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Abstract

Background: Non-coding small RNAs, ranging from 20 to 30 nucleotides in length, mediate the regulation of gene
expression and play important roles in many biological processes. One class of small RNAs, microRNAs (miRNAs), are
highly conserved across taxa and mediate the regulation of the chromatin state and the post-transcriptional
regulation of messenger RNA (mRNA). Another class of small RNAs is the Piwi-interacting RNAs, which play
important roles in the silencing of transposons and other functional genes. Although the biological functions of the
different small RNAs have been elucidated in several laboratory animals, little is known regarding naturally occurring
variation in small RNA transcriptomes among closely related species.

Results: We employed next-generation sequencing technology to compare the expression profiles of brain small
RNAs between sympatric species of the Japanese threespine stickleback (Gasterosteus aculeatus). We identified
several small RNAs that were differentially expressed between sympatric Pacific Ocean and Japan Sea sticklebacks.
Potential targets of several small RNAs were identified as repetitive sequences. Female-biased miRNA expression
from the old X chromosome was also observed, and it was attributed to the degeneration of the Y chromosome.

Conclusions: Our results suggest that expression patterns of small RNA can differ between incipient species and
may be a potential mechanism underlying differential mRNA expression and transposon activity.
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Background
Recent progress in the development of genomic tech-
niques, including next generation sequencers, has greatly
facilitated transcriptome analysis of ecologically import-
ant animals to reveal variations in mRNA expression
patterns among closely related species and ecotypes
within species [1-3]. Divergence in mRNA expression
patterns is known to contribute to phenotypic evolution
[4,5], although amino acid alterations in proteins are also
important [6]. While a great deal is known about vari-
ation in mRNA expression profiles, information regard-
ing naturally occurring variation in the expression
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patterns of small RNAs is limited, except for a few cases
in plants [7,8] and cichlids [9].
Non-coding small RNAs, ranging from 20 to 30 nucle-

otides in length, mediate the regulation of gene expres-
sion [10-13]. The members of one class of small RNAs,
microRNAs (miRNAs), are typically 20–24 nucleotides
long and are highly conserved across diverse taxa
[11,12]. miRNA post-transcriptionally regulates messen-
ger RNA (mRNA). A miRNA interacts with ten to hun-
dreds of target mRNAs to induce degradation or
suppress translation [12]. Another function of miRNA is
epigenetic modification of genomic DNA: miRNAs
interact with target DNAs to alter the chromatin state
and suppress mRNA transcription [14]. miRNAs com-
prise more than 1% of animal genes [15,16], suggesting
that they play important roles in many biological pro-
cesses. Recent functional studies in laboratory model an-
imals such as mice, flies, and nematodes have
demonstrated that miRNAs are important for regulating
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development, growth, pathogen resistance, and neural
functions [11,12,17-19].
Another class of small RNAs is the Piwi-interacting

RNAs (piRNAs), which are typically 24–32 nucleotides
long and interact with Piwi proteins to suppress the ex-
pression of transposons and other functional genes
[13,20]. piRNAs often possess uridine at the 5’-end (50U)
[13,20]. piRNAs are expressed from intergenic repetitive
elements, active transposons, and piRNA clusters. Im-
portantly, piRNAs may contribute to hybrid dysgenesis
[21,22]. For example, some Drosophila strains contain
transposons as well as piRNAs that inhibit transposon ac-
tivity, whereas other strains lack both transposons and
inhibitory piRNAs. Because piRNAs are maternally trans-
mitted, hybrid progeny resulting from a cross between a
mother lacking both transposons and piRNAs and a father
possessing both will inherit the transposons, but not the
inhibitory piRNAs. This abnormal activity of transposons
in the germ line is likely to result in sterility [21,22]. Thus,
maternally transmitted piRNAs can explain why hybrid
abnormalities are observed in only one direction of the
inter-strain crosses. piRNAs are expressed not only in the
gonads, but also in the brain, and they may be involved in
the regulation of neuronal functions [23-25]. Compared
with miRNAs, piRNAs are less well conserved across taxa.
Yet another class of small RNAs, endogenous small inter-
fering RNAs (endo-siRNAs), are usually 21 nucleotides
and have been found in some taxa, including nematodes
[26], flies [27-29], and mammals [30,31], but it has not
been well characterized in other animals.
Evolutionary genetic studies examining small RNAs

are important for several reasons. First, genome-wide
allele-specific mRNA expression analyses have revealed
that both cis- and trans-regulatory changes contribute to
differential expression of mRNAs among closely related
species [32-34]. Small RNAs can act as trans-regulatory
factors, which contribute to differential mRNA expres-
sion [35]. Additionally, cis-regulatory changes may in-
clude mutations at the target sites of small RNAs [36];
for example, SNPs and insertion-deletion polymor-
phisms were identified within miRNA-binding sites of
3’-untranslated regions [37,38]. Variations in small RNA
transcriptomes and sequences were found to be associ-
ated with phenotypic variation in humans and laboratory
animals. For example, miRNA and miRNA target site
polymorphisms and mutations have been found in
humans and are associated with disease susceptibility
[39-42]. Polymorphism in a miRNA target site is associ-
ated with variation of muscularity in pigs [43]. Second,
small RNAs regulate translation of mRNAs. Therefore,
transcriptome studies of mRNA alone can overlook the
divergence in the total outcome of gene expression
among species. Third, piRNAs may contribute to hybrid
abnormalities (see above), but generalities regarding the
roles of piRNA in different types of hybrid abnormalities
remain unclear.
In the present study, we compared brain small RNA

transcriptomes between incipient species of the threespine
stickleback (Gasterosteus aculeatus). The threespine stickle-
back is a good model for linking ecological and genetic
studies of adaptive evolution and speciation [44-52]. The
threespine stickleback has undergone tremendous diver-
sification over the past few million years [44,45,49]. Evo-
lutionary diversification within the stickleback species
complex led to a speciation continuum, which ranges
from populations with interspecific phenotypic poly-
morphism to strong divergence with near-complete re-
productive isolation [44,53]. Recent genetic studies have
revealed that differences in the expression of genes in-
volved in morphological development [54,55], physi-
ology [56,57], and immune function [58] may underlie
adaptive divergence among populations or species. Sex
bias of the mRNA transcriptome has also been investi-
gated, and genes located on sex chromosomes were found
to be female-biased, likely owing to Y-chromosome degen-
eration and lack of dosage compensation [59]. However,
transcriptome analysis of small RNAs has not yet been
conducted in any stickleback system.
This study focused on Japanese threespine stickleback

species pairs, including a Pacific Ocean form and a Japan
Sea form. These sticklebacks diverged during a period of
geographical isolation between the Sea of Japan and
the Pacific Ocean approximately 1.5–2 million years
ago [60,61]. Currently, they are sympatric in eastern
Hokkaido, but they are reproductively isolated with a
very low level of hybridization [60-62]. In the Japan Sea
form, a chromosomal fusion occurred between linkage
group (LG) 9 and the ancestral Y chromosome (LG 19), re-
sulting in the evolution of the X1X2Y multiple sex chromo-
some system [62]. In contrast, the Pacific Ocean form has
a simple XY sex chromosome system [62]. Previously, we
found that the Pacific Ocean and Japan Sea forms diverge
in male courtship behaviors and female mate choice behav-
iors, contributing to behavioral isolation between these two
forms [60,62,63]. Furthermore, we found that divergence
in the intensity of courtship behaviour, which is important
for mate choice, mapped to a neo-sex chromosome (LG 9).
To better understand the genetic mechanisms affecting

behavioral differences between this Japanese stickleback
species pair, it is essential to understand divergence in
small RNA transcriptomes of the brain. Both miRNAs and
piRNAs play important roles in a diverse array of neuronal
functions such as neuronal differentiation, neural stem cell
renewal, neuronal outgrowth, and dendritic spine mor-
phogenesis [23,24,64]. Furthermore, variation in miRNA
expression patterns in the brain may contribute to behav-
ioral differences among laboratory mouse strains [65].
Additionally, in the Japanese stickleback system, courtship



Figure 1 Size distribution of stickleback brain miRNAs. The average of four individuals is shown for each group.
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dysfunction may exist in hybrids because a substantial
number of hybrids did not perform any courtship behav-
ior in a previous experiment (Supplementary data in [61]).
Therefore, it is necessary to examine whether small RNAs,
especially piRNAs, which may be regulating transposon
activity in the brain, affect hybrid behavior. Here, we char-
acterized the divergence in small RNA transcriptomes in
the brain between the species pairs of Japanese threespine
stickleback.
Figure 2 miRNA expression profile in threespine stickleback brains. T
among the total read number of annotated miRNAs. Only miRNAs whose e
average of four individuals is shown for each group. Homologous zebrafish
Results and discussion
miRNA transcriptome
We conducted small RNA sequencing of four males and
four females from both the Pacific Ocean and the Japan
Sea forms using the Illumina Genome Analyzer IIx.
After quality control of the sequence reads, data was col-
lected from 26.2 ± 3.3 (mean ± SD) million reads per
fish (Additional file 1: Table S1). Most of these reads
(23.7 ± 2.9 million reads; 86.9–94.6% of the total reads)
he area indicates the fraction of read numbers of particular miRNAs
xpression is higher than 3% of all annotated reads are shown. The
miRNA (blast, E < 10-3) are shown in parentheses.
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were located in the Ensembl stickleback miRNA data-
base. More than 50% of these small RNAs were 22 nu-
cleotides in length (Figure 1). In total, 1300 isoforms of
miRNA were detected in the brain (924 in the Pacific
Ocean males, 924 in the Pacific Ocean females, 916 in
the Japan Sea males, and 884 in the Japan Sea females).
miRNA expression profiles demonstrated that miRNAs
homologous to mir21, mir100, let7, mir101, mir143, and
mir9 were the most abundant in the stickleback brain,
regardless of the species or sex (Figure 2). Most other
miRNAs were expressed at relatively low levels (less than
3% of the annotated reads).
To elucidate the variation in the miRNA transcriptomes,

we conducted principal component analysis (Figure 3;
Additional file 2: Table S2). The miRNA transcriptomes of
the Pacific Ocean and the Japan Sea forms make distinct
clusters. Interestingly, the Japan Sea males and females
make distinct clusters, whereas the miRNA transcriptomes
of the Pacific Ocean males and females overlapped. These
data suggest that the magnitude of sex differences of
miRNA expression levels might differ between species.
Figure 3 Principal component analysis (PCA). The first PC (PC1) and sec
The loading components are shown in Table S2. The transcripts with loadin
respectively, are shown in the figure. The asterisks indicate the transcripts t
Bonferroni correction (Table 2).
We identified several miRNAs that were differentially
expressed between species (Bonferroni correction of ana-
lysis of variance [ANOVA]; Tables 1 and 2). Although
quantitative trait loci (QTL) mapping revealed that LG9
contained a courtship display QTL, no miRNAs expressed
from LG9 showed significantly different expression levels
between species after Bonferroni correction (Table 1). We
identified a miRNA homologous to the zebrafish mir7 that
was differentially expressed between the stickleback
species. In mammals, mir7 expression levels in the brain
can change after hyperosmolar stimuli [66] and regulate
growth factor signalling pathways [67]. Another miRNA
differentially expressed between species, mir30, may be in-
volved in axon guidance [68].
Sex differences in the expression levels were identified

for several miRNAs (Tables 2 and 3). Interestingly, all sex-
biased miRNAs belonged to the let-7 family (Table 3) [69].
miRNAs of the let-7 family are highly conserved across
taxa and are important during development [70,71]. Two
sexually dimorphic miRNAs (ENSGACT00000028241
and ENSGACT00000029064) were expressed from LG19;
ond PC (PC2) explained 34.5 and 17.9% of the variances, respectively.
g component values larger than 0.75 and 0.70 for PC1 and PC2,
hat were differentially expressed between the sexes by ANOVA with



Table 1 miRNA differentially expressed between species

Transcript ID LG Start
position

Median reads per million (RPM) ± S.D. Zebrafish homolog

Pacific Ocean
males

Pacific Ocean
females

Japan Sea
males

Japan Sea
females

ENSGACT00000029029 I 7684495 2852.3 (227.8) 4343.0 (1716.7) 10218.3 (1270.0) 4026.2 (860.8) mir22a-1

ENSGACT00000028961 III 7312510 563.3 (78.4) 1250.9 (684.9) 3683.1 (408.8) 1115.0 (176.9) mir7a-3

ENSGACT00000028970 VI 4231011 2465.3 (127.5) 2270.1 (62.9) 1858.6 (244.0) 1966.8 (141.3) mir30c

ENSGACT00000029035 XI 1952924 9700.4 (165.6) 11004.3 (1503.8) 14871.2 (475.2) 12259.0 (332.2) mir152

ENSGACT00000028984 XIII 7256736 609.2 (80.5) 1294.3 (679.4) 3601.1 (393.0) 1134.8 (168.2) mir7b

ENSGACT00000029072 XIX 2936579 547.6 (75.4) 1228.1 (681.4) 3503.5 (381.2) 1073.8 (169.6) mir7a-1

ENSGACT00000029039 XX 15698389 568.3 (73.6) 1245.5 (680.7) 3560.3 (396.7) 1099.6 (167.8) mir7a-2

LG: linkage group.
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both of these were female-biased. In species with an XY-
sex chromosome system, suppression of recombination
can lead to degeneration of the Y chromosome [72,73].
Unless dosage compensation mechanisms evolve, expres-
sion of genes located on the X-specific region becomes
female-biased [74]. Therefore, we investigated the rela-
tionship between Y-degeneration and sex differences in
miRNA expression levels. We found that expression of all
miRNAs derived from the X-specific region (i.e. the coun-
terpart region of the Y is likely degenerated) were female-
biased, whereas expression of miRNA derived from the
pseudoautosomal region was not necessarily female-
biased (Figure 4), and log2 (fold difference between male
and female) significantly differed between the pseudo-
autosomal and the X-specific regions (Mann–Whitney U
test, U = 7, Z = 814.5, P < 0.001, N = 17). These results
Table 2 ANOVA of miRNA

Transcript ID LG Species

F P

ENSGACT00000029029 I 34.2 <0.001

ENSGACT00000028961 III 44.5 <0.001

ENSGACT00000028970 VI 25.9 <0.001

ENSGACT00000029035 XI 57.6 <0.001

ENSGACT00000028984 XIII 42.6 <0.001

ENSGACT00000029072 XIX 41.2 <0.001

ENSGACT00000029039 XX 42.1 <0.001

ENSGACT00000029075 IV 4.6 0.053

ENSGACT00000028051 IV 0 0.971

ENSGACT00000028218 VII 0 0.852

ENSGACT00000028988 XII 0 0.97

ENSGACT00000028001 XVII 0 0.956

ENSGACT00000029000 XVII 0 0.966

ENSGACT00000029064 XIX 5.1 0.043

ENSGACT00000028241 XIX 0 0.976

LG: linkage group.
Bold letters indicate significance even after Bonferroni correction (P < 0.0003).
suggest that Y chromosome degeneration may have a sub-
stantial impact not only on mRNA expression [59], but
also on miRNA expression.
Because miRNAs can target many mRNAs [75,76], di-

vergence in miRNA expression patterns may have sub-
stantial effects on the expression patterns of many
mRNAs. Further experimental studies examining the
roles of small RNAs in fish will be necessary to under-
stand the functional effects of the miRNA transcriptome
variation. This would be possible by developing either
transgenic fish specifically overexpressing small RNAs or
small RNA-deficient knockout fish [77-81].

Small RNAs homologous to repetitive sequences
Small RNAs with no matches in the stickleback non-
coding RNA database were further analyzed. A histogram
Sex Species X Sex

F P F P

5.9 0.032 46.1 <0.001

8.8 0.012 39.6 <0.001

0.1 0.782 2.9 0.115

0.9 0.353 23.8 <0.001

8.7 0.012 39.8 <0.001

8.0 0.015 38.2 <0.001

8.4 0.013 38.2 <0.001

50.3 <0.001 0.0 0.926

84 <0.001 29.2 <0.001

77.9 <0.001 26.1 <0.001

83.1 <0.001 28.8 <0.001

76.5 <0.001 27.9 <0.001

83.2 <0.001 28.9 <0.001

51 <0.001 0.0 0.963

84.3 <0.001 29.1 <0.001



Table 3 miRNA differentially expressed between males and females

Transcript ID LG Start
position

Median reads per million (RPM) ± S.D. Zebrafish homolog

Pacific Ocean
males

Pacific Ocean
females

Japan Sea
males

Japan Sea
females

ENSGACT00000029075 IV 20044816 1606.0 (181.4) 2616.6 (434.6) 1421.9 (60.4) 2339.2 (396.8) mirlet7i

ENSGACT00000028051 IV 19861309 20839.3 (1126.5) 22453.2 (1081.8) 18010.6 (611.4) 25558.9 (1427.5) mirlet7a-3

ENSGACT00000028218 VII 18314432 19933.6 (1139.6) 21367.4 (1035.2) 17101.4 (549.5) 24133.6 (1426.5) mirlet7a-4

ENSGACT00000028988 XII 12165589 20768.4 (1137.2) 22362.8 (1085.0) 17924.8 (600.1) 25445.9 (1434.9) mirlet7a-6

ENSGACT00000028001 XVII 11962085 20520.0 (1120.3) 21925.0 (1071.1) 17736.6 (610.0) 24909.7 (1419.4) mirlet7a-1

ENSGACT00000029000 XVII 3393574 20777.3 (1135.5) 22362.4 (1084.3) 17935.0 (602.4) 25456.6 (1431.4) mirlet7a-6

ENSGACT00000029064 XIX 4582643 1608.3 (184.2) 2633.7 (436.6) 1411.8 (66.8) 2327.6 (395.7) mirlet7i

ENSGACT00000028241 XIX 4785031 20810.0 (1125.6) 22433.4 (1083.4) 17991.0 (609.0) 25531.1 (1426.0) mirlet7a-3

LG: linkage group.
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of the read length of these small RNAs revealed two
peaks, with one peak at 22 nucleotides and the other at
27–29 nucleotides (Figure 5). The fraction of large-sized
small RNAs may contain piRNAs, whereas the other
fraction may correspond to novel miRNAs and/or endo-
siRNAs. A histogram of reads per million (RPM) of the un-
identified small RNAs revealed that most were expressed
at low levels, with only a few expressed at high levels
(Figure 6). Thirty-one novel small RNAs expressed at rela-
tively high abundance (mean RPM > 50 in at least one of
the four groups) could be classified into 17 isoforms on the
basis of sequence identity (Additional file 3: Table S3).
A homology search against the piRNABank database

revealed that some of these were similar to previously
reported piRNAs (Table 4). Additionally, seven isoforms
contained 50U (T in Table 4), which is often found in
previously reported piRNAs. However, compared with
Figure 4 Female-biased expression of miRNA expressed from the non
Black circles indicate small RNAs on the pseudoautosomal region, whereas
RNA, for which it was not clear whether the RNA was located on the pseud
statistical analysis, the grey circle was excluded. Data from the Japan Sea a
sequence assembly on the ensembl is inverted after 3.822 Mbp, physical lo
miRNAs, piRNAs are less conserved across taxa. There-
fore, we examined whether these 17 small RNAs showed
homology to repetitive sequences such as transposons.
For all 17 isoforms, multiple homologous sites were iden-
tified in the stickleback genome (Table 5). Most of these
potential small RNA target sites overlapped with repetitive
sequences (Tables 5 and Additional file 4: Table S4). Four
isoforms (iso-smRNA6, 9, 12, and 13) showed a high level
of homology to the non-long terminal repeat (non-LTR)
retrotransposon. One isoform (iso-smRNA5) was hom-
ologous to the LTR retrotransposon and two isoforms
(iso-smRNA11 and 17) were homologous to ERV1-type
retrovirus genes. One (iso-smRNA8) was similar to a
DNA transposon. Because we did not confirm that these
sequences actually bind to Piwi proteins, we could not
exclude the possibility that the identified sequences are
not piRNAs. However, all of these were longer than 24
-recombining region of the X chromosome (linkage group 19).
white circles indicate small RNAs from the X-specific region. A small
oautosomal or X-specific region, is indicated by a grey circle. For

nd Pacific Ocean fish were pooled. Because the order of the LG19
cations on LG19 followed [62]. Error bars indicate S.E.



Figure 5 Size distribution of non-annotated small RNAs. The average of four individuals is shown for each group.
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nucleotides, and some of them contained the 50U. Re-
cent studies have demonstrated that retrotransposons
are active in the adult mammalian brain and are thought
to increase neuronal function diversity [82]. Therefore,
regardless of whether these sequences are piRNAs, it is
interesting that small RNAs highly homologous to
transposons are expressed in the stickleback brain.
Figure 6 Histogram of reads per million (RPM) of non-annotated sma
The remaining six and three isoforms overlapped with
repetitive sequences homologous to tRNA and rRNA, re-
spectively. Previous studies also identified a number of
tRNA-derived small RNAs in humans [83,84], Giardia
lamblia [85], and zebrafish [86]. These tRNA-derived small
RNAs may contribute to gene regulation [84], although lit-
tle is yet known about their functions. Interestingly, some
ll RNAs. The average of four individuals is shown for each group.



Table 4 Small RNAs with nucleotide lengths larger than 25 nt

smallRNA ID Sequence Length (nt) Hit in the piRNABank E-value

iso_smRNA1 CCCTCGGTTCTGGCGTCAAGCGGGCCGGC 29 No hit -

iso_smRNA2 GCATGTGGTTCAGTGGTAGAATTCTCG 27 hsa_piR_018570 0.0053

iso_smRNA3 GCATTGGTGGTTCAGTGGTAGAATTCTCGC 30 dr_piR_0029993 0.0000065

iso_smRNA4 GCATTGTGGTTCAGTGGTAGAATTCTCGCC 30 hsa_piR_018570 0.00065

iso_smRNA5 GCCCGGCTAGCTCAGTCGGTAGAGCATGA 29 hsa_piR_000794 0.000017

iso_smRNA6 GGGTTCGATTCCCGGTCAGGGAACCA 26 No hit -

iso_smRNA7 GGTTCCATGGTGTAATGGTTAGCACTCTG 29 hsa_piR_020582 0.000019

iso_smRNA8 GGTTCTATGGTGTAATGGTTAGCACTCTG 29 hsa_piR_020582 0.00011

iso_smRNA9 GTTGTCGTGGCCGAGTGGTTAAGGCAATG 29 hsa_piR_015249 0.0054

iso_smRNA10 GTTTCCGTAGTGTAGTGGTTATCACGTTCG 30 rno_piR_005901 0.0000065

iso_smRNA11 TCCCATATGGTCTAGCGGTTAGGATTCCT 29 dr_piR_0027014 0.018

iso_smRNA12 TCCCTGGTGGTCTAGTGGTTAGGATTCGGC 30 ona_piR_166322 0.0000065

iso_smRNA13 TCCCTGTGGTCTAGTGGTTAGGATTCGGCG 30 ona_piR_166322 0.00049

iso_smRNA14 TCCTCGTATAGTGGACAGTATCTCCGCC 28 No hit -

iso_smRNA15 TGAAAGACAACTCTTAGCGGTGGATC 26 No hit -

iso_smRNA16 TGCGACCTCAGATCAGACGAGACAACCC 28 dr_piR_0026826 0.0056

iso_smRNA17 TGGCTTCCTAAGCCAGGGATTGTGGG 26 No hit -

E-value smaller than 0.05 is shown here.
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transposons are derived from tRNAs [87,88], so there ap-
pears to be an interesting link between tRNA and small
RNAs.
Finally, we found that the iso-smRNA9, whose poten-

tial targets are predicted to be non-LTR transposons,
was more highly expressed in the Japan Sea sticklebacks
than in the Pacific Ocean sticklebacks (ANOVA, F1, 13 =
14.5, P = 0.002). Although expression levels of some
other piRNAs may differ between different species and
sexes, the differences were not significant after Bonferroni
correction (Additional file 5: Table S5). None of the non-
annotated small RNAs showed sex differences in the ex-
pression levels (Additional file 5: Table S5).
Thus, we identified small RNAs homologous to repeti-

tive sequences such as RNA and DNA transposons.
Hybrids between species often exhibit courtship dys-
function [89-94]. Abnormal transposon activity in hy-
brids may cause hybrid courtship dysfunction, but this
has not been tested in any organism. Intra- and inter-
population variation in the presence and absence of
non-LTR retrotransposons has been found in stickle-
backs [95]. In addition, our analysis involving whole gen-
ome sequence comparisons also revealed that DNA
transposon insertion sites diverge between the Pacific
Ocean and the Japan Sea sticklebacks (Kitano, unpub-
lished data). Therefore, further studies examining vari-
ation in transposon activity between the different species
and transposon activity in the hybrids will lead to a bet-
ter understanding of speciation mechanisms.
Conclusions
Our study demonstrates that closely related species can
show divergence in expression patterns of small RNAs,
including miRNAs and piRNAs. Some of the sex differ-
ences in miRNA expression levels might result from Y-
chromosome degeneration. Therefore, variation in small
RNA transcriptomes should be examined as a potential
mechanism underlying phenotypic divergence between
incipient species.

Methods
Small RNA sequencing
Sympatric Pacific Ocean and Japan Sea sticklebacks were
collected using minnow traps from the Bekanbeushi
River System on Hokkaido Island, Japan in June 2007
[60,62]. Fish were brought to a laboratory to examine
the brain transcriptome of courting male and spawning
female fish, and mating experiments were conducted in
June and July 2007, as described previously [60,63,96].
Once the male fish had constructed a nest, a conspecific
gravid female fish was placed in the same tank. Immedi-
ately after the female fish had inspected the nest, both
the male and the female fish were removed from the
tank prior to spawning. After immersing the fish in a le-
thal dose of tricaine methanesulfonate, the brains of
each fish were dissected and stored separately at −70°C.
For RNA sequencing, we used four Pacific Ocean

male, four Pacific Ocean female, four Japan Sea male,
and four Japan Sea female fish (N = 16 in total). Total



Table 5 Characterization of small RNAs with high homology to repetitive sequences

smallRNA ID Length (nt) Blast hits (E < 10-4) Potential target repeat Description Median reads per million (RPM) ± S.D of the longest isoform

Pacific Ocean
male

Pacific Ocean
female

Japan Sea
male

Japan Sea
female

iso_smRNA1 29 scaffolds(7) LSU-rRNA_Mfr rRNA 72.6 (17.5) 56.9 (43.6) 58.9 (11.4) 22.6 (9.8)

iso_smRNA2 27 LG1(12) tRNAGlyGGC_CB tRNA 64.2 (20.9) 51.9 (71.8) 56.9 (101.1) 25.5 (13.7)

iso_smRNA3 30 LG1(12), LG12(1) tRNAGlyGGC_CB tRNA 52.6 (7.5) 34.4 (143.5) 91.1 (32.1) 18.1 (8.7)

iso_smRNA4 30 LG1(12), LG12(1) tRNAGlyGGC_CB tRNA 308.0 (161.0) 131.8 (611.1) 729.2 (366.5) 179.7 (105.6)

iso_smRNA5 29 LG1(2), LG7(2), LG8(3), LG10(1),
LG11(7), LG15(1), LG16(1), LG17(1),
scaffolds(86)

Gypsy-14_DAn-I LTR retrotransposon 304.6 (162.0) 120.7 (572.5) 51.5 (266.1) 22.0 (30.8)

iso_smRNA6 26 LG3(1), LG7(1), LG11(2), LG12(1),
LG17(5), LG18(1), LG19(1), LG20(1)

SINE2-1_EC Non-LTR Retrotransposon 79.0 (29.0) 67.7 (28.7) 83.7 (30.3) 62.3 (23.4)

iso_smRNA7 29 LG3(54), LG5(1), LG9(1), LG11(2),
LG12(1), LG13(1), LG17(1), LG19
(1), LG20(32), scaffolds(30)

tRNA-Val-GTA tRNA 86.9 (22.0) 57.2 (123.0) 25.7 (16.6) 12.7 (10.8)

iso_smRNA8 29 LG5(1), LG9(1), LG11(2), LG12(1),
LG13(1), LG17(1)

DNA-TTAA-5_NV DNA transposon 219.9 (50.9) 138.8 (312.8) 53.7 (47.9) 41.5 (23.3)

iso_smRNA9 29 LG8(1), LG9(1), LG11(1), LG12(1),
LG13(1), LG16(1), scaffolds(5)

SINE2-8_SP Non-LTR Retrotransposon 72.0 (10.9) 58.4 (61.2) 15.2 (17.9) 9.9 (12.2)

iso_smRNA10 30 LG7(6), LG18(10), scaffolds(44) tRNA-Val-GTA tRNA 309.1 (78.0) 150.1 (701.4) 581.7 (417.1) 153.0 (99.2)

iso_smRNA11 29 LG1(1), LG4(1), LG7(1), LG12(1),
scaffold(1)

LTR10A2_SS ERV1-type endogenous retrovirus 292.2 (76.3) 177.0 (434.9) 364.8 (124.6) 155.6 (74.5)

iso_smRNA12 30 LG3(1), LG7(1), LG11(2), LG12(1),
LG17(5), LG18(1), LG19(1), LG20(1)

SINE2-1_EC Non-LTR Retrotransposon 94.4 (21.8) 29.9 (90.1) 51.3 (19.5) 19.9 (7.5)

iso_smRNA13 30 LG3(1), LG7(1), LG11(2), LG12(1),
LG17(5), LG18(1), LG19(1), LG20(1)

SINE2-1_EC Non-LTR Retrotransposon 135.5 (47.2) 43.5 (124.1) 101.0 (54.8) 35.9 (12.3)

iso_smRNA14 28 LG7(7), LG12(1) tRNA-Asp-GAY tRNA 86.0 (16.3) 68.4 (51.3) 140.7 (166.9) 74.8 (25.0)

iso_smRNA15 26 scaffolds(10) LSU-rRNA_Mfr rRNA 142.1 (40.6) 122.1 (42.0) 193.3 (64.9) 69.9 (27.3)

iso_smRNA16 28 scaffolds(10) LSU-rRNA_Mfr rRNA 140.7 (52.4) 170.6 (82.9) 140.1 (29.1) 74.3 (26.3)

iso_smRNA17 26 LG12(1) LTR41_SS ERV1-type endogenous retrovirus 76.8 (3.3) 57.2 (20.0) 64.1 (35.9) 41.0 (5.8)

The numbers in parentheses in the Blast hits indicate the number of hits on that linkage group.
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RNA was isolated using TRIzol Reagent (Life Tech-
nologies, Grand Island, NY, USA), and the quality of
RNA was evaluated using the BioAnalyzer (Agilent,
Santa Clara, CA, USA). RNA Integrity Number (RIN)
ranged from 9.3 to 10 with the median of 10. Libra-
ries were constructed using the TruSeq Small RNA
Sample Preparation Kit (Illumina, San Diego, CA, USA).
Small RNAs with 20–30 nucleotides were isolated ac-
cording to the manufacturer’s instructions. Sequencing
was performed using the Genome Analyzer IIx (Illumina,
San Diego, CA, USA) at the University of Tokyo. We
used 16 lanes of the Genome Analyzer IIx (one fish
per one lane).
miRNA analysis
Sequence analyses were conducted using the CLC Gen-
omics Workbench Software (CLC bio, Katrinebjerg,
Denmark). First, we discarded reads with a low quality
score (quality score on the Phred scale of less than 0.05),
very short length (less than 14 bp), or three or more am-
biguous nucleotides (Additional file 1: Table S1). Next,
identical reads were clustered together to group different
types of small RNAs. Next, the sequences were mapped
against the Ensembl stickleback miRNA database (http://
asia.ensembl.org/info/data/ftp/index.html) with two nu-
cleotides mismatches allowed.
Principal component analysis (PCA) of reads per

million (RPM) was conducted on a Pearson correlation
matrix. To identify differentially expressed miRNAs be-
tween various species and sexes, statistical analyses were
conducted on the square-root transformed RPM of each
miRNA. Using the statistical package R [97], analysis of
variance (ANOVA) was conducted to examine whether
the species, sex, and their interactions significantly
influenced RPM. Because the patterns of sex differences
varied between species (see Figure 3), we included the
interaction term for the analysis. The Bonferroni correc-
tion was used for multiple comparison correction.
Shapiro-Wilk and Bartlett’s tests were used to test for
normal distribution of the data and homogeneity of vari-
ances, respectively. None of the miRNAs violated the as-
sumptions of the normal distribution or homogeneity of
variances after Bonferroni correction. Only miRNAs
with a mean RPM higher than 1000 in at least one of
the four groups (Pacific Ocean male, Pacific Ocean fe-
male, Japan Sea male, or Japan Sea female) were used for
PCA and ANOVA.

piRNA analysis
Small RNAs with no match to any sequences in the
stickleback miRNA database were mapped against se-
quences in the Ensembl stickleback non-coding RNA
database (http://asia.ensembl.org/info/data/ftp/index.html),
which includes transfer RNA (tRNA), ribosomal RNA
(rRNA), small cytoplasmic RNA, small nuclear RNA, small
nucleolar RNA, microRNA precursors, long intergenic
non-coding RNAs, and other miscellaneous RNA. The
parameters used were the same as above. Small RNAs
with no match to any sequences in the stickleback
non-coding RNA database may contain piRNAs; thus,
we further analyzed these small RNAs to identify
stickleback piRNAs. We first examined non-annotated
small RNAs with nucleotide lengths >25 because this
fraction is more likely to contain piRNAs. Among
these longer small RNAs, we examined small RNAs
with a mean RPM higher than 50 in at least one of
the four groups (Pacific Ocean male, Pacific Ocean fe-
male, Japan Sea male, or Japan Sea female). Although
some small RNAs showed differences in length, identi-
cal sequences were observed (Additional file 3: Table S3);
hence, identical reads of different sizes were considered to
be the same isoform.
To examine whether these small RNAs contain ho-

mologous sequences against any repetitive sequences,
the longest isoforms were blasted against the stickle-
back genome (BROADS 1.56) using the default pa-
rameters (match = 1; mismatch = −3; gap existence =
5; gap extension = 2) of the CLC Genomics Work-
bench software. Next, flanking sequences (3,000 bp of
upstream and 3,000 bp of downstream) were down-
loaded using Perl script [98]. We then examined whe-
ther these regions contained any repetitive sequences
using the CENSOR software [99] on the Genetic Informa-
tion Research Institute website (http://www.girinst.org/).
When hits of repetitive sequences were identified in
the region, we investigated whether the small RNA se-
quences overlapped with repetitive sequences. We also
blasted these sequences against the piRNABank data-
base [100].
To identify differentially expressed piRNAs between

different species and sexes, statistical analysis was con-
ducted on the square-root transformed RPM. Square-
root transformed RPM values were subjected to ANOVA,
followed by Bonferroni correction. Shapiro-Wilk and
Bartlett’s tests were used to test for normal distribution
of the data and homogeneity of variances, respectively.
Two small RNAs, iso_smRNA3 and iso_smRNA14, did
not meet the assumptions of homogeneity of variance
(Bartlett’s test, K-squared = 15.2, P = 0.0017) and normal
distribution (Shapiro-Wilk test, W = 0.779, P = 0.0014),
respectively. For these small RNAs, we also conducted
a Mann–Whitney U-test to confirm that these two
small RNAs did not exhibit any differences between
sexes and species. Because the interaction between the
sexes and different species showed no significant effect
for any of these small RNAs, the interaction term was
excluded.

http://asia.ensembl.org/info/data/ftp/index.html
http://asia.ensembl.org/info/data/ftp/index.html
http://asia.ensembl.org/info/data/ftp/index.html
http://www.girinst.org/
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Additional files
Additional files: Tables S1-S5. All of the short read se-
quences are deposited in the Sequence Read Archive
(DRA) of the DNA Data Bank of Japan (DDBJ): acces-
sion number DRA000919.

Additional file 1: Table S1. Sequence raeds from each fish.

Additional file 2: Table S2. Component loading of principal
component analysis.

Additional file 3: Table S3. Non-annotated small.

Additional file 4: Table S4. Repetitive sequences homologous to small
RNAs.

Additional file 5: Table S3. ANOVA of non-annotated small RNAs.
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