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Abstract

on a targeted sequencing experiment.

Genome

Background: Targeted capture, combined with massively-parallel sequencing, is a powerful technique that allows
investigation of specific portions of the genome for less cost than whole genome sequencing. Several methods
have been developed, and improvements have resulted in commercial products targeting the human or mouse
exonic regions (the exome). In some cases it is desirable to custom-target other regions of the genome, either to
reduce the amount of sequence that is targeted or to capture regions that are not targeted by commercial kits. It is
important to understand the advantages, limitations, and complexity of a given capture method before embarking

Results: We compared two custom targeted capture methods suitable for single chromosome analysis: Solution
Hybrid Selection (SHS) and Flow Sorting (FS) of single chromosomes. Both methods can capture targeted material
and result in high percentages of genotype identifications across these regions: 59-92% for SHS and 70-79% for FS.
FS is amenable to current structural variation detection methods, and variants were detected. Structural variation
was also assessed for SHS samples with paired end sequencing, resulting in variant identification.

Conclusions: While both methods can effectively target genomic regions for genotype determination, several
considerations make each method appropriate in different circumstances. SHS is well suited for experiments
targeting smaller regions in a larger number of samples. FS is well suited when regions of interest cover large
regions of a single chromosome. Although whole genome sequencing is becoming less expensive, the sequencing,
data storage, and analysis costs make targeted sequencing using SHS or FS a compelling option.

Keywords: Flow sorting, Flow cytometry, Targeted-sequencing, Sequencing, Genomic-capture, Chromosome,

Background

The genome can be interrogated in a random (whole
genome shotgun, WGS) or directed (targeted sequencing)
manner. Each approach has advantages and disadvantages
[1,2]. Targeted sequencing (or genomic capture) enriches
a desired subset of a genome and therefore requires sub-
stantially less sequence to generate the needed coverage
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over the region of interest. As sequencing costs continue
to fall, the cost difference for WGS and targeted sequen-
cing also decreases. However, despite declining sequen-
cing costs, the analytic costs (monetary and time) will still
be larger for WGS experiments in the foreseeable future.
Targeted sequencing therefore allows for reduced data
generation and analysis costs, or allows for more samples
to be sequenced.

Many of the available targeting methods rely on
predesigned regions, which may not be suitable to address
the scientific questions of a particular experiment. Exome
sequencing (ES), for example, is generally limited to pro-
tein coding regions of genomes. While investigation of
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coding sequences can be powerful, significant evidence
supports the critical function of the non-coding (and even
non-genic) portions of the genome [3,4]. Thus, there is a
need for methods that can interrogate other customized
subsets of the genome in a variety of organisms.

Hybridization capture technologies [5-8] allow for cus-
tom probe designs. The cost of the custom capture probes
is generally proportional to the total size of the regions of
interest. When regions of interest are large, and focused
on a single chromosome, it becomes reasonable to capture
the entire chromosome instead of using multiple custom
hybridization reactions. Although a single chromosome
can be a large target, it is a small fraction of the whole
genome. For example, chromosomes in the human
genome each make up only 2-8% of the total genome size.
Chromosomal flow sorting to isolate specific chromo-
somes, although technically challenging, has undergone
many improvements (for review, see [9,10]). Flow sorting
paired with massively-parallel sequencing has been
reported in the sequencing of mouse chromosome 17
[11], barley chromosomes 1H [12] and 12 additional arms
[13], and wheat chromosomes or arms 1A, 1B, and 1D
[14], 5A [15], 7DS [16], 7BS [17], and 4A [18]. This
targeting of isolated chromosomes is a powerful approach
to understanding complex plant genomes. Flow sorting
and sequencing has also been used on human genomes to
identify translocation breakpoints in derivative chromo-
somes [19] and in a method to determine phase across a
chromosome [20]. These results suggest FS is a powerful
capture method for sequencing single chromosomes.

We present a comparison of Solution Hybrid Selection
(SHS) (Agilent SureSelect) and Flow Sorting (FS) capture
technologies to target a chromosome of interest for
massively-parallel sequencing. We show that FS can be
used to target the X chromosome of the human genome
for the purpose of identifying genotypes and structural
variations. We then compare sequencing efficiency,
region of interest coverage, and genotype determination
rates of SHS and FS. This comparison will be useful for
researchers interested in the targeted sequencing of
custom regions of interest, particularly when those
regions can be found on a single chromosome.

Results and discussion

Targets

Human chromosome X from a single individual was
targeted by Flow Sorting (FS) or by Solution Hybrid Selec-
tion (SHS), and chromosome X from a second individual
was targeted with SHS (and sequenced in a paired-end
configuration: SHS-PE and SHS-PE low). While FS
targeted the entire chromosome X, the SHS probes used
here targeted the exons of annotated genes located outside
of the pseudo-autosomal regions (PAR). We first deter-
mined the overlap of several exon annotation definitions
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and the regions targeted by SHS. The regions targeted by
SHS overlapped 96.3% of the non-PAR Consensus CDS
[21] (CCDS) regions, and 81.3% of the non-PAR UCSC
known Genes exons (Table 1). Visual inspection of the
targeted regions indicated the UTRs were included in the
targets (Figure 1). However, the SHS targets were limited
to exonic regions and only 2% of chromosome X was
targeted (Table 1). To facilitate comparison of SHS and FS
we used three region of interest (ROI) definitions: demoX
(the regions directly covered by SHS probes), CCDS non-
PAR regions, and UCSC non-PAR regions.

Flow sorting

The Hoechst 33258 versus chromomycin bivariate flow
karyotype generated from chromosomes isolated from
human lymphoblastic cells is shown in Figure 2A. Initial
verification of purity of the sorted chromosome X was
carried out using degenerate nucleotide primed (DOP)-
PCR of the material and painting the probe back onto
normal metaphase spreads. The painting probe from the
sorted chromosome X peak hybridized to the X chromo-
some and to chromosome 8, indicating the chromosome X
population was not completely resolved from the similarly
sized chromosome 8 population (Figure 2B).

Sequencing results

Following selection by SHS or FS, libraries were
sequenced on an Illumina GAIIx. The SHS capture ma-
terial was sequenced on a single-end 36 bp lane, which
generated a total of 20,896,079 sequence reads (Table 2).
Flow sorting targeted the entire chromosome, and more
sequence reads were generated to achieve depth of
coverage sufficient for genotype determination: three
paired-end 76 bp lanes for a total of 92,197,660 reads. A
sample from a second individual was subjected to SHS
and sequenced on a paired-end 76bp lane. Subsets of
read pairs were randomly selected as SHS-PE (to match
the total number of reads generated for the initial SHS
sample: 20,893,298 reads) or as “SHS-PE low” (to match
the total mean base coverage (total sequenced bases/
targeted bases) for the FS sample: 1,814,872 reads). Simi-
lar percentages of raw reads passed initial chastity filters
(76.6% of SHS reads, 90.0% of SHS-PE reads, 80.7% of

Table 1 Target metrics

Target sizes (bp)  Coverage by demoX (%)

demoX 3,045,718 100
chrX_nonPAR_CCDS 1,129,386 96.3
chrX_nonPAR_UCSC 2,781,987 813
chrx 154,913,754 2
chrX_nonPAR 151,874,718 2

Target size in bases, and percentage of target covered by the Solution Hybrid
Selection targets (demoX). nonPAR excludes the pseudoautosomal regions
(PAR) shared by chromosomes X and Y.
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Figure 1 lllustrative UCSC Genome Browser (http://genome.ucsc.edu/) screen capture showing (from top to bottom) chromosome
position, read depth from Flow Sort (FS) sequence data, bases covered by high-quality genotype calls in FS sequence data, read depth
from Solution Hybrid Selection (SHS) sequence data, bases covered by high-quality genotype calls in SHS sequence data, read depth
from Solution Hybrid Selection - Paired End (SHS-PE) sequence data, bases covered by high-quality genotype calls in SHS-PE
sequence data, and the UCSC gene models. Read depth axes show 0-60 reads (FS) and 0-215 reads (SHS).
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Figure 2 Bivariate flow sorting and sort verification of chromosome X. (A) Bivariate flow karyotype of human lymphoblastic cell line. The

chromosome X peak is indicated with an arrow and highlighted in orange. (B) Metaphase chromosomes following hybridization with
chromosome X sort material. Note that chromosome X and chromosome 8 were detected. The chromosomes were counterstained with DAPI.
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Table 2 Sequence metrics
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Total Total bases Filtered Filtered reads on Realigned reads on Realigned bases on Total mean base
reads reads X X X coverage
SHS 20,896,079  752,258844 15,998,676 7493424 7,724,895 278,096,220 247.0x
SHS-PE 20,893,298 1,587,890,648  183806,032 8,230,111 8,242,645 626,441,020 521.4x
SHS-PE 1,814,872 137937872 1,633,726 714915 716,084 54,422,384 45.3x
Low
FS 92,197,660 7,007,022,160 74,367,412 24,835,187 26,040,307 1,979,063,332 45.2x

Read counts for sequence data from Solution Hybrid Selection (SHS), SHS paired end (SHS-PE), SHS paired end low (SHS-PE low) and Flow Sort (FS) capture
experiments. Absolute number of read counts and base counts are shown. Total mean base coverage is (total sequenced bases/total targeted bases).

FS reads). Although the percentage of filtered reads
aligning to the genome was similar for each method
(80.5% for SHS, 88.6% for SHS-PE, 78.7% for ES), the
percentage of filtered reads aligning to the X chromo-
some was higher for the SHS capture: 46.8% (SHS) and
43.8% (SHS-PE) compared to 33.4% for FS (Table 2). We
counted the number of reads aligning to each chromo-
some, and found that the FS DNA was not only enriched
for reads aligning to X, but also for reads aligning to
chromosome 8 and, to a lesser extent, chromosome 7
(Figure 3). While SHS reads also aligned to other chro-
mosomes, no chromosomes had higher coverage as
observed in the FS data; counts were proportional to the
size of the chromosome. Finally, we applied methods to
recover non-mapped reads (often containing insertions
or deletions) (see Methods), and were able to increase
the final number of aligned reads to chromosome X
(additional reads added 1.4% of filtered reads for SHS,
1.6% of filtered reads for FS). Total bases sequenced and
aligning to chromosome X are listed in Table 2.

Sequencing coverage
Genotype determination requires multiple reads overlap-
ping a single position to give a high probability of

observing both alleles at a potential heterozygous site.
We therefore calculated the fraction of each ROI
covered by >10 or >20 sequence reads. When the total
mean base coverage was similar, (SHS-PE low vs. FS), FS
had a higher fraction of bases covered by 210 or >20
sequence reads (Table 3). To further investigate this, we
determined the distributions of depth of coverage at
each base across each ROI for FS and SHS-PE low
(Figure 4). A broader, skewed distribution of coverage
depths was observed for SHS-PE low, due to more bases
having the lowest coverage (a left tail in the distribution
that was absent in FS). These bases with very low
coverage in SHS samples remain even with more reads
(Additional file 1: Figure S1), suggesting that the re-
gions are not being effectively captured. This is further
illustrated in Figure 1 where the FS read depths, al-
though lower overall, are much more tightly distributed
than the SHS read depths.

Genotype coverage

Genotypes were determined using a Bayesian algorithm,
Most Probable Genotype (MPG) [22]. This algorithm
was designed to determine the most probable genotype
at a position, and not just whether a variant existed at
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Figure 3 Number of sequence reads aligning to each chromosome after capture with Solution Hybrid Selection (SHS) or Flow Sort (FS).
Note that FS showed significant off-target alignment to chromosomes 7 (159 Mb) and chromosome 8 (146 Mb) due to size similarity with
chromosome X (155 Mb). SHS showed lesser off-target alignment, with amounts corresponding to chromosome size.
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Table 3 Coverage depth
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>10x coverage (%)

>20x coverage (%)

Genotype coverage (%)

demoX chrX_nonPAR chrX_nonPAR demoX chrX_nonPAR chrX_nonPAR demoX chrX_nonPAR chrX_nonPAR
CcDs ucsc CCcDSs ucsc CCDSs ucsc
SHS 87.8 879 754 832 844 713 86.7 86.8 743
SHS-PE 92.0 91.6 81.3 90.2 89.8 789 916 91.2 80.8
SHS-PE Low 70.7 704 61.8 290 29.2 27.8 66.4 66.1 585
FS 782 86.5 774 389 487 375 69.9 788 6389

Coverage statistics for sequence data are shown as percentages. “Coverage” displays the percentage of positions in a given target having 10 or more overlapping
sequence reads, or 20 or more overlapping sequence reads. “Genotype coverage” displays the percentage of positions in a given target with a high quality
genotype determination: a genotype is determined (reference or variant) with a log likelihood score > =10.

that position. Therefore, we were able to assess how
many positions had sufficient read coverage to reliably
detect sequence variants. The samples sequenced were
males, which could allow for increased sensitivity as
MPG can utilize a single-allele model. However, we de-
termined genotypes using the standard biallelic model
(which assumes two chromosomes) in order to allow for
broader comparability across any chromosome. We
counted the fraction of each ROI covered with high-
quality genotype calls (both reference and variant), and
found that when total mean base coverage was similar
(SHS-PE low and FS), FS had a higher fraction of ROI
bases covered (Table 3). This discrepancy was highest in

the CCDS target set, and lowest in the demoX ROI set,
and was correlated with the > =10x coverage. Increasing
sequence amounts in SHS and SHS-PE resulted in higher
genotype coverage. We next evaluated the overlap of
genotype identifications in SHS and FS across each ROL
Overlap was highest across the non_par CCDS, and lowest
across the non_par UCSC (Table 4). Both methods deter-
mined the fewest genotypes in the non_par UCSC ROI
region.

Insertion/deletion variation
MPG was also able to determine insertion/deletion
(indel) genotypes. We compared the ability to detect
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Figure 4 Distributions of read depths across different regions of interest using Solution Hybrid Selection paired end low (SHS-PE low)
or Flow Sort (FS). The left-tail in the SHS-PE low distributions suggest this method results in more targeted positions with little or no coverage.
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Table 4 Overlap of genotype determinations

demoX chrX nonPar CCDS chrX nonPar UCSC
Covered by both 679 75.0 582
Unique to FS 2.7 38 10.7
Unique to SHS 19.5 11.8 16.1
Missed by both 106 94 150

Percent bases covered by both capture methods, by one method alone, or by
neither method.
Overlap is shown for different regions of interest.

indels between the methods by counting variants. As the
samples originated from two individuals of northern
European descent, the number of events should be simi-
lar. More indels (<11 bp) were detected by MPG in the
SHS experiments than in the FS experiment. Although
different samples were compared, at similar total mean
base coverage, SHS-PE low detected 30 indels compared
to 28 for FS (Table 5), suggesting ability to detect indels
is similar. We also used BreakDancer [23] followed by
Pindel [24] to identify indels when paired end data were
available. When total mean base coverage was similar,
FS had more calls (215) than SHS-PE low (179). However,
SHS-PE detected many more indels (818) due to higher
sequence coverage. We noted that the BreakDancer/
Pindel method resulted in many more indel determina-
tions than MPG. We therefore compared the calls be-
tween BreakDancer/Pindel and MPG for each paired end
capture experiment, and found that the majority of MPG
indel determinations were also made by BreakDancer/
Pindel (FS =79.1%, SHS-PE low = 83.3%, SHS-PE = 93.5%)
(Figure 5A, Additional file 1: Figure S2.). However, fewer
of the BreakDancer/Pindel determinations were observed
with MPG (FS=9.1%, SHS-PE low =14.0%, SHS-PE =
33.3%). This suggests that BreakDancer/Pindel was less
stringent; indeed, with more sequence data, there were
9.7x more MPG indel calls in SHS-PE compared to SHS-
PE low, whereas there were 4.6x more BreakDancer/
Pindel calls. The additional data allowed MPG to make
more additional indel determinations; many of the
BreakDancer/Pindel indel determinations had already
been made in the lower coverage data.

Table 5 Indel and SV determination

Indels - MPG Indels - Pindel Large Large
deletions insertions
SHS 76
SHS-PE 291 818 6 0
SHS-PE 30 179 1 0
LOW
FS 1,011 (28) 8,761 (215) 38 (2) 30

Observed variant counts for each class. Pindel calls are divided as follows:
Indels: <11bp, large deletions: > = 100bp. The size of large insertions is not
determined, as the entire insertion was not covered. FS values in parentheses
indicate variants detected in the demoX region + 100bp flanking.
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We also compared the overlap of indel determination
in SHS and FS in the same sample. Although SHS used
shorter, unpaired sequence reads, more MPG indels
were determined than in FS (due to higher total mean
base coverage for SHS). We therefore compared the FS
BreakDancer/Pindel calls to SHS MPG calls (Figure 5B)
and observed that, as above within a sample, the major-
ity of SHS MPG indel determinations were also observed
by FS BreakDancer/Pindel. This suggests both SHS and
ES are sensitive to smaller indels, particularly with
increasing sequence read depth and length.

Structural variation

The ability to detect structural variation (SV) is a
distinct advantage of whole genome sequencing. Flow
sorted chromosomes are subjected to random shotgun
sequencing, resulting in even coverage across the
chromosome (example in Figure 1) similar to whole
genome sequencing. The FS experiment resulted in
12.4-fold average physical coverage, suggesting that
structural variants could be identified. To compare
structural variation in FS and SHS-PE, we combined two
approaches to reduce false positive calls. We first identi-
fied regions with atypical insert sizes using BreakDancer
[23]. These candidate regions were then supplied to
Pindel [24], which detected structural variants based on
different parts of a single sequence read aligning to
different locations in the genome. The vast majority of
detected deletions and insertions were small (Figure 6),
and were discussed above. Deletion sizes covered a larger
range (FS=1-17,263 bp, SHS-PE =1-245,716 bp) than
did small insertions (FS=1-46 bp, SHS-PE =1-17 bp).
However, the exact size of larger insertions cannot be
determined when the inserted sequence is longer than a
sequence read.

Although FS identified many more SVs overall
(Table 5), only two large deletions overlapped with the
demoX target, compared to one large deletion for SHS-
PE low. With more sequence, SHS-PE identified six
large deletions, but no large insertions. To better under-
stand specificity, we compared different size classes of
insertion and deletion to the Database of Genomic
Variants (DGV, http://projects.tcag.ca/variation/, [25]) as
in [24]. Medium deletions (100 bp-1 kb) detected by
SHS-PE (2) and SHS-PE low (1) were not observed in
DGV, but 22/26 (84.6%) observed in FS overlapped a
DGV entry. Large deletions (> =1 kb) were observed in
FS and SHS-PE, and half were observed in DGV (FS = 6/12,
SHS-PE = 2/4). The overlap of the FS deletions with DGV
exceeded that observed in [24] (67.8% for medium dele-
tions, 43.4% for large) suggesting FS is able to reliably de-
tect SVs (SV detection by SHS was limited by the target
size, so the specificity of SV detections from this method
is not clear.)
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Figure 5 Overlap of indel determinations. (A) Overlap between indels identified using MPG or Breakdancer/Pindel to analyze FS data. (B) Overlap
between the same sample using SHS(MPG) and FS(Breakdancer/Pindel), limited to the demoX region + 100 bp.

Conclusions

When evaluating targeted sequencing methods, it is im-
portant to consider the genomic regions of interest. We
have examined both FS, which targets an entire chromo-
some, and SHS, which targets defined regions. Our
comparisons focused on evaluating capture method ef-
fectiveness. Of the filtered reads generated, FS had a
lower percentage aligned to chromosome X. This was
due to the large off-target FS capture of chromosomes 7
and 8, which is caused by imperfect separation of chro-
mosomes when performing flow sorting (Figure 2). The
degree of off-target capture depends on the chromosome
being investigated, as some chromosomes can be sepa-
rated more effectively than others. For example, chro-
mosomes 1, 2, 3, and 4 are typically resolved as single

peaks whereas chromosomes 9, 10, 11, and 12 are clus-
tered and less easily separated from each other. Recently,
the use of increased power settings for the laser in the cell
sorter was shown to improve the resolution of the flow
karyotypes (even for chromosomes 9-12) and is therefore
a more attractive approach for projects involving mas-
sively parallel sequencing of flow sorted chromosomes
[26]. SHS results in more on-target sequence reads than
ES, but it too results in significant amounts of off-target
sequence. Sequencing efficiency (the amount of sequence
data required to achieve a given coverage across all bases)
also contributes to the effectiveness of capture. We eva-
luated efficiency by examining the distribution of read
depths across ROIs. The SHS method was less efficient, as
a broader distribution of read depths was observed. In
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contrast, FS had a tighter distribution of coverage. More
importantly, when total mean base coverage was equiva-
lent, FS had a slightly higher genotype determination rate.
Although adding more sequence to an SHS experiment
increased the genotype determination rate, there were still
a number of bases with little or no sequence coverage,
likely due to poor capture. Genotypes could be deter-
mined at a majority of bases by both methods, but many
bases (up to 19.5%) were covered by one method alone,
suggesting a combined approach could be used to increase
sensitivity. Both methods were amenable to indel and lar-
ger SV determination, and similar numbers were observed
within the region of interest. While FS targeting may be
less efficient than SHS, and SHS sequence efficiency may
be less than FS, the two methods are effective for deter-
mining genotypes (with FS being slightly more sensitive.)
SHS has a design advantage in being able to target regions
smaller than a single chromosome. It is therefore import-
ant to consider both capture method effectiveness as well
as the target design when planning a targeted sequencing
experiment.

Experimental cost and ease of use are also important
when choosing a sequencing method. In this case, the
cost of custom SHS probes for a ~3 Mb target region is
similar to that of whole exome SHS probes. In order to
cover a whole chromosome, multiple larger probe de-
signs would be required. For example, while list prices
(at the time of writing) for hybridization capture
reagents range from $450-$1250 per sample for 3 Mb,
these prices rise to $4,500-$7,000 per sample to cover
chromosome X (150 Mb). Both methods require stand-
ard sequencer-specific library preparation. Standard
library preparations allow for indexing, which can be
used to combine multiple samples for sequencing in
order to take advantage of newer high-output sequen-
cing instruments. If we assume the need for 100x total
mean base coverage for sensitive genotype determin-
ation, this would require at least 155 million 100 base
pair reads for chromosome X. As of this writing, a
current, widely used sequencer (Illumina HiSeq2000)
can generate up to 375 million paired-end reads per
lane, making the ability to pool samples essential. The
SHS capture method was straightforward, and although
some steps required long incubations, hands-on time
was relatively low. The FS experiments required access
to a flow sorting instrument, as well as the technical
expertise to properly perform the chromosomal separa-
tions. In addition to this cost, sorting experiments are
time consuming and require a large number of mitotic
cells, which may be a barrier to high-throughput use of
this method.

Although both methods are capable of selecting
regions of interest for massively-parallel sequencing, one
may certainly be more appropriate than the other
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depending on the experimental goal. If investigators are
targeting sub-chromosomal regions, SHS reagents and
sequencing will be less costly, and easier to perform.
However, if an investigator wants to sequence larger
regions of interest on the same chromosome, or wishes
to sequence structurally abnormal “marker” chromo-
somes, FS may be more appealing. The higher sequence
efficiency of FS may partially offset the need to sequence
a greater amount of captured DNA. Finally, custom SHS
kits include reagents for a minimum sample batch size,
and FS may offer a cost advantage when only one or two
samples are needed. Conversely, SHS is more suitable
for larger sample numbers as it is tailored for high-
throughput experiments.

The ever-decreasing costs of massively-parallel sequencing
are making whole genome sequencing more practical.
However, there are still many advantages to targeting
smaller subsets of the genome. Experimental cost is, as
of this writing, still lower for targeted sequencing, even
for a complete chromosome. The amount of data re-
quiring analysis and storage is much lower for targeted
sequencing experiments. Therefore, for a given finan-
cial and computational budget, more samples can be
analyzed with targeting, increasing the power of an ex-
periment. The lower analytical burden can also result
in faster return of results. We have shown that SHS
and FS are both effective at focusing sequencing efforts
on a targeted subset of the genome. Each method fits
specific needs, which will allow researchers with a wide
variety of experimental designs and resources to take
advantage of this powerful new technology.

Methods

Sample

The subjects were part of a National Institutes of Health
IRB approved study (#94-HG-0193), and provided in-
formed consent. A lymphoblastic cell line was cultured
to achieve the high number of cells needed for a flow
sorting experiment. Cells were grown and chromosomes
were prepared as described [27].

Flow sorting and in-situ hybridization

Chromosome preparations were sorted as described
[27]. Approximately 1.1 x 10° chromosomes were sorted
using a dual laser cell sorter (FACS DiVa, Becton-
Dickinson). This system allowed a bivariate analysis of
both DNA content and base-pair composition.

For sort verification, approximately 500 chromosomes
were sorted directly into PCR tubes containing 30 pL of
water. The 6MW primer [28] was used in a primary de-
generate oligonucleotide primed PCR (DOP-PCR) to
amplify the DNA and then in a secondary PCR reaction
to label the chromosomal DNA with biotin-dUTP. In
situ hybridization and probe detection was carried out
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following common fluorescence in situ hybridization
(FISH) procedures. Briefly, 300—400 ng of biotinylated PCR
product was precipitated with 10 pg of human COT-1
(Invitrogen, Grand Island, NY)) and then dissolved in 14 pl
hybridization buffer. Following hybridization, slides
were washed and the biotinylated probe was detected
with avidin coupled with fluorescein (Vector Laboratories,
Burlingame, CA).

Post-sorting DNA purification

DNA was prepared from 250 pL of flow sorted material
by adding 15 puL 0.25M EDTA/10% sodium lauroyl sarco-
sine and 2.5 pL proteinase K (20ng/ml), and incubating
overnight at 42°C. Following overnight incubation, 0.17
mM phenylmethylsulfonyl fluoride (PMSF) was added and
incubated for 40 minutes at room temperature. Next, the
DNA was purified through QIAamp DNA Micro Kit
(Qiagen, Valencia, CA) following the manufacturer’s
recommended protocol. Purified DNA was used as tem-
plate for shearing on the Covaris adaptive focused acous-
tics (AFA) sonicator (Covaris, Inc., Woburn, MA).

Solution hybrid selection

The SHS technique was performed using the SureSelect
Human X Chromosome demonstration kit (Agilent Tech-
nologies Inc., Santa Clara, CA) according to the manufac-
turer’s instructions, with modifications as in [22].

Sequencing

Libraries were prepared and sequenced on a Genome
Analyzer IIx (Illumina Inc., San Diego, CA) according to
the manufacturer’s protocols.

Data analyses
Initial analysis was carried out using the standard
[lumina software, including alignment of sequence reads
with ELAND.

A secondary analysis was performed to recover reads
that may not have mapped well due to insertions or dele-
tions. For the paired-end data, reads were placed in bins
of approximately 100 kilobases along the genome. If one
member of a read pair was unaligned, it was placed in the
same bin as its mapped mate. Reads were then realigned
to the subsection of the genome using a gap-aware
alignment program, cross_match (http://www.phrap.org/
phredphrapconsed.html). Single-end sequencing was
performed for the SHS capture, and so the above
approach was not effective (there were no mate pairs to
rescue unaligned reads.) We therefore used cross_match
to realign all of the unmapped reads against the entire
human genome, and then combined the realigned cross_-
match reads with the reads aligned by ELAND.

In both cases, cross_match and ELAND outputs were
converted to the SAM/BAM format [29], and genotypes
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were determined using the Most Probable Genotype
(MPQG) algorithm [22]. Structural variants were detected
from paired-end data by first running BreakDancer [23]
on the realigned BAM file (described above) using de-
fault settings. This output was then used to guide variant
detection using Pindel [24] (Illumina-PairEnd mode, me-
dian insert size of 146 for FS, 182 for SHS-PE and SHS-
PE low). Data analysis and comparison was performed
using custom Perl scripts, as well as BED file manipula-
tion programs from the bx-python package (https://bitbucket.
org/james_taylor/bx-python/wiki/Home) and bedTools
[30], and VCF file manipulation programs from VCFtools
(vcftools.sourceforge.net). Overlap of SVs with DGV
was counted when a 50% reciprocal overlap was ob-
served. Area-proportional Venn diagrams were pre-
pared using the web tool 3Venn (https://www.cs.kent.ac.
uk/people/staff/pjr/EulerVennCircles/EulerVennApplet.
html).

Additional file

Additional file 1: Figure S1. Distributions of read depths across
different regions of interest using Solution Hybrid Selection (SHS) or Flow
Sort (FS). Although FS showed lower average coverage, the coverage
distribution was much sharper. Figure S2. Overlap of MPG and
Breakdancer/Pindel calls in the SHS-PE (A) and SHS-PE low (B) libraries

Abbreviations

SHS: Solution hybrid selection; FS: Flow sorting; WGS: Whole genome
sequencing; ROI: Regions of interest; Mb: Megabases; PAR: Pseudo-autosomal
regions; MPG: Most probable genotype.

Competing interests

LGB is a paid editor for the American Journal of Medical Genetics and is an
uncompensated advisor to the lllumina Corporation as part of his official U.S.
Government duties.

Authors’ contributions

JKT performed the data analysis, prepared the manuscript, and assisted with
the SHS capture. JJJ performed the SHS capture and assisted with the
manuscript preparation. SA, MP, and GS performed the flow sorting and
prepared the lllumina library for the sorted chromosome X. Sequencing was
performed at NISC. PM, JCM, and LGB helped design the experiments and
revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This study was supported by the Intramural Research Programs of the
National Human Genome Research Institute and the National Cancer
Institute. This study is in memory of Gary Stone, not only an excellent flow
cytometrist whose skill and dedication made this and many other studies
possible, but a friend and colleague who is greatly missed.

Author details

"National Human Genome Research Institute, National Institutes of Health,
Bethesda, MD, USA. “National Cancer Institute, National Institutes of Health,
Bethesda, MD, USA. *Current address: H. Lee Moffitt Cancer Center and
Research Institute, Tampa, FL, USA.

Received: 5 October 2012 Accepted: 20 March 2013
Published: 15 April 2013

References
1. Teer JK Mullikin JC: Exome sequencing: the sweet spot before whole
genomes. Hum Mol Genet 2010, 19(R2)R145-151.


http://www.phrap.org/phredphrapconsed.html
http://www.phrap.org/phredphrapconsed.html
https://bitbucket.org/james_taylor/bx-python/wiki/Home
https://bitbucket.org/james_taylor/bx-python/wiki/Home
https://www.cs.kent.ac.uk/people/staff/pjr/EulerVennCircles/EulerVennApplet.html
https://www.cs.kent.ac.uk/people/staff/pjr/EulerVennCircles/EulerVennApplet.html
https://www.cs.kent.ac.uk/people/staff/pjr/EulerVennCircles/EulerVennApplet.html
http://www.biomedcentral.com/content/supplementary/1471-2164-14-253-S1.pdf

Teer et al. BMC Genomics 2013, 14:253
http://www.biomedcentral.com/1471-2164/14/253

20.

21,

Biesecker LG, Shianna KV, Mullikin JC: Exome sequencing: the expert view.
Genome Biol 2011, 12(9):128.

Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies
EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al: Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature 2007, 447(7146):799-816.

Dunham |, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB,
Frietze S, Harrow J, Kaul R, et al: An integrated encyclopedia of DNA
elements in the human genome. Nature 2012, 489(7414).57-74.

Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond
TA, Middle CM, Rodesch MJ, Packard CJ, et al: Direct selection of human
genomic loci by microarray hybridization. Nat Methods 2007,
4(11):903-905.

Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME:
Microarray-based genomic selection for high-throughput resequencing.
Nat Methods 2007, 4(11):907-909.

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W,
Fennell T, Giannoukos G, Fisher S, Russ C, et al: Solution hybrid selection
with ultra-long oligonucleotides for massively parallel targeted
sequencing. Nat Biotechnol 2009, 27(2):182-189.

Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M,
Kitzman J, Wu YQ, Newsham |, Richmond TA, et al: Whole exome capture
in solution with 3Gbp of data. Genome Biol 2010, 11(6):R62.

Ibrahim SF, van den Engh G: High-speed chromosome sorting.
Chromosome Res 2004, 12(1):5-14.

Dolezel J, Vrana J, Safar J, Bartos J, Kubalakova M, Simkova H:
Chromosomes in the flow to simplify genome analysis. Funct Integr
Genomics 2012, 12(3):397-416.

Sudbery |, Stalker J, Simpson JT, Keane T, Rust AG, Hurles ME, Walter K,
Lynch D, Teboul L, Brown SD, et al: Deep short-read sequencing of
chromosome 17 from the mouse strains A/J and CAST/Ei identifies
significant germline variation and candidate genes that regulate liver
triglyceride levels. Genome Biol 2009, 10(10):R112.

Mayer KF, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H,
Wicker T, Petzold A, Felder M, Steuernagel B, et al: Gene content and
virtual gene order of barley chromosome 1H. Plant Physiol 2009,
151(2):496-505.

Mayer KF, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B,
Taudien S, Roessner S, Gundlach H, et al: Unlocking the barley genome by
chromosomal and comparative genomics. Plant Cell 2011, 23(4):1249-
1263.

Wicker T, Mayer KF, Gundlach H, Martis M, Steuernagel B, Scholz U, Simkova
H, Kubalakova M, Choulet F, Taudien S, et al: Frequent gene movement
and pseudogene evolution is common to the large and complex
genomes of wheat, barley, and their relatives. Plant Cell 2011,
23(5):1706-1718.

Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P,
Colaiacovo M, Faccioli P, Lamontanara A, Simkova H, et al: First survey of
the wheat chromosome 5A composition through a next generation
sequencing approach. PLoS One 2011, 6(10):e26421.

Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EY, Stiller J,
Smits L, Imelfort M, Manoli S, et al: Sequencing and assembly of low copy
and genic regions of isolated Triticum aestivum chromosome arm 7DS.
Plant Biotechnol J 2011, 9(7):768-775.

Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K,
Campbell E, Kubalakova M, Simkova H, et al: Sequencing wheat
chromosome arm 7BS delimits the 7BS/4AL translocation and reveals
homoeologous gene conservation. Theor Appl Genet 2012, 124(3):423-432.
Hernandez P, Martis M, Dorado G, Pfeifer M, Galvez S, Schaaf S, Jouve N,
Simkova H, Valarik M, Dolezel J, et al: Next-generation sequencing and
syntenic integration of flow-sorted arms of wheat chromosome 4A
exposes the chromosome structure and gene content. Plant J 2012,
69(3):377-386.

Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz MH,
Erdogan F, Li N, Kijas Z, Arkesteijn G, et al: Mapping translocation
breakpoints by next-generation sequencing. Genome Res 2008,
18(7):1143-1149.

Yang H, Chen X, Wong WH: Completely phased genome sequencing
through chromosome sorting. Proc Natl Acad Sci USA 2011, 108(1):12-17.
Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S,
Farrell CM, Loveland JE, Ruef BJ, et al: The consensus coding sequence

22.

23.

24,

25.

26.

27.

28.

29.

30.

Page 10 of 10

(CCDS) project: Identifying a common protein-coding gene set for the
human and mouse genomes. Genome Res 2009, 19(7):1316-1323.

Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, Abaan
HO, Albert TJ, Margulies EH, Green ED, et al: Systematic comparison of
three genomic enrichment methods for massively parallel DNA
sequencing. Genome Res 2010, 20(10):1420-1431.

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD,
Wendl MC, Zhang Q, Locke DP, et al: BreakDancer: an algorithm for high-
resolution mapping of genomic structural variation. Nat Methods 2009,
6(9):677-681.

Ye K, Schulz MH, Long Q, Apweiler R, Ning Z: Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics 2009,
25(21):2865-2871.

lafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,
Lee C: Detection of large-scale variation in the human genome. Nat
Genet 2004, 36(9):949-951.

Ng BL, Carter NP: Laser excitation power and the flow cytometric
resolution of complex karyotypes. Cytometry A 2010, 77(6):585-588.
Stanyon R, Stone G: Phylogenomic analysis by chromosome sorting and
painting. Methods Mol Biol 2008, 422:13-29.

Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith
MA, Nordenskjold M, Pfragner R, Ponder BA: Cytogenetic analysis by
chromosome painting using DOP-PCR amplified flow-sorted
chromosomes. Genes Chromosom Cancer 1992, 4(3):257-263.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R: The Sequence Alignment/Map format and SAMtools.
Bioinformatics 2009, 25(16):2078-2079.

Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 2010, 26(6):841-842.

doi:10.1186/1471-2164-14-253

Cite this article as: Teer et al: Massively-parallel sequencing of genes on
a single chromosome: a comparison of solution hybrid selection and
flow sorting. BMC Genomics 2013 14:253.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Targets
	Flow sorting
	Sequencing results
	Sequencing coverage
	Genotype coverage
	Insertion/deletion variation
	Structural variation

	Conclusions
	Methods
	Sample
	Flow sorting and in-situ hybridization
	Post-sorting DNA purification
	Solution hybrid selection
	Sequencing
	Data analyses

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

