the miR-17 clusters (highlighted in dark
blue). Interestingly, in GBM and KIRC this agonistic
group antagonized an epithelial miRNA group, but in
OvCa it antagonized a mesenchymal group of miRNAs.
The agonistic group of miRNAs shares 8 members of

the miR-17 cluster plus miR-103 and miR-149 in all
three cancers, based on the analysis of both positively
and negatively correlating genes (Additional file 9: Table
S8-1). Interestingly, the 8 miR-17 family members are
found in all three miR-17 gene clusters and all 4 seed fam-
ilies (Additional file 5: Figure S3). Among the miRNAs
that antagonize the miR-17 group in all three cancers,
only two were shared. In all 6 analyses (three cancers,
positive and negative correlations) miR-221 was present.
The highly related miR-222 was found in 5 of the 6 ana-
lyses (Additional file 9: Table S8-2). We therefore
conclude that in all three cancers miR-221/222 antagonize
the miR-17 family.

The miR-17 group and miR-221/222 are antagonistic in
three cancers
The agonistic group of miRNAs (containing miR-17
family members) correlated inversely with a number of
oncogenic signatures when compared to the antagonistic
group (containing miR-221/222). While there were many
cancer specific links, we sought to identify correlations
that were independent of cancer type. Figure 4A pre-
sents the miRNAs and the oncogenic gene signatures
that inversely correlated with the agonists and the antag-
onists in all three cancers. Ten agonistic miRNAs (blue)
and two antagonistic miRNAs (dark green) that correlate
with genes in six gene signatures (light green) operate in
opposition. A number of these oncogenes are known to
be connected to the miR-17 family. miR-17 is known to
be regulated by and to regulate c-Myc and E2F
[32,36-39]. In addition, DEK is regulated by E2F [40]. It
is at present unknown how miR-221/222 is linked to ei-
ther c-Myc or E2F. While miR-17 and miR-221/222 are
functionally antagonistic, they are both often upregulated
in cancer, and both are considered to be oncogenic in can-
cer cells [41-65]. Functional antagonism does not neces-
sarily mean that they exhibit inverse expression levels.
When compared to the expression in normal control tis-
sue, the expression of miR-221/222 in KIRC was as high
as that of miR-17 ~ 92 cluster miRNAs (Figure 4B). These
data suggested that the agonistic and antagonistic
miRNAs, while both potentially oncogenic, may regulate
distinct sets of genes associated with different tumorigenic
pathways. In order to test this hypothesis, we combined
all genes that were part of the six gene signatures antago-
nized by the two miRNA groups. For each of the 12 agon-
istic/antagonistic miRNAs and for each of the three
cancers, we calculated the sPCC for all individual miRNA/
mRNA correlations. The data were subjected to a two-
dimensional unsupervised hierarchical cluster analysis
according to the similarities of sPCCs (Additional file 10:
Table S9). The results of this analysis are shown in form
of heat maps in Figure 5A. In each cancer, all 10 agonistic
miRNAs (miR-17 family members, miR-103 and miR-149)
were clustered, as were the antagonistic miRNAs (miR-
221/222). In general, the genes that positively correlated
with the agonists negatively correlated with the antago-
nists and vice versa. This finding is consistent with the hy-
pothesis that agonistic and antagonist miRNAs contribute
to different activities of cancer cells.

Oncogenic agonists and antagonists regulate distinct
cancer specific pathways
To identify the genes that are most highly correlated
with either the agonists or the antagonists and to
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Figure 3 A correlation network of miRNA groups and gene signatures in three primary cancers. (A) OvCa. (B) GBM. (C) KIRC. miRNAs: blue,
miR-17 family; dark green, miR-221/222 family; red, EMT-related miRNAs (miR-200 family); orange, other EMT-related miRNAs (miR-7, 203 or 375).
Oncogenic and EMT signatures (in rectangular boxes with round corners): light green, positively correlating with agonistic miRNAs; light red, negatively
correlating with agonistic miRNAs; oncogenic signatures highlighted with light green, overlapping signatures among three primary cancers.
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perform pathway analysis, we ranked all signature genes
according to the difference (delta) between the average
sPCC of the 10 agonists and the average sPCC of the 2
antagonists (Additional file 10: Table S9). To focus on
the most significantly correlating genes, we selected all
genes that had a delta > 10 or < −10. The lists of agonis-
tic or antagonist genes for each cancer and for all can-
cers combined are provided in Additional file 11:
Table S10. To explore the possible functions of these
genes, we subjected each list to pathway analysis. Ingenu-
ity integrated pathway analysis (IPA) revealed that genes
whose expression positively correlated with expression of
the agonists fell into functional networks that were con-
sistent with cell cycle regulation and DNA replication
(Figure 5B). In contrast, genes whose expression positively
correlated with expression of the antagonists fell into
functional networks that included various forms of de-
velopmental processes and cellular growth and metab-
olism (Figure 5B). This was true for each individual
cancer as well as for the combination of the three cancers
(Additional file 12: Table S11). Similar results were found
when the same genes were subjected to gene ontology ana-
lysis using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Figure 5C). The top three
most highly enriched clusters of genes that correlated with
the agonist groups of miRNAs (most prominently miR-17)
suggested that the agonistic miRNAs positively regulate cell
cycle and DNA replication. In contrast, the top three most
highly enriched clusters of genes that correlated with the
antagonists (miR-221/222) suggested that the antagonistic
miRNAs are involved in different developmental processes
(Figures 5C and 6A). Using the pathway analysis tool in the
Ingenuity IPA, we analyzed the pathways most prominently
aligned with the regulated gene sets. The pathways most
prominently positively correlated with the agonistic
miRNAs were cell cycle regulation and the DNA replication
complex (Figure 6B and C). In contrast, some of the most
prominent pathways that correlated with the antagonists in-
clude growth factor receptor signaling pathways consistent
with the growth promoting activity assigned to these
miRNAs (Figure 6D). In summary, we have identified two
opposing miRNA groups, both of which are oncogenic, pre-
sumably by regulating different cancer relevant pathways.

Different patient populations are dominated by either the
agonists or the antagonists
How do we explain the paradox that for each of the three
cancers two miRNA groups were identified that had
opposing activities yet are both considered to be onco-
genic, and both are correlated with distinct sets of onco-
genic genes? There are three, not necessarily mutually
exclusive, possible explanations: 1) The patient population
is heterogeneous, and in some patients tumors are driven
mostly by miR-17 miRNAs and in others tumors are
driven by miR-221/222. 2) Tumors are heterogeneous,
and areas within the tumors contain cells that are pre-
dominantly regulated by one or the other miRNA group.
3) Both miRNA groups are active in most tumor cells but
regulate different sets of tumorigenic genes. To get a pre-
liminary answer, we analyzed the patient data attached
to each data set in our analyses. Assuming that the ex-
pression of either the agonists or the antagonists would
differentiate two patient populations, we performed a
one-by-one regression analysis for each of the 10 ago-
nists with either miR-221 or miR-222 in each cancer
(Additional file 13: Table S12). Interestingly, all correla-
tions with p <0.05 exhibited a negative PCC suggesting
that agonists and antagonists within each cancer type
were indeed inversely correlated. The most significantly
negatively correlated miRNA pairs for each cancer are
shown in Figure 7A. For OvCa this was miR-222/miR-
20a; for GBM it was miR-222/miR-19a, and for KIRC it
was miR-221/miR-93. The most significant inverse cor-
relation was seen in the GBM pair. To test whether the
predominance of either agonists or antagonists was
prognostic, we analyzed patient data for each of the
miRNA pairs shown in Figure 7A and Additional file 10:
Table S9. In each case, a high agonist/antagonist ratio was
associated with better overall survival (Figure 7B). For
KIRC this was only a trend, and for OvCa it was a strong
trend, almost reaching significance, but for GBM it was
significant. For GBM we performed a Kaplan-Meier ana-
lysis and again found that patients with a high agonist/
antagonist ratio had a more favorable outcome. Specific-
ally, we analyzed the effect of the two most significantly
inversely correlated miRNA pairs (miR-93/miR-221 and
miR-19a/miR-222, see Additional file 13: Table S12-2).
Patients with high miR-93/19a expression had a more
favorable outcome compared to patients with high miR-
221/222 expression (Figure 7C). Our data suggest that
while it cannot be excluded that agonists and antagonists
act in the same cells or in different areas of the tumor, pa-
tients express different ratios of agonists/antagonists, and
the predominance of the miR-221/miR-222 oncogenic
miRNAs results in poorer outcome than does predomin-
ance of miR-17 family members.
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Agonists combined
Ranking Score Top Functions

1 45 Cell Cycle , Cancer,  Gastrointestinal Disease
2 43 Cellular Compromise, DNA Replication , Recombination, and Repair, RNA Post-Transcriptional Modification
3 43 Cell Cycle , Cancer,  Hematological Disease
4 34 DNA Replication , Recombination, and Repair, Cell Cycle , Cellular Assembly and Organization
5 30 DNA Replication , Recombination, and Repair, Cell Cycle , Cancer
6 21 Cell Death , Reproductive System Development and Function, Tissue Morphology
7 17 Cell Signaling, Post-Translational Modification, Organismal Injury and Abnormalities
8 14 Cancer,  Reproductive System Disease, RNA Post-Transcriptional Modification
9 14 Cell-To-Cell Signaling and Interaction, Cellular Compromise,  Tissue Development

10 13 Cancer,  Reproductive System Disease, Organ Morphology
11 13 Cellular Movement, Amino Acid Metabolism , Small Molecule Biochemistry
12 13 RNA Post-Transcriptional Modification, Cell Death , Tissue Morphology
13 11 Cell Death , Cell Cycle , Reproductive System Development  and Function
14 11 Cellular Assembly and Organization, Cellular Function and Maintenance, Protein Synthesis
15 10 Carbohydrate Metabolism , Small Molecule Biochemistry, Lipid Metabolism

Antagonists combined
Ranking Score Top Functions

1 36 Lipid Metabolism , Small Molecule Biochemistry, Vitamin and Mineral Metabolism
2 32 Cell Death , Cellular Development , Tissue Morphology
3 26 Cellular Development , Cellular Growth and Proliferation , Hematological System Development  and Function
4 17 Cell Morphology, Skeletal and Muscular System Development  and Function, Cancer
5 14 Cancer,  Neurological Disease, Cellular Development
6 12 DNA Replication , Recombination, and Repair, Cellular Assembly and Organization, Cellular Compromise
7 12 Cellular Development , Cellular Growth and Proliferation , Cell Death
8 12 Protein Synthesis, Cancer,  Reproductive System Disease
9 11 Cardiovascular Disease, Metabolic Disease, Neurological Disease

antag. antag. antag. agonists agonists agonists 

Agonists
Annotation Cluster 1 Enrichment Score: 30.89
Category Term Count % p-value Fold Enrichment
GOTERM_CC_FAT GO:0031981~nuclear lumen 135 26.5 1.13E-35 3.11
GOTERM_CC_FAT GO:0005654~nucleoplasm 101 19.8 4.79E-33 3.82
GOTERM_CC_FAT GO:0070013~intracellular organelle lumen 142 27.9 1.99E-30 2.66
GOTERM_CC_FAT GO:0043233~organelle lumen 143 28.1 6.03E-30 2.62
GOTERM_CC_FAT GO:0031974~membrane-enclosed lumen 143 28.1 4.90E-29 2.57

Annotation Cluster 2 Enrichment Score: 16.99
GOTERM_BP_FAT GO:0006260~DNA replication 43 8.4 3.76E-23 6.77
SP_PIR_KEYWORDS dna replication 28 5.5 7.52E-22 12.10
KEGG_PATHWAY hsa03030:DNA replication 17 3.3 1.14E-13 11.54
GOTERM_BP_FAT GO:0006261~DNA-dependent DNA replication 18 3.5 3.23E-12 9.29

Annotation Cluster 3 Enrichment Score: 11.82
SP_PIR_KEYWORDS cell cycle 58 11.4 9.24E-23 4.78
GOTERM_BP_FAT GO:0007049~cell cycle 79 15.5 4.69E-19 3.05
KEGG_PATHWAY hsa04110:Cell cycle 32 6.3 5.96E-17 6.26
GOTERM_BP_FAT GO:0022403~cell cycle phase 52 10.2 4.27E-16 3.76
GOTERM_BP_FAT GO:0022402~cell cycle process 59 11.6 1.38E-14 3.13
SP_PIR_KEYWORDS cell division 33 6.5 5.86E-13 4.75
GOTERM_BP_FAT GO:0000279~M phase 40 7.9 4.95E-12 3.64
GOTERM_BP_FAT GO:0000278~mitotic cell cycle 40 7.9 1.79E-10 3.24
GOTERM_BP_FAT GO:0051301~cell division 35 6.9 2.60E-10 3.55
SP_PIR_KEYWORDS mitosis 23 4.5 3.00E-09 4.78
GOTERM_BP_FAT GO:0048285~organelle fission 27 5.3 4.74E-08 3.53
GOTERM_BP_FAT GO:0007067~mitosis 26 5.1 8.51E-08 3.54
GOTERM_BP_FAT GO:0000280~nuclear division 26 5.1 8.51E-08 3.54
GOTERM_BP_FAT GO:0000087~M phase of mitotic cell cycle 26 5.1 1.21E-07 3.47

Antagonists
Annotation Cluster 1 Enrichment Score: 3.32
GOTERM_BP_FAT GO:0048568~embryonic organ development 13 5.4 1.46E-05 4.87
GOTERM_BP_FAT GO:0043009~chordate embryonic development 18 7.5 1.53E-05 3.50
GOTERM_BP_FAT GO:0009792~embryonic development ending in birth or egg hatching 18 7.5 1.71E-05 3.47
GOTERM_BP_FAT GO:0048598~embryonic morphogenesis 14 5.9 9.85E-04 2.94
GOTERM_BP_FAT GO:0007389~pattern specification process 11 4.6 0.0086 2.65

Annotation Cluster 2 Enrichment Score: 3.12
GOTERM_BP_FAT GO:0048736~appendage development 9 3.8 1.92E-04 5.63
GOTERM_BP_FAT GO:0060173~limb development 9 3.8 1.92E-04 5.63
GOTERM_BP_FAT GO:0035107~appendage morphogenesis 8 3.3 8.51E-04 5.21
GOTERM_BP_FAT GO:0035108~limb morphogenesis 8 3.3 8.51E-04 5.21
GOTERM_BP_FAT GO:0048598~embryonic morphogenesis 14 5.9 9.85E-04 2.94
GOTERM_BP_FAT GO:0030326~embryonic limb morphogenesis 7 2.9 0.0023 5.18
GOTERM_BP_FAT GO:0035113~embryonic appendage morphogenesis 7 2.9 0.0023 5.18

Annotation Cluster 3 Enrichment Score: 3.02
GOTERM_BP_FAT GO:0001568~blood vessel development 13 5.4 4.29E-04 3.42
GOTERM_BP_FAT GO:0048514~blood vessel morphogenesis 12 5.0 4.41E-04 3.66
GOTERM_BP_FAT GO:0001944~vasculature development 13 5.4 5.34E-04 3.34
GOTERM_BP_FAT GO:0001525~angiogenesis 8 3.3 0.0081 3.48

Figure 5 Functional analysis of genes correlating with agonistic and antagonistic miRNA clusters. (A) Heat maps displaying
nonhierarchical unsupervised cluster analyses of the sPCC values derived by comparing the expression of 10 agonistic and 2 antagonistic miRNAs
with the combined genes of the 6 oncogenic signatures listed in Figure 4A (data are found in Additional file 13: Table S12). (B) IPA network
analysis of the combined genes (from the 6 oncogenic gene signatures) that positively correlated with the agonistic miRNAs (upper panel) or
antagonistic miRNAs (lower panel). (C) DAVID gene ontology analysis of the same genes analyzed in B. Lists of genes used for these analyses can
be found in Additional file 11: Table S10.
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Discussion
In this work we have identified groups of miRNAs that
antagonize each other in cancer cells beyond the simple
concept of miRNAs as either being tumor suppressors
or oncogenes. This became apparent from our analysis
of data sets from the NCI60 cells, which are the basis of
the miRConnect.org site. A large group of miRNAs
containing mostly members of the three miR-17 gene
clusters (highlighted in blue in Figure 1A, B, and C)
functionally antagonized a group of miRNAs whose ex-
pression correlated with mesenchymal genes. This group
of mesenchymal miRNAs, in turn, antagonized miRNAs
that have been shown to be expressed in epithelial tis-
sues including all members of the miR-200 family
(highlighted in red in Figure 1A, B and C). The epithelial
miRNAs also included three miRNAs we previously
identified as novel epithelial regulators, miR-7, miR-203,
and miR-375 (highlighted in orange in Figure 1C).
We then extended this analysis from the NCI60 cells

to three primary cancers, OvCa, GBM, and KIRC. We
employed the summed PCC analysis we recently devel-
oped [4]. Unlike the NCI60 cells data sets, normal tissue
of similar tissue origin were available for all three can-
cers. This allowed us to focus the analysis only on
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miRNAs and mRNAs that were deregulated (>1.5) in
cancer, thereby making the entire analysis cancer spe-
cific. We have updated miRConnect.org to also include
the data on the three cancers.
In all analyses, most members of the miR-17 family

were clustered with miRNAs that correlated with c-Myc
regulated genes and genes that are part of E2F gene sig-
natures. This is consistent with the regulation of miR-17
by c-Myc and with the fact that miR-17 is part of a regu-
latory network with E2F (see discussion below). Because
this strong connection was found in the NCI60 cell
based analysis and in the three primary cancers, we la-
beled these miRNAs as agonists. In all analyses the ag-
onistic miRNAs were separable from and opposite to a
group of miRNAs that negatively correlated with c-Myc
induced genes. In contrast to the agonists, no single
miRNA was shared by all antagonistic miRNA groups in
all analyses. However, two miRNAs, miR-221 and miR-
222, were found in this antagonistic group in all three
primary cancers pointing at differences between cell
lines and primary cancers. Such differences were also
evident in comparisons of correlations involving the epi-
thelial miRNAs. Although all 5 miR-200 family mem-
bers, coded by two different gene clusters, were tightly
clustered in the NCI60 cell lines, the situation was much
different in the three primary cancers (Figure 2). In OvCa,
only miR-375 was part of the cluster with the strongest
epithelial nature. In GBM, none of the miR-200 family
members or novel EMT regulators were found to be
deregulated. However, in KIRC all 5 miR-200 family mem-
bers were found to be part of a highly epithelial miRNA
cluster, but within this large group they clustered according
to their chromosomal localization. There could be a variety
of reasons why the miR-200 family clustered so tightly in
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Figure 7 The most negatively correlated agonist/antagonist miRNA pairs influence patient survival. (A) Correlations and regression
analyses between the most negatively correlated agonist/antagonist pairs in primary cancers (all correlations are summarized in Additional file 13:
Table S12). Each dot denotes a patient. (B) Expression ratios of the most negatively correlated agonist/antagonist pairs in primary cancers
grouped according to the patient survival (< 5 years and > 5 years for OvCa and KIRC; < 3 years and > 3 years for GBM). (C) Kaplan-Meier survival
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panel, miR-19a/miR-222 ratio). Solid lines, survival of patients with agonist/antagonist miRNA ratios in the bottom half; dashed lines, survival of
patients with agonist/antagonist miRNA ratios in the top half.
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the NCI60 analysis. For example, it might be a conse-
quence of the fact that the cells have been cultured on
plastic for a long time. It could also be that the NCI60 cell
lines represent a more homogeneous group of cells consid-
ering that they are all cancer cell lines. However, among
the cell lines there is tremendous variation with respect to
their epithelial nature. The analysis may simply highlight
these biological differences suggesting that the NCI60 ana-
lysis may be more useful for isolating general biological
connections rather than cancer specific properties.
The agonist miRNAs that we found to correlate with a

large number of oncogenic gene signatures were domi-
nated by members of the three miR-17 gene clusters
(Additional file 5: Figure S3). In contrast, miR-221 and
miR-222 were found in the antagonistic miRNA group
in all three cancers. Paradoxically, both miRNAs families
are considered to be oncogenic. The miR-17 ~ 92 cluster
of miRNAs was originally identified as being amplified
in B cell lymphoma patients. Consequently, most of the
data on miR-17 miRNAs are in the context of its role as
an oncogene in blood cancers. Early on, a correlation
with c-Myc expression was noticed, and enforced ex-
pression of miR-17 ~ 92 accelerated B cell lymphoma
formation in mice [66]. Subsequently, it was recognized
that c-Myc activates the miR-17 ~ 92 cluster [32,36,37].
miR-17 was identified as part of an autoregulatory loop
with E2F proteins. While all three E2Fs can activate the
miR-17 ~ 92 promoter [38], E2F2 and E2F3 are also tar-
gets of miR-17 ~ 92 miRNAs [39]. Overexpression of
miR-17 ~ 92 has also been reported in solid cancers in-
cluding lung cancer [41,42], colon cancer [43,44], thy-
roid cancer [45], gastric cancer [46], nasopharyngeal
carcinoma [47], hepatocellular carcinoma [48], lung
squamous cell carcinoma [49], malignant glioma [50],
and pancreatic cancer [51]. In fact, miR-17 ~ 92 was
reported to be a component of a solid cancer miRNA
signature [52]. Of the two non-miR-17 family members
(miR-103 and miR-149) among the agonists in our study,
miR-103 is upregulated in bladder cancer [59], esopha-
geal squamous cell carcinoma [67], gastric cancer [68],
and colon cancer [69]. Little is known about the role of
miR-149 in cancer. Similar to miR-17, miR-221 and/or
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miR-222 are highly upregulated, often without concur-
rent upregulation of miR-17 ~ 92, in various cancers in-
cluding glioblastoma [53], liver cancer [54], pancreatic
cancer [55-58], bladder cancer [59], gastric cancer
[60,61], ovarian cancer [62], urothelial carcinoma [63],
nodal marginal zone lymphoma [64], and papillary thy-
roid carcinoma [65].
Our pathway analyses suggest that while both agonists

and antagonists are oncogenic, they regulate different
oncogenic signaling pathways, each of which may con-
tribute to cancer development or metastases by different
mechanisms. Different mechanisms of action for the ag-
onists and antagonists are supported by a substantial
body of published work. c-Myc driven miR-17-92 ex-
pression has been shown to promote tumor angiogenesis
[36], and inhibition of miR-17-5p and miR-20a induces
apoptosis in lung cancer cells [70] and leads to induction
of apoptosis, cellular senescence, and growth inhibition
of thyroid cancer cells [45]. miR-17 ~ 92 drives prolifera-
tion by targeting a number of cell cycle regulators of the
G/S transition [71]. Deletion of the miR-17-92 cluster in
mice resulted in increased levels of the apoptosis inducer
Bim. The mice died after birth, and exhibited lung hypo-
plasia and lack of B cell development [72]. In humans, a
germline deletion of miR-17-92 causes skeletal and
growth defects [73]. miR-17 has been implicated in
tumor angiogenesis, cell cycle, and cell death regulation,
while miR-221/222 has been linked to cell proliferation
in cancer. Inhibition of endogenous miR-221/222 im-
paired growth of prostate carcinoma xenografts in mice
[74], inhibited the growth of liver cancer [54], and
arrested pancreatic cancer cells in cell cycle driving them
into apoptosis [75]. Anti-miR-221 treatment in an
orthotopic HCC mouse model blocked cancer by redu-
cing proliferation [76]. In contrast, overexpression of
miR-221 in a mouse model of liver cancer stimulated
growth of tumorigenic murine hepatic progenitor cells
[54], and miR-221/222 increased proliferation of ER posi-
tive breast cancer cells [77], gastric cancer cells [78], and
GBM [79]. Most significantly, transgenic overexpression
of miR-221 alone caused HCC, and anti-miR-221 treat-
ment reduced tumor load [80]. miR-221/222 has been
shown to affect cancer proliferation by targeting p27 Kip1
[81]. This was specifically shown for prostate cancer [82],
melanoma [83], HCC [84], and breast cancer [85,86]. In
addition, activation of the Akt pathway has also been
reported [87,88]. Our analysis suggests that miR-221/222
does not regulate proliferation, but plays a role in develop-
ment. A connection between miR-221 and development
has been reported; overexpression of anti miR-221 in hu-
man embryonic stem cells and mesenchymal stem cells
triggered osteogenic differentiation [89].
Our analysis indicates that the distinction between

miRNAs as oncogenic or tumor suppressive does not
adequately describe their functions. In fact in this report,
we have identified two miRNA groups that are oncogenic
and, yet, are functional antagonists across three different
human cancers. Given the fact that the two groups of
miRNAs antagonized a large portion of the genes that
comprise 158 oncogenic signatures included in the ana-
lysis, it is possible that the two miRNA groups act in the
same cells. However, by comparing different patients, we
found that in some patients, expression of miR-17 family
members predominated, whereas in others miR-221/222
predominated. This was especially obvious for GBM. In all
three cancers, patients with a high miR-221/222 to miR-
17 ratio had poorer long term survival. In GBM the differ-
ence was significant. In GBM, a high miR-93/miR-221 or
a high miR-19a/miR-222 ratio was predictive of better
overall survival. There was no correlation between the
miR-17 to 221/222 ratio and tumor grade or stage (data
not shown) suggesting that the ratio of agonists to antago-
nists does not change much during tumor progression,
but does suggest that different miRNAs are expressed in
different patients.

Conclusions
Numerous studies have assigned cancer relevant activ-
ities to miRNAs using both miRNA and mRNA profiles
in either NCI60 cell lines or in primary tumors (i.e., de-
rived from TCGA [15,16]). Most of these studies have
used Pearson’s Correlation Coefficients and/or target
prediction algorithms to identify targets of individual
miRNAs in a specific cancer background. A few studies
have identified common or specific miRNA functions
across tumors of multiple origins by applying various
statistical models [25-28] or by analyzing oncogenic sig-
natures [29]. The primary aim of most of these studies
was to predict and validate novel cancer relevant miRNA
targets. In contrast, our work across the NCI60 cell lines
and three primary cancers has focused on miRNA
downstream effector genes without considering target
prediction, and hence, effectively avoids the highly false
positive rate produced by target prediction algorithms.
Our method permits extraction of statistically solid and
biologically relevant miRNA-mRNA pairs on a genome-
wide scale. In so doing, we have identified functionally
defined miRNA groups which have opposing activities in
cancers, yet can both be considered to be oncogenic.
These activities are not specific for individual cancers,
and suggest that they reflect fundamental activities of
miRNAs in human cancers.

Methods
The Cancer Genome Atlas (TCGA) data sets
The TCGA database (https://tcga-data.nci.nih.gov/tcga/)
was used to extract gene and miRNA expression data
sets from different solid cancers. There were a total of

https://tcga-data.nci.nih.gov/tcga/


Hua et al. BMC Genomics 2013, 14:179 Page 14 of 18
http://www.biomedcentral.com/1471-2164/14/179
19 available solid cancer types in the TCGA database. In
order to compare data derived from high quality tumor
material, the following high stringency selection criteria
were applied: 1) Only cancers with data sets of more
than 100 patients were considered. 2) Only patients for
whom complete mRNA and miRNA data sets were
available were included. 3) Only patients for whom a
pathologist had determined the percent tumor cells by
histological evaluation of one section taken from the top
and one from the bottom of the tissue block were con-
sidered. Only tumor samples with >70% tumor cells (as
an average between top and bottom analyses) were in-
cluded. 4) Additional cancer specific criteria were
applied to focus on the most relevant and most homoge-
neous groups of tumor tissue for each cancer (for details
see Additional file 4: Table S4, column 6). Four cancers
met these criteria, breast invasive cancer (BrCa), Glio-
blastoma multiforme (GBM), kidney renal clear cell car-
cinoma (KIRC), and ovarian serous cystadenocarcinoma
(OvCa). Eventually, BrCa was excluded from the analysis
because its high degree of heterogeneity did not permit
meaningful analysis using the sPCC method (data not
shown). Gene and miRNA expression data sets of
matching normal samples from GBM, KIRC, and OvCa
were also extracted from the TCGA database. Normal
tissues are matched to the anatomic site of the tumor
but usually not matched to the participant. The number
of normal tissues for each cancer is given in Additional
file 4: Table S4, column 7.

Selection of deregulated miRNAs and mRNAs in primary
cancers
For each cancer, the tumor/normal ratio of each miRNA
or gene was calculated using the average expression
value in the respective samples. Both fold cutoff (≥ 1.5,
up or down) and p-value cutoff (two-sided T-test, p < 0.05)
were employed to identify the significantly deregulated
miRNAs and mRNAs in the three cancers. This procedure
removed about half of the miRNAs and mRNAs to be ana-
lyzed thereby reducing noise. Details on deregulated
miRNAs and mRNAs are found in Additional file 14:
Table S13.

Statistical and data analyses
Unless otherwise stated, all statistical analyses of data in-
cluding gene expression data manipulation, sPCC calcu-
lations, hierarchical clustering, PCA analysis, and gene
expression signature calculations were performed using
R statistical program v2.10 (http://www.r-project.org/).

Method to identify correlations between miRNAs and
mRNAs in primary cancers
To identify significant correlations between miRNAs and
mRNAs we employed a modified form of the Pearson's
Correlation Coefficient, called summed (s)PCC, that we
recently described [4]. In short, for each cancer type,
from the TCGA expression data we selected “deregulated”
miRNAs and mRNAs whose expression differed by at
least 1.5 fold when compared to normal tissue. Using
these deregulated miRNAs and mRNAs, patients were
ranked according to their miRNA expression levels from
highest to lowest. This ranked list of patients was used to
generate deregulated subsets of patient expression data,
which we call “patterns”. For each miRNA, the patternX/2
(X being the total number of miRNA data sets for each
cancer) consisted of the top half of patients (those with
the highest levels of miRNA expression), patternX/2 + 1
included all of the patients from patternX/2 and the
patient with the next highest level of expression,
patternX/2 + 2 included all of the patients from patternX/
2 + 1 and the patient with the next highest level of expres-
sion, and so on. The last pattern, patternX, consisted of all
of the patients, and completed the set of deregulating
patterns. Each individual pattern was used as a seed for a
single PCC calculation between each miRNA and mRNA.
For each miRNA, PCCs of all patterns were added up
resulting in the sPCC value. To generate hierarchical clus-
tering of miRNAs for each cancer, the top 2000 genes
(covering about 10% of all genes) with the most highly
positive or negative sPCCs were used. For all analyses in-
volving the primary cancers, different sPCC cut-offs were
chosen (±5 for OvCa, ±6 for GBM, and ±2 for KIRC) to
permit comparison of the data with those generated for
the NCI60 cells for which we had used a cut-off of ±1 [4].
These cut-offs were proportional to the different samples
sizes of each data set (NCI60 = 59; OvCa = 320; GBM=
353; KIRC = 142).

Principal component analysis of miRNAs
The Principal Component Analysis (PCA) correlating
miRNA expression with mRNA expression in the NCI60
cells was published recently [4]. In short, expression data
(the 2000 most positively correlating genes) for each of
the 136 miRNAs significantly expressed in NCI60 cells
were used to perform a PCA analysis. A 136 × 136
matrix of overlapping gene numbers between miRNAs
(recently described [4]) was used to calculate principal
components (PCs). Of the 136 PCs, the first two com-
bined covered about 50% of all variance between
miRNAs (data not shown).

Gene signatures
The three different EMT signatures as well as Myc-
induced and Myc-repressed signatures used in this work
were reported in our previous analysis [4]. As a modifi-
cation, we now generated an average EMT signature by
combining the three previously described EMT signa-
tures. For each miRNA, the value of the normalized

http://www.r-project.org/
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EMT signature was calculated as the average value of
the 3 EMT signatures. We also combined the two previ-
ously described individual signatures of Myc-induced
and Myc-repressed genes [4] into one Myc signature. To
generate this normalized Myc signature for each
miRNA, a value was calculated as: (positively correlated
Myc-induced genes – neg. correlated Myc-induced
genes) / total # of Myc-induced genes - (positively corre-
lated Myc-repressed genes – neg. correlated Myc-
repressed genes) / total # of Myc-repressed genes. A
total of 158 oncogenic signatures (see Additional file 1:
Table S1) were used to identify connections between
miRNAs and oncogenesis. These signature lists were cu-
rated from several sources including the Broad Institute,
Biocarta, Johns Hopkins University, and selected studies
derived from PubMed (see Additional file 1: Table S1 for
details and PubMed IDs). We determined whether ex-
pression of genes in all these lists negatively or positively
correlated with the expression of deregulated miRNAs
in each primary cancer. For each signature, the number
of genes whose expression negatively correlated with a
given miRNA was subtracted from the number that
positively correlated, and the result was plotted across
all deregulated miRNAs in the sPCC-based cluster ana-
lysis. Statistically significant correlations between gene
expression and the expression of miRNAs in each func-
tional cluster were determined using the Wilcoxon
Rank-Sum Test (p < 0.01).

Overlap matrix
Overlap matrixes were generated to identify miRNA
groups that are functionally antagonistic to each other.
A total of 16 such overlap matrices were produced
(Additional file 2: Tables S2, Additional file 3: Table S3,
Additional file 7: Table S6 and Additional file 8: Table S7).
To generate an overlap matrix, first the significantly
positive or negative correlations between each miRNA
cluster and EMT or oncogenic signatures were calcu-
lated (see bottom table in Additional file 2: Tables S2,
Additional file 3: Table S3, Additional file 7: Table S6
and Additional file 8: Table S7). In these tables, rows
and columns correspond to the miRNA functional
clusters. The upper right half of each table contains the
agonistic correlations (which were not further consid-
ered), and the lower left half contains the antagonistic
correlations. The diagonal was defined as Not Available
(NA). The first number in each cell represents the
number of gene signatures for which an antagonistic
correlation was found (p < 0.001). A single antagonistic
correlation was defined as one miRNA cluster that
positively correlated with a gene signature and another
cluster that negatively correlated with the same gene
signature. The second number in each cell shows the
number of gene signatures for which a significant
correlation (p < 0.001) (either negative or positive) with
a miRNA cluster was found. The third number in each
cell (in brackets) represents number 1/number 2 x 100
(=%). miRNA clusters were scored as antagonistic when
the numbers and percentages were above a threshold
(as defined in the tables) for both overlap matrices gen-
erated using positive and negative sPCCs. In the ana-
lysis of oncogenic signatures, miRNA clusters were
considered only if they were found to correlate with at
least 30 different oncogenic signatures (including both
positively and negatively correlating genes) and if there
was an antagonizing group of miRNAs that fulfilled the
same criteria. In the EMT analysis, clusters were con-
sidered only if they correlated with at least 2 of the
three EMT signatures (including both positively and
negatively correlating genes) and if there was an antag-
onizing group of miRNAs that fulfilled the same cri-
teria. Further details are found in the Additional file
tables. miRNA clusters that were identified as being an-
tagonistic are highlighted in different colors (columns
at the top of each Additional file table). For the analyses
involving oncogenic signatures (Additional file 2: Table
S2-2, Additional file 3: Table S3-2 and Additional file 8:
Table S7), the actual gene signature lists that were
found to be antagonized by miRNA groups are shown
at the top right of each table. Each column of signa-
tures refers to a spread sheet cell in the overlap matrix
table on the bottom left. Gene signatures that positively
correlate with agonistic miRNAs (containing miR-17 family
members) are highlighted in green, and signatures that
negatively correlate are highlighted in red. The workflow of
the entire analysis is illustrated schematically in Additional
file 5: Figure S4.

Ingenuity integrated pathway and DAVID gene ontology
analyses
To analyze sets of genes with respect to their possible role
in diverse biological signaling pathways, lists of genes that
negatively and positively correlate with miRNAs (see
Additional file 11: Table S10) were subjected to an analysis
using Ingenuity’s IPA application (version 1.0; Ingenuity.
com). Both Network analysis and Pathway analysis were
performed. The same lists of genes were also analyzed using
the DAVID Bioinformatics Resources 6.7 (http://david.abcc.
ncifcrf.gov). Gene lists were uploaded to DAVID and
subjected to a functional annotation analysis using default
settings.

Survival analysis
Kaplan-Meyer survival analysis was performed to test
the influence of agonistic and antagonistic miRNAs on
patient survival. For each primary cancer, the most sig-
nificantly negatively correlated agonistic/antagonistic
miRNA pairs were selected, and ratio values across all
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patients were divided into two groups: higher (top 50%)
and lower (bottom 50%) agonistic/antagonistic ratio.
The survival time after treatment for each patient was
extracted from available clinical information (Additional
file 15: Table S14). Patients with incomplete clinical data
(e.g., living patients treated within last 3 years, or pa-
tients without follow-up information) were excluded. A
parametric model with Weibull hazard distribution [90]
was constructed to test the difference between two
groups for 3-year survival (p < 0.05).
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