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Background: Streptococcus pneumoniae causes over one million deaths worldwide annually, despite recent
developments in vaccine and antibiotic therapy. Host susceptibility to pneumococcal infection and disease is
controlled by a combination of genetic and environmental influences, but current knowledge remains limited.

Results: In order to identify novel host genetic variants as predictive risk factors or as potential targets for
prophylaxis, we have looked for quantitative trait loci in a mouse model of invasive pneumococcal disease. We
describe a novel locus, called Streptococcus pneumoniae infection resistance 2 (Spir2) on Chr4, which influences time
to morbidity and the development of bacteraemia post-infection.

Conclusions: The two quantitative trait loci we have identified (Spir! and Spir2) are linked significantly to both
bacteraemia and survival time. This may mean that the principle cause of death, in our model of pneumonia, is
bacteraemia and the downstream inflammatory effects it precipitates in the host.
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Background
Streptococcus pneumoniae is an important pathogen, re-
sponsible for causing pneumonia, bacterial meningitis,
otitis media and sepsis, in humans. Pneumococcal dis-
ease causes a considerable burden on health services
and is responsible, worldwide, for over 1.2 million deaths
per year in children under the age of 5 years, with many
of these cases occurring in developing countries [1].
New developments in conjugate vaccines are exciting
but are based on the polysaccharide capsule of the
pneumococcus and with more than 90 pneumococcal
serotypes and genetic exchange of the capsular loci be-
tween S. pneumoniae contributing to the enhanced eva-
sion from serotype specific antibody [2,3] alternative
vaccines are still required. The drug of choice for treat-
ment of pneumococcal infections has, for a long time,
been penicillin. However over the last 30 years, resist-
ance to penicillin and other antibiotics in S. prneumoniae
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has spread rapidly [4,5]. It is important to find new
therapeutic targets to aid in the design and discovery of
novel drugs as well as implementing genetic screening
to identify individuals at risk so they can be targeted for
prophylactic treatment.

Determination of genetic factors would open a radic-
ally new approach to prophylaxis and host defence.
Studies of cause of death in adopted children and famil-
ial and twin studies have shown that susceptibility to in-
fectious disease has a strong genetic component [6-9],
but the genetics involved are complex and likely to be
polygenic. The mapping of complex or quantitative trait
loci (QTL) in naturally out-bred populations such as
humans has been limited in success and identifying can-
didate genes has largely been restricted to association
studies. Mouse models have been used to identify QTL
with extensive homologies in humans and this approach
has been successful in identifying infection susceptibility
loci. One particularly successful example is the gene
Nrampl that was identified as a candidate for suscepti-
bility to tuberculosis by genome wide linkage studies in
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mice, and subsequently in humans by case control asso-
ciation studies [10,11].

We have reported previously on a mouse model of sus-
ceptibility to systemic pneumococcal infection in which
BALB/c mice are resistant and CBA/Ca susceptible to in-
tranasal infection with S. pneumoniae D39 [12]. A major
QTL responsible in part for this difference in susceptibility
has been mapped, in progeny of an F, intercross, to prox-
imal chromosome 7 and was named Spirl (Streptococcus
pneumoniae infection resistance 1) [13]. Variants of sev-
eral genes in the human population have been implica-
ted in susceptibility to pneumococcal infection, including
C reactive protein [14], Mannose binding lectin [15],
TIRAP [16] and PTPN22 [17], but the mouse orthologs of
these genes are not located in the Spirl locus [13].

In this present study, mapping of further progeny from
the (BALB/cOlaHsd x CBA/CaOlaHsd)F, (CCBAF,)
intercross has identified a novel QTL on chromosome 4,
which we have named Spir2 (Streptococcus pneumoniae
infection resistance 2). The contribution of this locus to
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susceptibility to pneumococcal infection was confirmed
by congenic mapping.

Results

Identification of a novel QTL (Spir2) on chromosome 4
contributing to both survival time and bacteraemia
Selective genotyping of CCBAF, mice, with phenotypes
representing the extremes of the response after infection
challenge, identified a region of significant linkage on
chromosome 4 with the traits of survival time and bac-
teraemia (Figure 1). The peak of linkage was located at
SNP 4_80 (rs4224562) at 82.5 Mb. The QTL location on
chromosome 4, estimated by the one LOD support
interval, was from SNP 4 47 (rs13477699) at 50.7 Mb to
SNP 487 (rs3022987) at 88.2 Mb and was ~ 38 Mb in
size. The LOD score for the peak of linkage exceeded
the genome wide significance threshold of 3.10 with a
LOD score of 4.56 for survival and 4.25 for bacteraemia.
The QTL identified on chromosome 4 was estimated to
account for 8% of the phenotypic variance. Detection of
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the Spirl locus on chromosome 7 was replicated in this
study, also accounting for ~ 8% of the phenotypic vari-
ance (data not shown).

Effect of genotype at Spir2 on phenotype

In the susceptible group of CCBAF, mice the overall dis-
tribution of genotypes at SNP 4_80 were not signifi-
cantly different from the expected Mendelian ratios.
However, the distribution of genotypes in the resistant
group of CCBAF, mice was significantly different from
the expected 1:2:1 ratio, at SNP 4_80, if genotype had no
effect ()(2 =7.2,df = 2, p = 0.027). There were a higher
proportion of resistant mice heterozygous at this marker,
compared to the proportion of resistant mice with CBA/
Ca or BALB/c homozygosity at SNP 4._80 (Table 1).

In order to investigate the effect of genotype at SNP
4_80 on the time to become moribund, a Kaplan-Meier
survival analysis was performed (Figure 2A). CCBAF,
mice heterozygous for SNP 4_80 showed a significant dif-
ference in the time before exhibiting disease signs when
compared to mice homozygous for BALB/c (p = 0.01) or
CBA/Ca (p = 0.001). The mean and median survival times
were calculated for each CCBAF, genotype group. The
median survival time, at which 50% of the group became
severely lethargic, was 44 hours for both BALB/c and
CBA/Ca genotypes. There was no median survival time
calculated for the heterozygous genotype, as more than
50% of the group survived to the end of the experiment.
The numbers of bacteria in the blood at 24 hours after in-
tranasal infection were also significantly lower in CCBAF,
mice, which were heterozygous for the peak of linkage,
when compared to those which were homozygous for
BALB/c or CBA/Ca at the same SNP (Figure 2B). These
data suggest that being heterozygous at this location on
chromosome 4 is advantageous.

Congenic breeding confirms the contribution of the Spir2
locus to susceptibility to pneumococcal infection

The strategy of congenic breeding was used to replicate
detection of the chromosome 4 QTL and to assess its con-
tribution to the infection phenotype. Incipient congenic

Table 1 Numbers of CCBAF, mice resistant and
susceptible to pneumococcal infection, grouped by their
genotype at SNP 4_80

CCBAF2 genotype at SNP4_80

CBA/Ca Heterozygous BALB/c X P value
Observed
total 16 39 21 0.71 0.701
susceptible 12/16 12/39 14/21 537 0.068
resistant 4/16 27/39 7/21 7.21 0.027

Observed numbers of mice were compared to the expected numbers
(1:2:1 ratio) if genotype had no effect using a x* test.
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strains consisting of different portions of the chromosome
4 QTL from BALB/cBy] on a CBA/CaH background, and
vice versa, were produced using a marker-assisted breed-
ing scheme.

The percentages of heterozygosity observed in the N2
and N3 males used for breeding further generations were
between 37 and 42% for the N2 generation and 7 to 10%
for the N3 generation. Mice with the CBA/CaH Spir2
locus on a BALB/cByJ background were bred to the N6
generation before intercrossing. These incipient congenics
were named BYJCBANG6-4. Mice with the BALB/cByJ
Spir2 locus on a CBA/CaH background were bred to the
N7 generation and were named CBABYJN7-4. The esti-
mated percentage recipient genome in the final incipient
congenic mice tested for infection susceptibility was 99.36
to 99.78%. Therefore these mice were similar to N9 mice
produced by conventional congenic breeding.

BALB/cByJ Spir2 locus on CBA/CaH background
(CBABYJN7-4)

A total of 75 CBABYJN7-4 intercross mice were tested
for susceptibility to S. pneumoniae infection. Of these 75
mice 18 (24%) were resistant to pneumococcal infection
and the remaining 57 (76%) were susceptible. Six of the
susceptible mice survived 50 hours or longer, while the
rest only survived to between 28 and 49 hours.

A survival analysis was performed on the CBABYJN7-4
mice for each SNP on Chr4 and it was found that animals
that were heterozygous at SNP 4_80 survived longer by
comparison with those homozygous for the CBA/Ca allele.
Similar results were found at SNP 4103 (Additional file 1:
Table S2). These results do not achieve statistical signifi-
cance (SNP 4_80 p = 0.064 and SNP 4_103 p = 0.087), yet
are noteworthy because they show the same trend as
the Spir2 QTL detected in the CCBAF,. (Figure 3 and
Additional file 2: Figure S1). There was no difference in
time to morbidity between mice homozygous for BALB/
cBy] and those homozygous for CBA/CaH at any Chr4
marker. There was also no significant difference in the
numbers of bacteria in the blood at 24 hours post-
infection in CBABYJN7-4 mice homozygous for BALB/
cBy]J or CBA/CaH or heterozygous for any of the chromo-
some 4 SNP markers (data not shown).

A total of 64 mice could be divided into 11 haplotypes
based on their combination of genotypes at SNPs 4._38
to 4_103. These groups were called CBABYJN7-4-A to
K (Figure 4). There was no significant difference in
numbers of bacteria in the blood at 24 hours post-
infection between any of the CBABYJN7-4 haplotypes
(data not shown). However, there was a significant dif-
ference between the survival curves of CBABYJN7-4-B
and G (p = 0.014) with a lower risk of disease in the
CBABYJN7-4-G mice compared to the CBABYJN7-4-B
mice (Figure 5).
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Figure 2 Infection phenotypes for CCBAF2 mice heterozygous or homozygous for CBA/Ca or homozygous for BALB/c alleles at SNP
4_80. (A) Kaplan-Meier survival curves, showing the cumulative survival (over time after intranasal infection with S. pneumoniae) for CCBAF, mice
heterozygous, homozygous for CBA/Ca or homozygous for BALB/c at SNP 4_80. Statistical significance (compared to heterozygote, pair-wise
comparison with the Log Rank test) is indicated by p values on the graph. (B) Average numbers of S. pneumoniae (Log CFU/ml) in the blood at
24 hours post-infection for CCBAF, mice grouped by their genotype at SNP 4_80. Error bars represent the standard error of the mean. The
numbers of mice in each group are shown in brackets. Statistical significance (compared to heterozygote, unpaired t-test) is indicated by p values
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Figure 3 Kaplan-Meier survival curves, showing the cumulative
survival for CBABYJN7-4 mice heterozygous, homozygous for
CBA/CaH or homozygous for BALB/cByJ at SNP 4_80.

SNPs 4_38, 4_80 and 4_103 (Figure 6A and Additional
file 3: Figure S2). Mice homozygous for the BALB/cBy]
allele of any of these three SNPS were at significantly
less risk of disease than those homozygous for CBA/
CaH at the same SNP. Survival curves for mice that
were heterozygous for the SNP 4_38, were signifi-
cantly different from those for CBA/CaH homozy-
gotes (p = 0.007), with more heterozygotes surviving.
There were no significant differences in the survival
curves for animals of any of the genotypes for SNP
447, however this marker did follow the same trend
as for SNPs 4_38, 4 80 and 4_103 (data not shown).

Numbers of bacteria in the blood of BYJCBANG6-4
mice were assessed at 24 hours post-infection. There
were significantly more bacteria present in mice homo-
zygous for the CBA/CaH allele at SNP marker 4_38 or
4_47 when compared with mice either heterozygous or
homozygous for BALB/cBy] at the same SNP (p = 0.022
and 0.009 respectively). Although not significant, the
trend was the same for SNP markers 4 80 and 4 103
(Figure 6B).

Analysis of the combination of alleles at SNPs 4_38 to
4._103 was performed on the BYJCBANG6-4 mice. Of the
26 mice, 21 could be placed into one of five different
haplotypes, named BYJCBANG6-4-A to E (Figure 7).
Kaplan-Meier analysis of the five haplotype groups re-
vealed a significant difference in the survival curve of
BYJCBANG6-4-A mice, which were homozygous for
BALB/cBy] at all four SNPs when compared with
BYJCBANG6-4-E mice, which were homozygous for CBA/
CaH at these SNPs (p = 0.017) (Figure 8A). Analysis of
the bacteraemia results at 24 hours post-infection also
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Figure 4 Diagram representing chromosome 4 from the different CBABYJN7-4 haplotype groups named CBABYJN7-4-A to K. The area
spanning SNP markers 4_38 to 4_103 is highlighted with the positions of each the SNP markers used for genotyping shown on the left. Areas
outside of these SNP markers (grey diagonal lines) are either homozygous for the recipient strain or heterozygous. Black represents regions
homozygous for BALB/cByJ, white for regions homozygous for CBA/CaH and those in grey are heterozygous. The total number of mice from
each group that were tested can be seen with the numbers of resistant and susceptible mice below.

revealed a significant difference between BYJCBANG6-
4-A and E mice (p = 0.005). BYJCBANG6-4-E mice had
significantly higher numbers of bacteria present in the
blood when compared with BYJCBAN6-4-A mice, which
had no bacteraemia at 24 hours (Figure 8B).

Discussion

Selective genotyping of CCBAF, mice from the pheno-
typic extremes was successful in identifying a novel QTL
on chromosome 4 (named Spir2) contributing to suscep-
tibility to pneumococcal disease. This type of selective
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genotyping has been implemented in various studies be-
cause it reduces laboratory costs and it is successful in
gaining as much, if not more, information as genotyping
the same number of random mice [18-21]. The Spir2
peak of linkage was situated at SNP 4_80 and CCBAF2
mice that were heterozygous for this SNP had both sig-
nificantly longer survival times and lower levels of bac-
teraemia, following intranasal infection, when compared
with homozygous animals. Infection challenges of the
Chr4 incipient congenic strains confirmed detection of
the Spir2 QTL observed in the CCBAF2 mice, but did
not reduce the size of the critical region.

BYJCBANG6-4 mice, which had the Spir2 region
introgressed from CBA/CaH onto the BALB/cBy]
background, had significantly shorter survival times
after infection and significantly higher levels of bac-
teraemia at 24 hours when compared with mice het-
erozygous for the QTL or homozygous for BALB/
cBy]. The effect of the QTL was different when on
the CBA/CaH background. Interestingly, although
not quite significant, mice heterozygous for SNPs
4_80 and 4_103 on the CBA/CaH background were
less susceptible than those homozygous for CBA/
CaH or BALB/cBy]. These results are similar to the
effect observed in the analysis of the CCBAF2 QTL.
Although the mechanisms are currently unclear,
there have been reported cases in which heterozy-
gous genotypes are advantageous over either homo-
zygous genotype. A well-documented case of this
phenomenon is the sickle cell gene haemoglobin

(Hb) in humans. Carriers of the sickle cell trait are
heterozygous for the Hb genotype (HbAS) and this
heterozygosity seems to be protective against mal-
aria, with lower mortality and parasitaemia when
compared with either homozygous Hb genotypes
(HbSS and HbAA) [22]. The differences observed in
the phenotypes of the incipient congenics in our
study were dependent on the recipient genome and
this highlights the probable contribution of epistatic
interaction effects from the background.

The region containing the Spir2 locus is approxi-
mately 39 Mb in length and overlaps with several
published QTL involved in immunity or susceptibil-
ity to infection; Bbaal (Borrelia burgdorferi - associ-
ated arthritis 1), a locus contributing to severity of
arthritis induced by B. burgdorferi infection [23],
Lprm1 (lymphoproliferation modifier 1), a QTL con-
ferring susceptibility to autoimmune vasculitis [24],
Sle2 (systemic lupus erythmatosus susceptibility 2),
contributing to B cell hyperactivity, an immunogenic
phenotype caused by the autoimmune disease systemic
lupus erythmatosus [25,26] and Marifl (macrophage-
associated risk inflammatory factor 1) which affects
inflammatory phenotypes of macrophages such as
secretion of TNFa and IL-12p40 [27]. It is prema-
ture to speculate whether any of the genes under-
lying these QTLs are shared, but the Marifl locus is
of interest because of the opposite Th1/Th2 bias
of the inbred strains BALB/c and CBA/Ca [28] and
because we [29] and others [30] have shown that
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each group that were tested can be seen with the numbers of resistant and susceptible mice below.

macrophages play an important role in susceptibility
to pneumococci.

The Spir2 locus region contains 169 genes, according
to Ensembl V.65. One strong candidate gene, based on
it's known role in regulating innate immunity, is T/r4
[31], but non-synonymous differences in the sequence of
Tlr4 between BALB/cOlaHsd and CBA/CaOlaHsd were
found to be common to other inbred strains, making it
less likely to play a role in the Spir2 locus (data not
shown). It is clear that sequence analysis of the entire
QTL would aid the prioritisation of other candidate dis-
ease genes for further study.

Conclusions

The Spirl and Spir2 loci are linked significantly to both
bacteraemia and survival time ([13] and this work). This
may mean that the principle cause of death, in our model

of pneumonia, is bacteraemia and the downstream inflam-
matory effects it precipitates in the host.

Methods

Ethics statement

This study was performed in strict accordance with UK.
Home Office guidelines. Both the UK. Home Office and
the University of Leicester ethics committee approved the
protocol. Every effort was made to minimize suffering and
in bacterial infection experiments mice were humanely
culled if they became lethargic. All animal experiments
were carried out at the University of Leicester.

Mice

BALB/cBy] and CBA/CaH were obtained from the MRC
Mary Lyon Centre (MLC) in Harwell and were used for
the congenic breeding scheme. The congenic breeding
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Figure 8 Infection phenotypes for BYJCBAN6-4 mice with different haplotypes. (A) Kaplan-Meier survival curves showing the cumulative
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was performed at the MLC and infection studies were
done at the University of Leicester.

Congenic breeding scheme

A semi-speed congenic breeding scheme was imple-
mented in this study. An alternating set of 73 SNP
markers, spanning the genome, with an average spacing
of 28 Mb, was used in order to reduce cost and time
and ensure good coverage of the genome [32]. During
the first two backcross generations (N2 and N3) the al-
ternate genome scan was performed where at least 20
male progeny for each generation, which were heterozy-
gous for the QTL, were typed genome wide in order to
select the best male for breeding [32,33]. The next genera-
tions (from N4 to N6 or N7) were only genotyped for the

chromosome 4 QTL markers. Once the mice reached the
N6 or N7 generation, female mice heterozygous for the re-
gion of interest were crossed to males heterozygous for
the same SNP markers to produce offspring for infection
testing. Whole litters were tested for susceptibility to
S. pneumoniae.

Bacterial culture and infections

Incipient congenic mice were infected intranasally with
S. pneumoniae D39 as described previously [12,13].
Blood was taken at 24 hours post-infection from the tail
vein (for bacterial culture) and survival times of the mice
were recorded. Mice that survived to the end point of
the experiment (more than 168 hours) were considered
resistant. All mice that succumbed to infection (the
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endpoint was severely lethargic) and had survival times
less than 168 hours were considered susceptible.

DNA extractions

For QTL mapping, DNA from the (BALB/cOlaHsd x
CBA/CaOlaHsd)F, (CCBAF,) intercross, reported in
Denny et al, [13], was used. DNA samples from
CCBAF, mice from the phenotypic extremes were se-
lected for QTL mapping. Thirty eight of the most sus-
ceptible mice (survival < 46 hours and high levels of
bacteria in blood) and thirty eight of the most resistant
mice (survival > 168 hours and no bacteria in blood)
were genotyped for linkage analysis. DNA was diluted to
5 ng/pl in double-distilled H,O.

In congenic breeding, DNA was extracted from ear
clips using the Viagen DirectPCR ear lysis reagent
(Viagen Biotech cat 402-E). 195 pl Direct PCR lysis re-
agent and 5 pl proteinase K (10 mg/ml) was added to
each earclip and incubated overnight at 55°C. After di-
gestion, the samples were heated to 85°C for 45 min and
centrifuged for 10 seconds. 1 pl of lysate was used in
each PCR reaction.

SNP panel

The 76 CCBAF, mice from the phenotypic extremes
were genotyped by Pyrosequencing (as described below)
across the whole genome using a panel of 73 SNPs with
an average spacing of 28 Mb. Chromosome 4 was geno-
typed with an additional set of SNP markers to narrow
down areas of suggestive linkage. A total of nine SNPs
for chromosome 4 were typed by Pyrosequencing. Geno-
typing data from chromosome 4 microsatellite markers
used in Denny et al, [13] were incorporated into the
analysis. There were a total of 5 microsatellite markers
that had been typed on 38 of the mice. Details of the
SNP primers can be found in Additional file 4: Table S1.

Primer design

SNPs were selected using the Mouse Phenome Database
(http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=
docs/home) and the SNP sequences were exported from
the NCBI Entrez SNP database (http://www.ncbi.nlm.
nih.gov/sites/entrez). Primers for Pyrosequencing were
designed using the PSQ Assay Design software from
Biotage AB. Primer sets of three primers for each SNP
were designed, one pair of primers for the PCR (one of
which was biotinylated) and a sequencing primer for the
Pyrosequencing reaction. The minimum and maximum
T,, for the PCR primers were 64 to 66°C. The sequen-
cing primers were designed with a maximum distance of
three bases from the SNP. Primers were manufactured
by either Biomers.net or MW G-Biotech.

Page 9 of 11

PCR

10 ul PCR reactions were set up using 5 pl Qiagen Taq
PCR master mix (cat. 201445), 0.2 pl forward primer
and 0.2 yl reverse primer (at 10 pmol/ul), 2.6 - 3.6 pl nu-
clease free water and 1-2 pl DNA(~5 ng/pl). PCR reac-
tions were run using the following PCR program: 95°C
for 5 min, followed by 45 cycles of 95°C for 15 sec, 60°C
for 30 sec and 72°C for 15 sec. The final extension step
was for 5 min at 72°C.

Pyrosequencing

10 pl PCR product, 2 ul streptavidin-Sepharose beads (GE
Healthcare 17-5113-01), 38 pl binding buffer (Biotage AB
40-0033) and 30 ul H,O were combined in a 96-well plate
and mixed vigorously on a plate shaker for 5 min so that
the biotin-labelled PCR product bound to the streptavidin
coated beads. The PCR products were then prepared using
a vacuum work table (Biotage AB). The biotinylated PCR
products, attached to the filter probes of the vacuum tool,
were immersed in 70% (v/v) ethanol for 5 seconds, dena-
tured in PyroMark Denaturation solution (Biotage AB
40-0034) for 5 sec (allowing only the biotin labelled
strand of the PCR product to stay attached to the filter
probes) and immersed in 1X PyroMark Wash buffer
(Biotage AB 40-0035) for 5 sec. The single-stranded
PCR products were then re-suspended in a PSQ HS
96-well plate containing 0.5 pl sequencing primer (at
10 pmol/ul) and 11.5 pl annealing buffer (Biotage AB
40-0036) per well.

The plate was incubated at 80°C for 2 minutes to allow
the sequencing primer to anneal to the single-stranded
PCR product. The PSQ 96-well plate and a PSQ HS 96
capillary dispensing tip holder (Biotage AB 60-0211)
containing enzyme, substrate and dNTPs (PyroGold re-
agent kit Biotage AB 40-0047), were placed into a PSQ
HS 96 Pyrosequencer (Biotage AB). The assays were
performed and the data were analysed using the SNP
software (Biotage AB).

Linkage analysis

SNP genotype data from the 76 CCBAF, mice and pheno-
type data from 168 non-genotyped CCBAF, mice were in-
corporated into the linkage analysis. Data were analysed
using R-QTL for non parametric analysis [34]. One thou-
sand permutation tests were performed in order to estab-
lish genome-wide LOD significance thresholds at the 90%
and 95% confidence level. Loci with LOD scores exceeding
the 90% confidence level were identified as suggestive and
those exceeding the 95% confidence level were identified
as significant regions of linkage. The confidence interval
for each QTL was determined by a one LOD support
interval (-1 LOD drop from the peak of linkage). For the
marker at the peak of each QTL, data were analysed using
a Chi-squared (x*) test. Numbers of mice resistant and
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susceptible to pneumococcal infection were grouped by
their genotype at the appropriate SNP marker. Observed
numbers of mice were compared to the expected numbers
(1:2:1 ratio) if genotype had no effect (x%). To investigate
the effect the genotype, at the peak of linkage, on time to
reach a moribund state, Kaplan Meier survival analysis
was performed using the statistics package SPSS (version
17). The difference between the survival curves was
analysed using the Log Rank test. p values of less than
0.05 were considered significant. The heritability equation
(1-10%°P) was used to estimate the percentage of
phenotypic variance accounted for by the QTL.

Congenic breeding data analysis

Survival data and bacteraemia data were firstly analysed
on a single SNP basis for chromosome 4. Mice were
then grouped into shared haplotypes based on the com-
bination of SNPs for chromosome 4 from SNP 4 38 to
SNP 4_103. Survival data were analysed using Kaplan-
Meier survival analysis with Log Rank pair wise com-
parison for statistical significance using SPSS (version
17). Bacteraemia data for the three genotypes (BALB/
cByJ] homozygous, CBA/CaH homozygous or heterozy-
gous) were compared for each SNP using a two-tailed
unpaired Student t-test. Numbers of bacteria in the
blood in the haplotypes were compared in the same way.
Results with p values less than 0.05 were considered
significant.

Additional files

Additional file 1: Table S2. Proportion of CBABYJN7-4 mice resistant or
susceptible to pneumococcal infection, grouped by their genotype at
either SNP 4_80 or SNP 4_103.

Additional file 2: Figure S1. Kaplan-Meier survival curves showing the
cumulative survival for the CBABYJN7-4 mice, based on genotype at SNP
4_103. The survival curve of each group is labelled by genotype.

Additional file 3: Figure S2. A) Kaplan-Meier survival curves showing

the cumulative survival for the BYJCBANG6-4 mice, based on genotype at
SNP 4_38. The survival curve of each group is labelled by genotype.

B) Kaplan-Meier survival curves showing the cumulative survival for the

BYJCBAN6-4 mice, based on genotype at SNP 4_103. The survival curve
of each group is labelled by genotype.

Additional file 4: Table S1. Panel of PCR and Pyrosequencing primers
used to genotype SNPs in CCBAF2 mice.
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