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Abstract

Background: Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the
effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional
analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of
the structural information of the transcriptome, such as presence of gene networks that reveal correlation and
potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso,
which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset.
GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance
the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of
genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more
power in detecting previously neglected signals that are marginally weak but pleiotropically significant.

Results: While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes,
our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing
eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to
report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from
in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and
retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of
hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding
regions of the genes, in the case of the Ribi group, we provide experimental evidence suggesting that the identified
candidates do regulate the target genes predicted by GFlasso.

Conclusions: Thus, this structured association analysis of a yeast eQTL dataset via GFlasso, coupled with extensive
bioinformatics analysis, discovers a novel regulation pattern between multiple eQTL hotspots and functional gene
modules. Furthermore, this analysis demonstrates the potential of GFlasso as a powerful computational tool for eQTL
studies that exploit the rich structural information among expression traits due to correlation, regulation, or other forms
of biological dependencies.
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Background
Expression quantitative trait locus (eQTL) analysis has
been widely used to understand how genetic variations
in the genome perturb biological systems by altering cel-
lular mRNA levels [1]. A typical eQTL study involves
genotype data collected for genetic markers, such as sin-
gle nucleotide polymorphisms (SNPs), along with micro-
array data for a population of individuals. These studies
aim to identify genes whose expression level varies
according to genetic variation. As both the genotype and
gene expression data are collected at a genome-wide scale,
structured, as opposed to the traditional trait-by-trait
eQTL analysis must be employed to probe the complex
interplay between the genome and phenome at a systems
level rather than at the level of individual loci and genes.
For example, genetic variation can perturb the expression
of a gene, which then can affect the activity of other genes
downstream in the same pathway. A mutation in a regula-
tor, such as a transcription factor, can influence the
expression of all of the regulator’s target genes, leading to
a pleiotropic effect. On the other hand, genetic variants at
multiple different loci may jointly influence the expression
of some genes, through an additive or an epistatic effect.
Analyzing a genome-wide eQTL dataset allows us to
discover the complex patterns of how genetic variants give
rise to variation in expression level. At the same time,
examining multiple genes or multiple traits jointly in a
genome-wide analysis can give insight into the functional
roles that genetic variants play in a biological system and
can potentially lead to the discovery of new regulators in a
region of associated SNPs.
Many eQTL datasets have been collected for various

organisms, including yeast [2], mouse [3], human [4],
and Arabidopsis [5], as well as for different diseases such
as diabetes [6]. Additionally, different statistical ap-
proaches have been developed that go beyond traditional
single-trait analysis to unravel the complex patterns of
association between the genetic variants and expression
levels. In particular, we have previously developed a new
statistical paradigm for eQTL mapping called structured
association mapping [7]. In this paper we employ a
structured association mapping method called GFlasso,
which leverages the full gene-expression network to
guide a search for genotypes that influence genes whose
expression levels are highly correlated [7]. To our know-
ledge, this method is the first that systematically exploits
the full gene correlation network in eQTL analysis.
GFlasso finds associations between SNPs and sub-

networks of correlated genes within the full network by
exploiting the gene network, avoiding many of the funda-
mental limitations of previous methods. For example,
performing association analysis using the PCA-based
method on transformed traits sacrificed the interpretability
of the results. Lirnet used gene expression levels averaged
over genes within each cluster and then maps these aver-
ages to genetic loci [8]. In this case, however, the averaging
operation can lead to the loss of information on the activity
of individual genes, especially genes whose expression
levels are negatively correlated. Although Zhu et al. [9] and
other work by the same group of researchers took advan-
tage of the gene network in eQTL analyses, they did so
only as a post-processing step after finding eQTLs for each
gene separately, rather than directly using the network dur-
ing the search for eQTLs. It is only recently that methods
to exploit the rich information in the gene expression net-
work have been developed [7,10-12].
In this study, we use structured association mapping to

reanalyze the yeast eQTL dataset available from Brem and
Kruglyak [13] with a new focus on uncovering the genetic
basis behind the coupled gene-expression traits. The
dataset includes the genome-wide profiling of expression
levels and SNPs for 112 recombinant progeny from two
parent strains, a laboratory strain and a wild vineyard
strain. We choose this particular dataset because it has
been previously analyzed using different computational
methods, providing a useful test bed for comparing struc-
tured association mapping with other methods. Since the
method we use, GFlasso, leverages the gene network in
eQTL analysis to combine information across correlated
traits, it has the potential to achieve greater statistical
power and discover relatively weak association signals that
were missed in previous analyses. In fact, our analysis of
the yeast eQTL dataset stemming from GFlasso provided
new insights into the complex interaction between genetic
variations and the transcriptome in yeast.
Many of the previous computational analyses of this

same dataset reported regions in the genome, coined
eQTL hotspots, which control the expression level of
gene clusters that are highly enriched for a common
function [8,9]. This suggested a coordinated genetic con-
trol of gene modules. Also, by examining the eQTL
hotspot regions in the genome, these studies identified
candidate regulators whose genetic variations lead to a
perturbation of the gene cluster’s gene expression levels.
While our structured association analysis rediscovers

these previously reported eQTL hotspots and their regu-
lators, we identify additional novel eQTL hotspots of
biological significance. More interestingly, we find that
many of these gene modules are associated with not one,
but multiple eQTL hotspots. Although the presence of
eQTL hotspots has been reported previously, to our
knowledge our analysis is the first to find multiple eQTL
hotspots that contribute to the same functional gene
module. We perform in-depth bioinformatics analysis of
three groups of these eQTL hotspots that we have un-
covered. Based on the shared function of the genes
perturbed by the eQTL hotspots in each group, we name
the three groups the ribosome biogenesis (Ribi) group, the
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telomere group, and the retrotransposon group, and we
suggest candidate regulators for each group of hotspots.
Our bioinformatics analysis of each group of eQTL
hotspots provides new insight into gene regulation in
yeast. For example, in our analysis of the Ribi group, we
find a coordinated regulation of ribosome biogenesis by
multiple genomic loci on chromosomes II, V, and VII. We
show experimentally that the expression levels of a subset
of 43 of these target genes change when the PBF2,
KAP114, RAI1, and REI1 are knocked out. In our analysis
of the telomere group, we discover candidate regulators
(NUP2, RIF2, SIR3, YRF1) in four genomic regions on
chromosome IV, X, and XII that likely play a coordinated
role in telomere silencing. We identify mutations in the
promoter and coding regions of the candidate regulators
using the full genome sequences available from public da-
tabases to provide strong evidence that the candidate reg-
ulators are true regulators. Finally, in the retrotransposon
group, we discover the coordinated effects of 17 retro-
transposon insertions on the resulting expression signal
for retrotransposons. We note that in all three modules,
this coordinated effect could be epistatic or additive.

Results
We applied GFlasso to analyze a genome-wide eQTL
dataset generated from a cross between the BY4617 (BY)
strain (isogenic to yeast strain S288c) and the vineyard
RM11-1a (RM) strain of Saccharomyces cerevisiae, baker's
yeast [13]. The dataset consists of these two parent strains
and 112 recombinant progeny. We considered the 1260
unique SNP markers on all 16 chromosomes, which cover
nearly the entire genome at a resolution of about 20 kb.
We used these SNP markers to find associations to the
mRNA expression levels for 5637 genes (genes with more
than 30% missing values were excluded from analysis).
GFlasso assumes that a network for the gene-expression

traits is available as prior knowledge, and GFlasso leverages
this network in a structured sparse regression framework
to identify associations between genetic loci and multiple
traits that are tightly connected in the network. In our pre-
processing step, we constructed a scale-free and modular
network from the gene-expression data (see Methods for
more detail) [9,14]. We used the resulting topological over-
lap matrix [14] as our gene-expression network. Once we
estimated the parameters for association strengths using
GFlasso (see Methods), we carried out an in-depth bio-
logical analysis. We have automated the full pipeline of our
analysis and made it available with our distribution of the
GenAMap software platform for genome-wide association
(GWAS) and eQTL analysis [15,16].

Gene modules under regulation of common genetic loci
We examined the eQTLs estimated by GFlasso for clus-
ters of genes controlled by common genetic loci
(Figure 1). We divided up the genome into 428 genomic
regions based on the linkage disequilibrium (LD) be-
tween the SNPs in this dataset (see in Additional file 1:
Supplementary Methods). We define an eQTL module as
all of the genes that map to the same genomic region.
We define an eQTL hotspot as a genomic region whose
eQTL module is greater than 40 genes. An eQTL
hotspot and its corresponding eQTL module imply a
pleiotropic effect of the genetic locus on co-regulated
genes in a common pathway. We note that in our defin-
ition of an eQTL module, a gene could be a member of
multiple eQTL modules, each associated with different
eQTL hotspots. In a biological system, this corresponds
to the situation of multiple contributing genetic loci,
where the expression of the gene is affected by multiple
trans-acting loci as well as a possible cis-acting locus
through either an additive or an epistatic effect.
Although we found many eQTL modules, in this study

we focus on those eQTL modules with greater than 40
genes, that is, only those that map to eQTL hotspots (in
Additional file 1: Figure S1). We present an analysis of
22 such eQTL modules that vary in size from 42 to 722
genes. Ten of the 22 corresponding eQTL hotspots were
novel discoveries in this dataset. The other 12 eQTL
hotspots overlapped with the 13 eQTL hotspots that had
been reported in previous analyses of the same dataset;
all 13 previous eQTL hotspots were recovered as two
previously discovered eQTL hotspots were combined in
our analysis [8,9,17].
The common association that an eQTL hotspot has to

all the genes in an eQTL module suggests that the region
harbors regulators that influence the expression levels of
the genes in the eQTL module. We list some candidate
regulators located in cis to each eQTL hotspot in Table 1.
All the genes within 20 kb from the eQTL hotspot are po-
tential candidates, but because many genes are located in
cis to each eQTL hotspot, we select transcription factors,
genes in the eQTL module, and other genes involved in
the pathway of the eQTL module to list here. In Table 1,
we compare our results with those obtained from a com-
putational analysis using a Bayesian network modeling ap-
proach [9], Lirnet [8], and known and possible regulators
based on literature search [17]. In general, we found that
the results were consistent between GFlasso and previous
analyses. For example, in eQTL hotspot 4 located on
chromosome III around 200 kb, GFlasso found 62 genes
in the eQTL module; five of these genes, MATALPHA1,
MATALHPA2, PHO87, BUD5, and TAF2, are located in
cis to this eQTL hotspot and therefore they are candidate
regulators of the eQTL module. Consistent with our re-
sults, three previous analyses discussed MATALPHA1 as a
regulator for genes in this eQTL module, and Lirnet add-
itionally suggested MATALPHA2 and TBK1. As these can-
didate regulators lie in cis to this eQTL hotspot region,



Figure 1 An illustration of our main results. Figure legend text (a) Previous analyses (e.g., [9,17,35]) of the yeast eQTL dataset reported eQTL
hotspots, a module of multiple genes controlled by the same genomic locus. (b) In our GFlasso analysis of the same dataset, we not only found
eQTL hotspots, but also discovered multiple contributing eQTL hotspots, where the same module of multiple genes is associated with multiple
eQTL hotspots. This figure was created using GenAMap [16].

Table 1 The eQTL hotspots and their candidate regulators from GFlasso and other previous analyses
eQTL Hotspot eQTL module size cis genes in eQTL module GFlasso Yvert et al. [17] Zhu et al. [9] Lee et al. [8]

*II:380000 106 NRG1 TIP1 TAT1 TEC1 ECM33 none none RDH54 SEC18 SPT7

*II:560000 722 AMN1 MAK5 CNS1 TBs1 TOS1 ARA1
SUP45 CSH1 RPB5 SDS24 ENP1 REI1

AMN1 MAK5 AMN1 CNS1 TBS1 TOS1
ARA1 SUP45 CSH1

AMN1 CNS1 TOS2 ABD1
PRP5 TRS20

*III:100000 225 LEU2 ILV6 NFS1 CIT2 PGS1 RER1
HIS4 FRM2 KCC4

LEU2 LEU2 ILV6 NFS1 CIT2
MATALPHA1

LEU2 ILV6 PGS1

*III:200000 62 MATALPHA1 MATALPHA2 PHO87
BUD5 TAF2

MATALPHA1 MATALPHA1 MATALPHA1 MATALPHA2
TBK1

IV:1500000 46 YRF1-1 YDR539W YDR541C - - -

*V:110000 45 URA3 NPP2 URA3 URA3 URA3 NPP2 PAC2

V:350000 618 RPS24A RPS8B RTT105 - - -

V:420000 405 LCP5 NSA2 - - -

V:460000 42 YER138C UBP5 RTR1 - - -

VII:50000 350 RAI1 TAD1 KAP114 - - -

*VIII:110000 147 GPA1 YAP3 ERG11 LAG1 SHO1
ETP1 YLF2 LEU5

GPA1 GPA1 GPA1 STP2 NEM1

X:20000 48 YJL225C VTH2 FSP2 REE1 - - -

XII:610000 53 TOP3 - - -

*XII:680000 185 HAP1 NEJ1 SSP120 HAP1 HAP1 HAP1 NEJ1 GSY2

XII:780000 44 REC102 PEX30 FKS1 GAS2 - - -

*XII:1070000 54 YRF1-4 YRF1-5 YLR464W YLR462W SIR3 YRF1-4 YRF1-5 YLR464W SIR3 HMG2 ECM7

*XII:70000 76 MDM1 none none ARG81 TAF13 CAC2

*XIV:490000 448 SAL1 TOP2 MKT1 THO2 MSK1 TPM1
LAT1 SWS2

none SAL1 TOP2 TOP2 MKT1 MSK1

XIV:550000 45 COG6 YIP3 HDA1 - - -

XV:90000 85 ZEO1 RFC4 HM11 INO4 NDJ1
SKM1 HAL9

- - -

*XV:180000 406 PHM7 ATG19 WRS1 RFC4 none PHM7 PHM7 ATG19 BRX1

*XV:59000 120 LSC1 YOR131C RAS1 INP53
OST2 PIN2

CAT5 none CAT5 ADE2 ORT1

* denotes a previously discovered hotspot.

Curtis et al. BMC Genomics 2013, 14:196 Page 4 of 17
http://www.biomedcentral.com/1471-2164/14/196



Curtis et al. BMC Genomics 2013, 14:196 Page 5 of 17
http://www.biomedcentral.com/1471-2164/14/196
the genetic variation in this region may directly influence
the activity or expression of these regulators, which then
influence the expression of other genes in the eQTL
module.

Multiple contributing eQTL hotspots with pleiotropic
effects on common eQTL modules
In order to see if the genes in an eQTL module con-
trolled by an eQTL hotspot share function, we
performed a gene ontology (GO) enrichment analysis
using the GO Slim annotation from the Saccharomyces
Genome Database (SGD) [18]. As can be seen in Table 2,
many of the eQTL modules were significantly enriched
for common GO categories, indicating the genes in the
eQTL module share function. For example, the eQTL
module associated with the eQTL hotspot at XII:680 kb
is enriched for genes annotated to lipid metabolic
process (GO category, p-value = 1.3e-14) in biological
process (GO category type), and the eQTL module asso-
ciated with the XIV:450 kb eQTL hotspot is enriched for
translation (GO Category, p-value = 2.3e-28) in bio-
logical process (GO category type). For the previously
reported eQTL hotspots, our results were consistent
with those from previous GO enrichment analysis.
In addition, we performed enrichment analyses on each

of the eQTL modules using two knockout datasets [19,20]
and four transcription factor binding datasets [21-24]. The
results from these enrichment analyses are available in the
Additional file 1: Supplementary Methods and the Add-
itional file 2: Supplementary GFlasso Results. From the
transcription factor target enrichment results, we found
that genes in each eQTL module involved in the same GO
process were also generally enriched for the binding of a
common transcription factor and a knockout perturbation
as has been shown before [9].
Interestingly, as we considered the results from the

GO enrichment analysis and the transcription factor and
knockout analyses, we noticed groups of eQTL modules
that were enriched for the same GO annotations, tran-
scription factor binding, and knockout signatures. For
example, the eQTL modules associated to eQTL
hotspots II:560 kb, V:350 kb, V:420 kb, and VII:50 kb
were all significantly enriched for ribosome biogenesis
and PBF2 binding. Furthermore, as shown in Figure 2,
these four eQTL modules had a large overlap in member
genes. This suggests that a large number of genes in the
four eQTL modules are regulated in-part by each of
these different eQTL hotspots. As the eQTL modules
share the common GO annotation of ribosome biogen-
esis (Ribi), we call this group of eQTL hotspots the Ribi
group (Figure 3).
Additionally, we found another group of eQTL mod-

ules, associated with eQTL hotspots IV:1500 kb,
X:20 kb, XII:780 kb, and XII:1070 kb, all significantly
enriched for helicase activity. Again, the eQTL modules
corresponding to these eQTL hotspots shared a large
fraction of member genes (Figure 2), and many of the
genes that are shared by these four eQTL modules were
annotated with common GO terms (Figure 3). Since our
bioinformatics analysis of this group of eQTL modules
revealed that they are involved in telomere activity, we
name this group of eQTL hotspots the telomere group.
As we considered the telomere group and the Ribi
group, we noticed that the genes regulated by three or
more of the eQTL hotspots in the group had a higher
GO enrichment than genes that were associated with
only one or two eQTL hotspots (Figure 3). Thus, in sub-
sequent analysis we focus primarily on the genes associ-
ated with at least three of the four eQTL hotspots.
In addition to the Ribi and telomere groups of eQTL

hotspots, we searched for other groups of eQTL
hotspots with an overlap of more than 20 genes in the
corresponding eQTL modules. Using this criterion, we
identified one additional group of eQTL modules map-
ping to eQTL hotspots at V:460 kb, VIII:110 kb, and
XV:90 kb (Table 2). Although we did not find a common
GO enrichment for these eQTL modules, further ana-
lysis revealed that many of the genes are involved in
retrotransposon biology. Thus, we name this group the
retrotransposon group.
We note that only one of the eQTL hotspots associ-

ated with each of the Ribi, telomere, and retrotransposon
groups has been found in previous analyses of the same
dataset, while all of the other eQTL hotspots associated
to the groups of eQTL modules are novel discoveries
from our GFlasso analysis. Thus, to our knowledge,
these groups of eQTL hotspots with a common eQTL
module have not been found in any of the previous ana-
lyses of this dataset. Thus, our GFlasso and bioinformat-
ics analysis provides new insight into the genetic control
of gene expression in a cell, especially the pleiotropic ef-
fect of multiple contributing genetic loci.
We compared the GFlasso results to those from a pre-

vious study which looked for epistatic interactions in this
dataset [25]. After replicating the previous analysis, we
found few overlaps between the results from the two
analyses; the two studies share only one gene affected by
the same two genomic bins (see in Additional file 1: Figure
S2). The differences in the two results sets demonstrate
the different characteristics of the two methods used in
the analyses. For example, GFlasso is built off of an addi-
tive model, and thus will pick up on regulation signals that
will not be discovered in epistatic analyses. Furthermore,
GFlasso considers the whole gene-expression network to
find associations between SNPs and a group of genes with
highly correlated expression levels. Meanwhile, the ana-
lysis in Brem et al. [25] examined expression for each gene
individually. As GFlasso tends to focus on pleiotropic



Table 2 GO enrichment analysis of eQTL modules/hotspots found by GFlasso
Group eQTL Hotspot eQTL module size GO Category p-value GO size (overlap) GO Annotation [9]

Ribi Group *II:560000 722 nucleolus 1.4e-81 224 (148) Cytoplasm organization
and biogenesis

ribosome biogenesis 5.4e-62 311 (156)

V:350000 618 ribosome biogenesis 7.0e-104 311 (184)

nucleolus 5.5e-89 224 (129)

V:420000 405 nucleolus 8.0e-80 224 (118)

Ribosome biogenesis 6.8e-66 311 (124)

VII:50000 350 nucleolus 7.6e-97 224 (124)

ribosome biogenesis 5.6e-83 311 (131)

Telomere Group IV:150000 46 cellular component
unknown

6.1e-21 683 (33)

helicase activity 1.8e-17 80 (15)

X:20000 48 cellular component
unknown

1.6e-22 683 (35)

helicase activity 1.4e-15 80 (14)

XII:780000 44 helicase activity 8.3e-10 80 (15)

cellular component
unknown

1.2e-13 683 (26)

*XII:1070000 54 helicase activity 9.3e-19 80 (15) none

cellular component
unknown

1.1e-16 683 (27)

Retrotransposon Group V:460000 42 none - -

*VIII:110000 147 conjugation site of
polarized growth

1.6e-11 119 (20) conjugation, RNA binding

7.6e-6 211 (18)

XV:90000 85 none - -

Other eQTL modules *II:380000 106 none - -

*III:100000 168 cell. amino acid
derivative proc

6.3e-31 215 (55) Organic acid metabolism

transferase activity 2.6e-7 623 (51)

*III:200000 62 conjugation 5.1e-7 119 (10) Response to chemical
stimulus

response to chem
stimulus

4.3e-6 400 (16)

*V:110000 45 carbohydrate met.
process

1.2e-4 249 (9)

cell. aromatic comp.
met proc

1.5e-4 65 (5)

XII:610000 53 none - -

*XII:680000 185 lipid metabolic
process

1.3e-14 249 (36) Lipid metabolism, ER

ER 3.9e-10 350 (36)

*XIII:70000 76 cell. amino acid
derivative proc

1.2e-4 215 (11)

*XIV:450000 448 translation structural
molecule activity

2.3e-28 373 (97) Protein biosynthesis,
intracellular transport

1.4e-15 325 (7)

XIV:550000 45 none - -

*XV:180000 406 carbohydrate met.
process

3.5e-5 249 (36) Gen of precursor
met & energy

protein modification
process

4.8e-4 544 (21)

*XV:590000 76 gen of precursor met.
& energy

2.6e-35 168 (42) Gen of precursor
met & energy

mitochondrial envelope 3.8e-20 82 (37)

* denotes a previously discovered hotspot.
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Figure 2 eQTL hotspots and their overlapping eQTL modules found by GFlasso. GFlasso found that many genes (x-axis) are jointly
influenced by the same genetic loci (y-axis), suggesting that these eQTL hotspots perturb an overlapping set of genes. We group these eQTL
hotspots into the Ribi, telomere, and retrotransposon groups according to their overlaps in the corresponding eQTL modules. For example, the
first 722 genes (plotted along the x-axis) all belong to the eQTL module for II:560 kb, and many of these genes also belong to the eQTL modules
derived from three other eQTL hotspots: V:350 kb, V:420 kb, and VII:50 kb.
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effects by combining information across multiple genes in
the gene network, it discovered the additive effect of mul-
tiple genomic regions on gene modules. On the other
hand, these signals were missed in the analysis by Brem et
a.l [25], which was looking for epistatic interactions among
loci with effects on individual genes.
Another recent study looked at the pleiotropic and epi-

static effects among eQTL modules in this dataset [26]. In
that study, Zhang et al. used a Bayesian framework to look
for associations between genomic regions and modules of
genes. This approach varies significantly from GFlasso in
its underlying assumptions and model, especially in refer-
ence to its focus on epistatic effects. While the approaches
differ, the two models are complimentary in the results
that the find. For example, Zhang et al. report multiple
gene modules associated with approximately 21 different
genomic regions. Of these 21 genomic regions, all but two
are in close proximity to the genomic regions found by
GFlasso. The modules from Zhang et al.'s paper generally
include fewer genes than the modules found by GFlasso
and often have similar annotations. However, GFlasso
finds an additional 12 genomic regions associated with an
eQTL module that are not found by Zhang et al. Three re-
gions (V:350 kb, V:420 kb, and VII:50 kb) from the Ribi
group, two regions (XII:780 kb, 1070 kb) from the Telo-
mere group, and two regions (V:460 kb, XV:90 kb) from
the Retrotransposon group are found by GFlasso but not
by Zhang et al. Another important difference between the
methods is that while we create our eQTL modules based
off of the association of multiple genes to one genomic re-
gion, Zhang et al. find multiple gene modules associated to
a single genomic region. If using GFlasso, one could analyze
eQTL modules using a network analysis approach to obtain
a similar result.

Multiple genes in three eQTL hotspots affect Ribi expression
levels
Given the evidence of multiple contributing eQTL hotspots
from the GFlasso and enrichment analyses, we performed
bioinformatics analysis on the three groups of eQTL
hotspots: the Ribi, telomere, and retrotransposon groups.
We determined the functional role that these contributing
loci play on the overlapping set of genes and identified po-
tential candidate regulators in cis to these loci. By further



Figure 3 GO enrichment analysis for eQTL hotspots with overlapping eQTL modules. For both the (a) Ribi group and the (b) Telomere
group, we divide all of the genes in the overlapping eQTL modules into different sets (rows) based on which of the eQTL hotspots in each eQTL
hotspot group they are mapped to. Genes that map to all four eQTL hotspots are placed in the set labeled “All four” in the top row. Within each
of the sets, we show the percentage of genes mapping to the eQTL hotspot(s) that are annotated to one or both of the top GO enrichment
categories for the eQTL hotspot group’s eQTL modules along the x axis with different colors. In our analysis, we focus our attention on the genes
with associations to three or more eQTL hotspots in a group, as they are enriched for a common function.
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examining the DNA sequence of these potential candidate
regulators, we found that many of them have missense or
promoter mutations between the two strains. The presence
of such mutations indicates a potential change of function
or expression level. In the case of the Ribi group, we further
verify some of the regulators experimentally. Below, we
present our analysis of the Ribi, telomere, and retrotrans-
poson groups.
We first consider the Ribi group, which consists of four

eQTL hotspots located on chromosomes II:560 kb,
V:350 kb, V:420 kb, and VII:50 kb. The corresponding
eQTL modules overlap, with 194 genes in the overlap. 122
of these 194 genes have the GO annotation for ribosome
biogenesis (GO category, type of biological function) and/
or nucleolus (GO category, type of cellular compartment).
In our analysis of these four eQTL hotspots, we found

evidence of direct and indirect regulation in the Ribi
regulation system and identified previously unknown po-
tential regulators, which were confirmed through experi-
mental validation. The creation of a Ribi protein is a
multi-step process, and there are many steps along the
pathway where transcriptional feedback could potentially
occur. First the genes encoding the RPs (ribosomal pro-
teins) and Ribi assembly factors must be transcribed, the
transcripts translated, and then the proteins imported
into the nucleus where the Ribi assembly factors assem-
ble rRNA with the RPs into functional ribosomes. Thus,
expression levels of important genes can affect the ex-
pression of genes directly, or through indirect feedback
loops during any step of this process.
To limit our search for candidate regulators in cis to

the four eQTL hotspots in the Ribi group, we considered
genes that were located in cis to one of the four eQTL
hotspots and either 1) were also found in the 194 gene
overlap, implying an association to all four hotspots (8
overall, shown as green and yellow nodes in Figure 4), 2)
were also known to be involved in Ribi (MAK5, UTP7,
and PBF2), or 3) were annotated as a DNA binding pro-
tein (12 overall, listed as DNA binding in Table 3). We
list the candidate genes from our search in Table 3. Also,



Figure 4 An illustration of gene regulation in the Ribi group of eQTL hotspots. We found four eQTL hotspots on chromosomes II, V, and VII
that are all associated with the same 194 genes. 122 of the genes in this 194-gene overlap were annotated to the GO category of ribosome
biogenesis (Ribi) or nucleolus (shown as blue nodes in the graph). The genes involved in Ribi are generally assembly factors that assemble rRNA
and ribosomal proteins into the ribosomal unit in the nucleus. We also found an association from the V:350 kb eQTL hotspot to the ribosomal
proteins. The expression levels of the ribosomal proteins are tightly coupled with the expression of the Ribi genes. Additionally, we found eight
genes (shown as green and yellow nodes in the graph) in the overlap that were located in cis to one of these eQTL hotspots. The green nodes
represent genes located in cis that are annotated for the Ribi or nucleolus GO categories, while the yellow nodes represent genes located in cis
to one of the eQTL hotspots with a different GO annotation (see Table 3). This figure was created using GenAMap.
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in Figure 4 we provide a visual overview of the regula-
tion of these eQTL modules. Although there might be
other genes in cis to these eQTL hotspots that could
affect expression levels of the genes in these eQTL mod-
ules, we believe our criteria for candidate regulators led
us to many of the interesting possibilities.
In both this analysis and the telomere analysis, we

examine our candidate regulators by comparing the full
coding and promoter sequence for the BY and RM
strains. Since only 1260 unique (2956 overall) SNPs were
genotyped in the eQTL dataset, these SNPs serve only
as genetic markers rather than an exhaustive list of gen-
etic polymorphisms between the two strains. Once the
GFlasso analysis points us to the genomic regions or
eQTL hotspot around a genetic marker, we can compare
the full sequences available from public databases (see
Methods) to identify missense and promoter mutations.

Validating discovered Ribi regulator genes experimentally
Based on our mutation analysis, we selected five candi-
date regulators from three of the four eQTL hotspots for
further validation using knock-out experiments (PBF2,
SDS24, REI1, RAI1, and KAP114). We did not select
candidates from the V:420 kb hotspot because our candi-
dates in this region are essential genes. For each
candidate regulator that we selected, we grew a knock-out
strain under normal and heat shock conditions, and then
compared normalized expression levels of 43 targets (from
the GFlasso results) with the expression levels from the
wild-type (see Methods). We consider a gene to be af-
fected by the knock-out if its expression is more than 1.5
times greater than wild-type (or if wild-type level is more
than 1.5 times greater than the knock-out). A summary of
the results is available in Table 4, and a spreadsheet of the
experimental results is available in the Additional file 3. In
Table 4, we report the percent of the target genes affected
by the knock-out, in addition to the average and max-
imum fold change when compared to the wild type. These
summary statistics help to demonstrate the effect that
knocking out each candidate has on the targets predicted
by GFlasso. We also include a pictorial representation of
the results in Figure 5, showing which target genes were
overexpressed in the different experiments.
Our first candidate regulator that we selected is PBF2,

which is located in cis to eQTL hotspot V:350 kb and is
known to regulate Ribi gene expression. Ribi genes are
regulated transcriptionally through the PAC and RRPE
promoter motifs, present upstream of most Ribi genes
[27]. PBF2 has previously been shown to bind to the
PAC motif and to regulate Ribi gene expression in



Table 3 Candidate regulators in the Ribi group of eQTL hotspots
eQTL Hotspot Candidate GO Category Differentially Expressed? Mutations Function

II:560 kb TFC1 DNA binding No 3 missense RNA Pol III subunit

MAK5 Ribi No 5 missense, 4 indel 60S ribosome processing

TBS1 DNA binding 6.7e-20 7 missense Unknown

RPB5 Nucleolus 9.6e-3 promoter has 7 SNPs
and 1 indel

RNA Poly subunit

CNS1 Protein folding 3.6e-9 promoter has 7 SNPs
and 1 indel, 1 missense

TPR-containing co-chaperone

SMP1 DNA binding 2.7e-2 promoter has 7 SNPs
and 2 indels

Transcription factor that
regulates osmotic stress

MED8 DNA binding 1.2e-2 Promoter has 2 SNPs,
2 missense

RNA Poly II mediator complex

MCM7 DNA binding No 6 missense DNA ATPase activity

SDS24 Molecular function
unknown

7.2e-7 2 missense, 2 promoter
SNPs

Involved in cell separation
during budding

ERT1 DNA binding 2.2e-2 5 missense, 8 SNPs in
promoter and a 5
base insertion

Transcriptional regulator of
nonfermentable carbon utilization

THI2 DNA binding No None Zinc finger protein

ENP1 Ribi No None 40S ribosomal subunit synthesis

ISW1 DNA binding No 1 missense ATPase, DNA and nucleosome
binding

REI1 Ribi No 3 missense Cytoplasmic pre-60S factor

V:350 kb UTP7 Ribi No None Processing of 18S rRNA

RAD51 DNA binding No None Strand exchange protein

PBF2 Ribi 3.0e-2 9 missense PAC binding factor

SWI4 DNA binding No 2 missense Transcriptional activator

V:420 kb NSA2 Ribi 1.4e-5 None Constituent of 60S pre-ribosomal
particles

LCP5 Ribi 2.6e-3 1 missense Involved in maturation of
18S rRNA

YER130C DNA binding No 1 missense Unknown function

VII:70 kb RAI1 Ribi No None Required for pre-rRNA processing

RTF1 DNA binding No None Subunit of RNA Pol II

KAP114 Protein import into nucleus 1.2e-8 9 missense Karyopherin
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response to heat shock [22]. PBF2 has nine missense mu-
tations between the BY and RM strains and is differentially
expressed between the strains that have the BY allele and
those that have the RM allele (p-value = 3.0e-2). These
mutations suggest that PBF2 may function differently in
the RM and BY strain, influencing Ribi gene expression
Table 4 Summary of knock-out results for candidate regulato

ΔSDS24 ΔPBF2 ΔREI1 ΔRAI1 ΔKAP114

% targets affected 4.7% 4.7% 74.4% 83.7% 4.7%

max change 1.691 1.983 2.686 2.934 1.838

avg. change 1.168 1.245 1.641 1.824 0.962

# controls affected 0 0 3 2 1

p-value 1 1 8.6e-6 2.3e-8 1

Genes with expression levels greater than 1.5 times the wild type, or less than 2/3 the
and average change rows represent the fold change in the expression level compared
RNA. There were 20 total control genes. The p-value represents a Fisher’s exact score b
directly. In our knock-out experiment, we did find that the
target gene expression levels did increase dramatically for
the ΔPBF2 strain compared to the wild-type strain in re-
sponse to heat shock. However, the change was negligible
under normal growth conditions. Thus, our results again
confirm that PBF2 is involved in Ribi gene regulation.
rs in the Ribi group

ΔSDS24 HS ΔPBF2 HS ΔREI1 HS ΔRAI1 HS ΔKAP114 HS

7.0% 79.1% 79.1% 86.0% 60.5%

1.531 5.117 5.700 5.977 3.847

1.174 2.206 2.241 2.417 1.641

0 1 5 3 1

0.55 1.3e-8 6.1e-5 7.6e-8 2.6e-5

wild type, levels are considered to be affected by the knockout. The max change
to the wild time. HS denotes that the yeast were heat shocked before extracting
etween the genes affected in the target and control groups.



Figure 5 Knockout experiment results. We show the results from the knockout experiments using a graphical representation of the data. This
plot was generated with Heatmap Builder [48] using the log values of the normalized gene expression measurements. The red pixels in the
graph represent an over-expression of the genes in the experiment, while the bright green pixels represent under-expression. These results
suggest that GFlasso correctly identified target genes that change expression due to mutations in the eQTL hotspots that were identified.
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We considered two candidate regulators from the
VII:50 kb eQTL hotspot: KAP114 and RAI1. KAP114 is
a nuclear importer that could have an indirect effect on
Ribi gene transcription. KAP114 is one of the 194 genes
in all four eQTL modules. Nuclear import is an import-
ant step in Ribi; the Ribi proteins are translated in the
cytoplasm and then KAP proteins import them into the
nucleus, where these proteins assemble the RPs and
rRNA into ribosomes [28]. Although KAP114 has not
yet been implicated in Ribi protein import, Ribi proteins
and RPs account for most of the incoming nuclear traffic
in a cell [28]. Therefore, if transport of these proteins
into the nucleus was affected, the rate of Ribi transcrip-
tion could be affected through a feedback loop. RAI1 is
a known Ribi gene; based on our results we hypothesize
that RAI1 affects the expression of other Ribi genes
through a feedback loop or an unknown regulatory role.
Our knock-out experiments found that predicted target
genes were affected by the ΔRAI1 strain in normal and
in heat shock conditions. This is an interesting result as
RAI1 has no known regulatory role in Ribi gene expres-
sion. We found that the ΔKAP114 strain had higher ex-
pression levels of many of the target genes (60%) during
a heat shock, but that the expression of the targets was
not affected under normal conditions. These results sup-
port the discovery of the V:50 kb hotspot as an import-
ant genomic region involved in the transcriptional
regulation of Ribi genes.
GFlasso found associations from many SNPs on

chromosome II to the Ribi genes. Thus, due to the large
size of the eQTL hotspot on chromosome II:560 kb (about
200 kb), we had many candidate regulators to consider.
Here we report an interesting mutation in the promoter
region between CNS1 and RPB5. CNS1 and RPB5 are both
associated to all four eQTL hotspots in the Ribi group.
There are seven SNPs and an indel in the promoter re-
gion, which could potentially affect the expression of both
genes. RPB5 is a component of RNA polymerase; a change
in expression levels would directly perturb Ribi gene
levels. Also, previous computational studies list CNS1 as a
possible Ribi regulator, although its involvement is unclear
[8,9]. We also considered two other candidate regulators
that we found: SDS24 and REI1. SDS24 is located near
II:651 kb and REI1 is located near II:739 kb; both locations
are in the eQTL hotspot and are part of the eQTL mod-
ule. In this experiment, we created knockout strains for
SDS24 and REI1, as CNS1 and RPB5 are essential genes.
We did not find a significant difference in the target gene
expression in the ΔSDS24 strain. We did find, however,
that the Ribi target genes were over-expressed in the
ΔREI1 knockout strain when compared to the wild type.
This is another interesting observation, as REI1 is a Ribi
gene with no known regulatory role.
In summary, we have looked at three eQTL hotspots be-

longing to the Ribi group of hotspots and have shown ex-
perimentally that candidate regulators in each eQTL
hotspot affect the expression of the target genes predicted
by GFlasso. One interesting observation is that Ribi genes
with no known regulatory role, such as REI1 and RAI1, af-
fected the expression of other Ribi genes (targets). This
suggests that these Ribi genes might have an unknown
regulatory role, or the association may uncover a feedback
loop where other genes are over-expressed to compensate
for the loss of other Ribi genes. On another note, out of
the 43 targets predicted by GFlasso, only four genes were
not affected by the regulators we tested, suggesting that
GFlasso predicts the targets with high accuracy. Finally, it
is interesting to note that all four validated regulators have
a stronger effect in the case of heat shock, demonstrating
the inconsistent effect that mutations can have in different
growth environments.

eQTL hotspots harbor mutations in NUP2, RIF2, and SIR3
that potentially affect telomere silencing
We now consider the four eQTL hotspots in the telo-
mere group: IV:1500 kb, X:20 kb, XII:780 kb, and
XII:1070 kb. Each of these eQTL hotspot are associated
with the same 31 genes, and six additional genes are as-
sociated with three of the four eQTL hotspots. All 37
genes lie in telomere regions and three (IV:1500 kb,
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X:20 kb, and XII:1070 kb) of the four eQTL hotspots
also lie in telomere regions. This suggests that there is
coordinated or additive regulation among these four
eQTL hotspots to turn on the expression of telomere
genes. GO enrichment analysis found that these genes
are enriched for the GO functional annotation "helicase
activity" (p-value = 2e-17) and the GO component anno-
tation "cellular component unknown" (p-value = 2e-17).
This suggests that these genes share common function
and interact with DNA as a helicase. Because many of
the genes do not have a cellular component annotation,
they might be understudied or not ordinarily expressed.
We considered the known function of each gene in

the set individually and found seven yeast YRF1 genes
(YRF1-1, YRF1-2, YRF1-3, YRF1-4, YRF1-5, YRF1-6, and
YRF1-7), see Table 5. We also found that the other 30
genes were all either "proteins of unknown function," or
"helicase-like proteins encoded within the telomeric Y'
element" (SGD database). Because the annotations were
common across the genes in the set, we performed a se-
quence BLAST against YRF1-1 and found that 36 of the
37 genes had high homology to the YRF1-1 transcript
(BLAST eValue < 1e-36). The 29 non-YRF1 genes had no
known functionality, despite their homology to the YRF1
genes. We conclude that these genes are copies of YRF1
in the yeast telomeres. The homology also suggests that
these genes cross-hybridize to each other's probes on the
microarray; if any one of the genes regulated by these four
eQTL hotspots is expressed, all of the genes would appear
to be expressed on the microarray. The homology of this
module has been previously observed [9], however, in the
RM wild type strain, the YRF1 genes have a significantly
lower expression level than in the BY mutant strain (t-test
p-value = 1.1789e-26), which cannot be explained by the
hypothesis of cross-hybridization. It appears that there is
some kind of regulation turning on, or failing to turn off,
at least one of the YRF1 genes in the BY strain.
In order to explain the difference in YRF1 and YRF1-like

gene expression between the RM and BY strains, we con-
sidered what is known about the YRF1 genes. The YRF1
genes are known to be a backup plan for telomerase. Tel-
omerase is the protein complex essential for maintaining
telomere length [29]. The loss of telomerase results in the
gradual shortening of the telomeres and in eventual cell
Table 5 Candidate regulators in the telomere group of eQTL

eQTL Hotspot Candidate Differentially Expressed? Mu

IV:1500 kb YRF1-1 6.4e-6 5 base insertio

X:20 kb YJL225C 1.1e-4 10 base insertio

XII:780 kb EST2 No 5 m

NUP2 No 7 m

XII:1070 kb SIR3 5.3e-3 12 m

RIF2 No 6 m
arrest, unless the telomeres are lengthened through the
YRF1 pathway [30]. There are many copies of YRF1 lo-
cated in yeast telomeres [31]. YRF1 genes are not
expressed in wild type cells, probably due to telomere si-
lencing. However, it appears that as the telomeres shorten,
silencing information is removed, leading to the expres-
sion of the YRF1 genes [31]. The YRF1 genes contain sev-
eral helicase motifs and are believed to extend the
telomeres through DNA homologous recombination,
largely because other helicases participate in homologous
recombination and genes important in homologous re-
combination are essential for survival without the proper
function of telomerase [31].
Therefore, one possibility to explain the expression of

YRF1 is impaired telomerase function. Telomerase is
made up of five proteins, two of which are functionally
essential: TLC1 and EST2 [31]. EST2, a reverse tran-
scriptase, is located in cis to the eQTL hotspot at
XII:780 kb in the telomere group. We considered the se-
quence of the RM11-1a strain against the S288c strain
and found five missense mutations in the EST2 tran-
script (EST2 was not differentially expressed between
the two strains, p-value > .2), including an R to Q muta-
tion in the reverse transcriptase domain. These muta-
tions suggest that EST2 could be impaired in its
function, allowing for the shortening of telomeres and
the activation of the YRF1 genes. However, we conclude
that the loss of EST2 function is unlikely, given the
popularity of the S288c strain and its use as a "normal"
control for functional telomerase in yeast telomere stud-
ies [30]. We therefore suggest other pathways that po-
tentially regulate YRF1 gene expression.
Another possibility to explain the YRF1 gene expres-

sion is the loss of telomere silencing genes. NUP2
(XII:780 kb) and RIF2/SIR3 (XII:1070 kb), are telomere
silencing genes cis to hotspots in the telomere group.
Dilworth et al. [32] report that NUP2 (part of the nu-
clear pore complex) localizes in the nucleus with yeast
telomeres; ChIP-chip experiments reveal that NUP2 has
a telomere binding preference. These results, combined
with the association found by the GFlasso, suggest that
NUP2 (seven missense mutations) is a player in telomere
silencing. In regards to RIF2, RAP1 is also known to be
involved in telomere silencing [33], and in this role it is
hotspots

tations Function

n 186 nt upstream YRF1 gene

n 237nt upstream YRF1-like gene

issense Telomerase component, reverse transcriptase

issense Nuclear pore protein involved in telomere silencing

issense Involved in telomere silencing

issense Involved in telomere silencing
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assisted by RIF2; deletions in RIF2 affect telomere length
[34]. SIR3 is also recruited to the telomere regions by
RAP1, and cells lacking telomerase have increased con-
centration levels of the SIR3 protein [30]. SIR3 (twelve
missense mutations) and RIF2 (six missense mutations)
are both located in cis to the XII:1070 kb eQTL hotspot.
Previous computational analyses of this dataset have
similarly implicated RIF2 as a possible regulator of telo-
mere genes [35].
A final possibility to explain the YRF1 gene expression

is the loss of silencing sequence in the DNA, leading to
the expression of a YRF1 transcript. YRF1-1 (IV:1500 kb)
and YJL225C (X:20 kb) both have mutations that could
have this effect. YRF1-1 has a five-base indel located 186
bases upstream in its promoter region, and YJL225C has
a ten-base indel located 237 bases upstream in its pro-
moter region. These mutations could potentially remove
silencing information for these genes; the genotype at
the eQTL hotspot is indicative of the expression level in
both cases (p-value = 1e-4 and 1e-6 respectively).
In conclusion, we investigated three possibilities where

mutations in the BY strain could lead to the expression
of at least one YRF1 gene transcript. We suggest that tel-
omerase is not impaired in the BY strain, however, muta-
tions in telomere silencing genes and in promoter
regions of YRF1 genes are likely candidates that may
work together or in parallel to either turn on or silence
YRF1 gene expression.

GFlasso uncovers 17 retrotransposon insertions
The retrotransposon group of eQTL hotspots are located
on V:460 kb, VIII:110 kb, and XV:90 kb. The eQTL mod-
ules for each of these eQTL hotspots differ in size (42, 85,
and 147 genes), although they all influence a common set
of 20 genes, with 35 genes associated with two of the three
eQTL hotspots. Although the VIII:110 kb eQTL module is
enriched for conjugation (due to its close proximity with
the mutated GPA1 gene [17]), neither of the other two
eQTL modules are enriched for a GO category. From our
analysis, we found that the non-overlapping genes in these
eQTL modules are not related to the genes involved in the
overlap of the eQTL modules.
When we considered each of the 35 genes, we found

that 15 of the genes are highly homologous (BLAST
score of less than 1e-200 when queried against each
other) and are annotated as Ty retrotransposons in the
SGD database. We investigated the significance of find-
ing 15 retrotransposons in the same eQTL module. A
computational study [36] identified 331 retrotransposons
in the yeast genome, 94 of which correspond to retro-
transposon genes listed in the SGD. Of these 94 genes,
21 are included in the Brem and Kruglyak [13] dataset;
it is unlikely that 15 of these 21 genes would end up in
the same eQTL module of size 35 (p-value = 1.27e-30).
In yeast there are five types of retrotransposons, re-
ferred to as the Ty genes: Ty1, Ty2, Ty3, Ty4, and Ty5,
with Ty1 being the most frequent in the genome [36].
Retrotransposons are scattered throughout the genomes
of eukaryotes and function like a virus that is transcribed
into an mRNA intermediate. This mRNA intermediate,
through a reverse transcriptase, is then inserted back
into the genome as cDNA, playing an important role in
genome evolution [36,37]. It is estimated that Ty retro-
transposon mRNA accounts for about 1% of the total
mRNA in a cell. However an insertion into the chromo-
somal DNA only happens between 10-7 and 10-8 times
per cell division cycle, suggesting that the insertion of
the Ty genes is regulated post-transcriptionally [38,39].
The transcriptional regulation of the Ty genes happens
through the TATA-box and other information in the
promoter, and has been linked to the suppressor of
transposition (SPT) genes and the STE genes [38].
Due to the sequence homology of these genes, it is

probable that the observed co-expression is a result of
cross-hybridization. However, we were interested to find
genes in the three associated eQTL hotspots that could
account for the transcriptional diversity between the
strains. We found a few candidate STP and STE genes
based solely on location, SPT15 at V:464 kb and STE20
at VIII:94 kb. However, sequence analysis revealed that
SPT15 is perfectly conserved between the RM and the
BY strain. STE20 had eight missense mutations and a
few SNPs in its promoter region.
Interestingly, we found a retrotransposon located in cis to

each of the three eQTL hotspots; each homologous to the
15 retrotransposons discovered in the eQTL module over-
lap. These three retrotransposons, YER138C (V:449 kb),
YHL009W-B (VIII:85 kb), and YOL104W-A (XV:118 kb)
are present in the S288c strain, but not in the RM strain se-
quence. This could be due to errors in the assembly of the
RM sequence, but it likely that the insertion happened after
these two strains diverged. We additionally considered each
of the 15 Ty1 genes in the eQTL module overlap among
these three contributing eQTL hotspots and found that
only one Ty1 gene was present in both strains. Thus, we
have found 17 total (14 in the dataset and 3 in cis to eQTL
hotspots) retrotransposon insertions between the BY and
RM strain, leaving open the possibility for other insertions
as well. Additionally, among the 20 genes in the overlap-
ping set of 35 that were not retrotransposons, we found
that 13 of them were within 10 kb of a retrotransposon site
and therefore could be expressed differently between the
two strains because of the retrotransposon.
GFlasso has therefore uncovered a case where retro-

transposon insertions have occurred since the BY and
RM strain diverged. The occurrence of such retrotrans-
poson insertion events in separate populations is not
surprising and can be found by the direct comparison of
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the genome sequences of the two yeast strains. However,
our analysis shows that in the absence of the full gen-
ome sequence information, GFlasso has the potential to
discover systematic sequence differences such as gene
insertions by investigating their impact on the expres-
sion levels solely based on an eQTL dataset.

Discussion and conclusions
Many of the previous methods for discovering eQTLs
from genotype and gene-expression datasets have been
concerned with testing the hypothesis of association be-
tween an individual genotype and the expression of each
gene [1]. However, there is a great deal of evidence that
the elements in the genome and transcriptome interact
with each other in performing a biological function; it
has been widely recognized that the computational
methods for detecting eQTLs should take into account
this complex interaction pattern. Structured association
mapping methods are powerful computational methods
that directly map the quantitative-trait (gene-expression)
network to genotypes, explicitly combining information
across multiple correlated traits to increase the power of
detecting association. There are a variety of structured
association mapping methods available including others
that consider gene networks, such as TreeLasso [40], in
addition to other methods that consider population struc-
ture [41] or known information about the genome [42].
Indeed, it is important to take into account the inherent
structures present in the data when looking for associa-
tions. Not only are there powerful methods available, but
these methods are also available in a unified visualization
software framework through GenAMap [16,43], that is
easily assessable by analysts and experimentalists.
In this study, we re-analyzed the eQTL dataset [13] from

the genetic cross of two yeast strains (BY and RM) using a
structured association mapping method called GFlasso
and discussed the new insights into yeast gene regulation
that were provided by our analysis. The yeast eQTL
dataset provides an excellent test-bed for comparing
various computational methods, as it has been extensively
analyzed. We showed that GFlasso, coupled with
additional bioinformatics analysis, led to significant
biological findings that had not been discovered
by other methods, and we demonstrated the potential
of GFlasso for future analyses of eQTL datasets that
are becoming available for various organisms, tissue
types, and diseases.
While the pleiotropic control of multiple genes by a

genetic locus, called an eQTL hotspot, has been previ-
ously reported in analyses of many different eQTL
datasets, our analysis of the yeast eQTL dataset revealed
another layer of complexity in gene regulation by
uncovering the pleiotropic effect of multiple genetic loci
on multiple genes. The literature has yet to report this
type of pleiotropic effects of multiple contributing gen-
etic loci. Although our analysis in this study was focused
on yeast, we suspect that the pleiotropic regulation of
genes by multiple contributing eQTL hotspots is com-
monplace in many other eQTL datasets. Our results
show that it may be worthwhile to revisit eQTL datasets
with this new perspective, especially as more powerful
computational methods become available. Furthermore,
our results demonstrate the advantages of using struc-
tured association mapping in future studies to uncover
weak signals and also of considering multiple genomic
regions when identifying regulatory genes.
Our close investigation of the three groups of eQTL

hotspots that control an overlapping set of genes led to
new insights into Ribi gene regulation, telomere silencing,
and retrotransposon activity and suggested potential regu-
lators. By identifying missense and promoter mutations in
the full DNA sequence of the candidate regulators, in
addition to validation knock-out experiments, we provided
strong evidence that these candidate regulators influence
the gene expression levels of many genes in these bio-
logical pathways. In addition, we showed that prior studies
of these individual genes in the literature support many of
the hypotheses that the candidate regulators have the
functional role suggested by our analysis. As yeast is one
of the model organisms that have been studied extensively,
a plethora of information is already available. This infor-
mation includes the full genome sequence as well as de-
tailed investigations of many of the genes; we were able to
confirm the results of our analysis by comparing the re-
sults with this information. For many complex diseases, in
other organisms where the same kind of extensive know-
ledge base is not yet available, we expect structured associ-
ation mapping to serve as a powerful computational tool
for new discoveries.
Our bioinformatics analysis of the three groups of

eQTL hotspots opens up many research questions on
the regulation of Ribi genes and telomere silencing that
need to be further investigated in follow-up studies. Al-
though our analysis suggests that the candidate regula-
tors on different eQTL hotspots affect the same set of
genes in a coordinated manner, understanding the exact
mechanism of such coordination would require further
research. For example, NUP2 and SIR3 on two different
loci in the telomere group of eQTL hotspots have been
found to regulate telomere silencing in both this analysis
and previous studies of these genes. However, exactly
how this interaction between these two genes occurs re-
mains unexplored. This novel interaction could lead to
further insight into how NUP2 is involved in telomere
silencing and perhaps uncover further interactions be-
tween various genetic loci that turn genes on and off.
Finally, GFlasso is designed to identify additive effects

of multiple genetic loci on correlated traits, and thus,
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the effects of multiple eQTL hotspots on each gene were
additive. An interesting future research direction would
be to consider epistatic interactions among multiple
eQTL hotspots, where the effect of a given eQTL
hotspot is not independent of the genotypes of other
eQTL hotspots. As detecting epistatic effects on individ-
ual genes is widely known as a computationally intensive
task, the more challenging problem of detecting epistatic
effects on multiple genes with pleiotropic effects would
require a significant advance in computational tools.

Methods
Creating a network from gene expression data
GFlasso [7] takes a gene-interaction network as input,
along with the genotype and gene-expression data, and
performs a correlated association analysis to identify
genomic regions that perturb correlated traits in the net-
work. In order to obtain a gene-interaction network to
use as an input to GFlasso, we used the algorithm for
learning a topological overlap matrix as described in
Zhang & Horvath [14] that was applied to the same
dataset in Zhu et al. [9]. The resulting network has the
properties of being modular and scale free with a few
hub genes having high connectivity and controlling
many other genes. Genes that appear correlated in this
network often share common functionality and therefore
are likely to be regulated by the same regions of the gen-
ome [9]. Complete details of our network construction
method are available in Additional file 1: Supplementary
Methods.
In order to improve the computational efficiency of

running GFlasso, instead of performing a single GFlasso
analysis on the full network of 5637 genes, we divided
the full network into a set of smaller subnetworks, ran
GFlasso on each subnetwork in parallel, and combined
the results. We divided the full network into subnet-
works so that the main connectivity structure with hub
nodes and strong edges in the original network is pre-
served, while edges for weak correlation are ignored. We
first identified connected components (four of size 16,
29, 45, and 3429) in the full network, where there are no
edges going across different subnetworks. For the large
connected component of size 3429, we ran a graph-
clustering method called spectral clustering [44] to fur-
ther divide it into eight smaller subnetworks. Complete
details are provided in the Additional file 1: Supplemen-
tary Methods.

GFlasso analysis
GFlasso is a sparse multivariate regression method that we
have previously developed for finding a correlated genome
association for multiple related traits given a trait network
and genotype/phenotype dataset [7]. GFlasso extends the
standard lasso [45] that uses an L1 penalization to shrink
the regression coefficients (or parameters for association
strengths) towards zero and obtain a sparse estimate with
many zero-valued coefficients for SNPs with no associa-
tions. The lasso has been widely used for single-trait asso-
ciation analysis. In addition to the lasso penalty, GFlasso
introduces another penalty function, called a graph-guided
fused-lasso penalty, which is constructed from the trait
network and plays the role of enforcing a soft constraint
that highly correlated traits in the network are influenced
by a common region in the genome. Given an N x J geno-
type data matrix X, where N is the number of strains and
J is the number of SNPs, and an N x K gene-expression
data matrix Y, where K is the number of genes, GFlasso
estimates the regression coefficients B, a J x K matrix, for
association strengths by solving the following optimization
problem:

B ¼ argmin
X

k yk � Xβk
� �T

yk � Xβk
� �þ λ

X
k

X
j βjk

���
���þγ

�
X

m;lð Þ∈E f rmlð Þ
X

j βjm � sign rmlð Þβjl
���

���

;

where yk and βk denote the kth column of Y and B. The
last term in the above equation is the graph-guided fused-
lasso penalty that encourages two association strengths
βjm and βjl to have similar values if the mth and lth traits
are correlated and connected with an edge (m,l)ЄE.
The λ and γ in the above equation are the regularization

parameters that control the amount of penalization. We
found the optimal values for λ and γ through cross-
validation as follows. We divided the full dataset into one
training set (104 strains) and one validation set (10
strains), ran GFlasso on the training set for different values
of λ and γ, and computed prediction error on the valid-
ation set. This was done on one split of the data only due
to the computation running time of the algorithm. We se-
lected the values of λ and γ with the lowest validation-set
error as the optimal values. Instead of performing a grid
search over λ and γ, we first fixed γ = 0 and searched for
an optimal value of λ on the log10 scale. The λ with the
smallest prediction error is then used to search for an op-
timal value of γ on the log10 scale. Then, we ran a fine-
tuned search for λ given γ. Once we obtained the optimal
estimate of association strengths B, we considered all
SNP/gene pairs corresponding to non-zero entries in B as
significantly associated.

GenAMap
We developed a software platform called GenAMap
[15,16] that implements the full analysis pipeline of
structured genome-phenome association analysis and
provides tools to visualize the results from the analysis.
The GFlasso analysis pipeline that we used in this paper
is fully integrated into GenAMap, including creating the
trait network and running the GFlasso program on the
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eQTL data. GenAMap presents the user with interactive
visualizations that show the structure of the genome and
the phenome when browsing association results.
GenAMap is a visual analytic tool for a variety of other
spare-structured regression techniques for structured
genome-phenome associations [40,41]. GenAMap also
helps to scale the computational running time of these
algorithms (running time of various algorithms, includ-
ing GFlasso is discussed in our previous work [7,43]).

Identifying mutations between the strains
In order to identify the genotypic differences in genes
across two strains, we downloaded the RM11-1a se-
quence for each protein of interest from the Saccharo-
myces cerevisiae RM11-1a sequencing project website
[46] and used it as the query for BLASTp search [47],
limiting the results to the Saccharomyces cerevisiae
S288c strain. The full protein sequences that we
obtained as results for each query were used to identify
mutations between the two strains. In the cases of pro-
moter mutations, we took the 500 bases upstream of the
gene in the RM sequence and performed a BLASTn
search [47] in the BY strain.

Preparing knock-out yeast strains
Knockout strains of yeast were obtained from Open
Biosystems. Overnight cultures of yeast grown in YEPD
medium at 25°C were diluted ten-fold into 25 ml of
YEPD and grown at 25°C to 5 × 108 cells/ml. Then,
12.5 ml of the culture was grown for another 15 min at
25°C, and 12.5 ml was shifted to 38° C for 15 min. Cells
were harvested by centrifugation, washed once in sterile
water, and cell pellets were frozen.

Measuring the expression levels
To measure the expression levels of the selected genes in
the wildtype and the five knockout mutant strains, we
performed nanoString expression analysis. Total RNA was
extracted using the Qiagen RNeasy Plant kit (Cat #74904).
800 ng of total RNA was mixed with the nanoString probe
set and incubated at 65°C overnight (12-18 hours). The re-
action mix was then loaded on the nanoString nCounter
Prep Station for binding and washing, using the default
program. The resultant cartridge was then transferred to
the nanoString nCounter digital analyzer for scanning and
data collection. A total of 600 fields were captured per
sample. The raw data, in a form of digital counts for each
of the probe target genes in every sample, were first ad-
justed for binding efficiency and background subtraction
using the manufacturer included positive and negative
controls, following nCounter data analysis guidelines. Sec-
ond, mutant strain data sets were normalized to the con-
trol wildtype strain using the 20 included control genes.
The normalized data sets were used to determine if the
expression level of a gene in a mutant was different from
that in the wild-type control. Results were visualized using
Heatmap builder [48].

Additional files

Additional file 1: Supplementary Methods.

Additional file 2: Supplementary GFlasso results.

Additional file 3: Supplementary knockout experiment results.
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