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Abstract

Background: Validation of physiologic miRNA targets has been met with significant challenges. We employed
HITS-CLIP to identify which miRNAs participate in liver regeneration, and to identify their target mRNAs.

Results: miRNA recruitment to the RISC is highly dynamic, changing more than five-fold for several miRNAs. miRNA
recruitment to the RISC did not correlate with changes in overall miRNA expression for these dynamically recruited
miRNAs, emphasizing the necessity to determine miRNA recruitment to the RISC in order to fully assess the impact
of miRNA regulation. We incorporated RNA-seq quantification of total mRNA to identify expression-weighted Ago
footprints, and developed a microRNA regulatory element (MRE) prediction algorithm that represents a greater than
20-fold refinement over computational methods alone. These high confidence MREs were used to generate
candidate ‘competing endogenous RNA" (ceRNA) networks.

liver.

Conclusion: HITS-CLIP analysis provide novel insights into global miRNA:mRNA relationships in the regenerating

Keywords: Liver, Hepatectomy, HITS-CLIP, ceRNA, microRNA, Cell cycle

Background

microRNAs (miRNAs), 22-23 nucleotide noncoding
RNAs, contribute to the control of diverse developmental,
growth, and disease processes [1,2]. Abnormal expression
of miRNAs has been established in cancers, with miRNAs
functioning as either tumor suppressors or oncogenes.
MicroRNAs decrease expression of mRNA targets by ei-
ther destabilization of mRNA or inhibition of protein
translation [3]. MicroRNAs are thought to target mRNAs
through binding of nucleotides at position 2—-8 of the
miRNAs (the so-called ‘seed region’) to a complementary
sequence in the mRNA [4,5].

While differential expression of miRNAs has been deter-
mined in multiple contexts, the validation of physiologic
miRNA targets has proven to be difficult. Modulation of
miRNA levels using gain- and loss-of-function approaches
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have identified some mRNA targets; however, concerns
exist regarding the potential for indirect and off-target ef-
fects, particularly in the case where a miRNA is
overexpressed. Currently available miRNA target predic-
tion algorithms produce large numbers of potential targets;
however, very few of these targets have been experimen-
tally validated. Many current algorithms mine sequences
limited to the 3'UTR of mRNAs, and therefore do not
identify miRNAs that target the coding region and 5'UTR,
even though miRNA targeting to all mRNA regions has
now been experimentally validated [5-11]. Furthermore,
the ability of miRNAs to target mRNAs with only partial
complementarity [12] indicates that in many cases identifi-
cation of miRNA targets may not be possible based on
seed match complementarity alone [10]. Consequently,
better methods are needed to identify bona fide miRNA
targets.

Recently, Pandolfi and colleagues have proposed an
‘mRNA code; in which competing endogenous mRNAs
(ceRNAs) communicate with each other through cross-
talk between shared microRNA regulatory elements
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(MRE) [10,13]. An important prediction of this model is
that competition for a common pool of miRNAs could
result in de-repression of one mRNA following robust ac-
tivation of a second mRNA containing the same MREs.
Therefore, identification of MREs and mRNA:miRNA
targeting relationships is an essential step towards under-
standing the role of miRNAs in the regulation of complex
biological responses.

The partial hepatectomy model in rodents has been used
extensively to investigate the mechanisms responsible for
hepatic growth and proliferation, and is the best in vivo
model of synchronous cell cycle progression in mammals
[14,15]. Following surgical removal of two thirds of the
liver, hepatocytes and nonparenchymal cells rapidly reenter
the cell cycle, replicate, and restore the original mass of the
liver within 10-14 days [14]. This process involves a com-
plex regulatory cascade of cytokine signals and transcrip-
tional regulators that coordinate cell cycle progression
while maintaining homeostasis [15,16]. An essential contri-
bution of miRNAs in this regenerative response has been
supported by a recent study in which mice with genetic de-
letion of the DROSHA cofactor DGCRS, a factor required
for microRNA biogenesis, exhibited markedly impaired
hepatocyte proliferation after partial hepatectomy [17]. Al-
though changes in expression of miRNAs after partial hep-
atectomy and in liver-graft models have been reported
using array-based assays [17-24], only a small number of
targets have been validated [22,23,25,26]. Importantly, the
identification of the subset of mRNAs that are regulated
by miRNAs in the regenerating liver is far from com-
plete, in part due to the large number of possible mRNA:
miRNA targeting relationships predicted by computational
approaches.

We hypothesized that recruitment of miRNAs to the
RISC, or RNA-induced silencing complex, which con-
tains the partially base-paired miRNA and its mRNA tar-
get, would be a more informative method to assess
miRNA activity during liver regeneration, since changes
in the overall expression level of miRNAs reported thus
far do not take into consideration changes in target
mRNA expression or MRE accessibility. To identify which
miRNAs participate in the regenerative process and to
identify their targets, we used a technique pioneered by
the Darnell laboratory in which UV cross-linked miRNA:
mRNA complexes are immunoprecipitated with an anti-
body to Argonaute, an essential component of the RISC,
and then subjected to deep sequencing analysis [27-29].
We found that a subset of miRNAs is dynamically
recruited to the RISC during liver regeneration, and that
for the majority of these miRNAs, RISC recruitment did
not correlate with changes in overall expression. Further-
more, we exploited the comparison of RNA-seq and RISC
recruitment data to identify those mRNAs whose recruit-
ment to the RISC was highly enriched relative to their
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overall abundance, and which are therefore likely to be
regulated by miRNAs.

Results and discussion

Changes in expression of miRNAs, mRNAs and/or accessi-
bility of microRNA regulatory elements (MREs) to their
complementary miRNAs are likely to affect miRNA recruit-
ment to the RISC [4]. We hypothesized that miRNA activ-
ity would be more accurately determined by quantification
of miRNA abundance in the RISC than by changes in
miRNA levels alone. To this end, we determined miRNA
recruitment at selected time points posthepatectomy previ-
ously shown to correspond to the G; (1h), S (36H) and M
(48H) phases of the hepatocyte cell cycle, and in the quies-
cent liver, corresponding to Gg [30,31]. Cell cycle stage was
confirmed by activation of genes associated with G
(jun, fos, myc), S (cyclin D1) and M (Foxml) cell cycle
phases determined by RNA-seq analysis of samples from
these time points (Additional file 1: Figure S1). Following
UV-crosslinking of the RISC to microRNA and mRNA, we
quantified miRNAs immunoprecipitated with an antibody
that recognizes Argonaute 1 through 4 proteins and
therefore immunoprecipitates all RISCs [32] by ultra-high
throughput sequencing. We calculated the loading
microRNA relative to all others for each replicate as reads
per million (RPM). We then employed a stringent cut-off
of 100 RPM through which we detected 226 miRNAs in
the RISC complex at one or more time points examined
(Additional file 2: Table S1 contains loading data for the
632 miRNAs that had any aligning reads). An impor-
tant issue for any comparison across time is global
normalization of the data. Because the average levels of
RISC-associated microRNAs were relatively unchanged
over time, we employed additional global normalization, as
well as a stricter 1,000 RPM cut-off, to identify
differentially-loaded microRNAs.

Using these criteria, 16 miRNAs exhibited a significant
increase (9) or decrease (7) in RISC recruitment at one or
more time points posthepatectomy relative to the quies-
cent liver, with a dynamic range exceeding five-fold in an
interval as short as one hour (Figure 1A). We did not de-
tect differences in RISC recruitment of mir-21-5p, a
microRNA that had been shown previously to be signifi-
cantly induced 18 hours posthepatectomy [17]. This may
reflect a lack of correspondence between overall expres-
sion of mir-21-5p and RISC recruitment. It is also conceiv-
able that mir-21-5p RISC enrichment is increased
selectively at 18 hours posthepatectomy, a time point that
was not examined in the current study. Our HITS-CLIP
analysis did, however, predict several previously confirmed
mir-21-5p targets in the regenerating liver including the
anti-apoptotic factor, Btg2 [17] and the NF-kB inhibitor
Pellino 1 [18].
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Figure 1 Changes in miRNA total regulatory load on mRNAs
and total expression at indicated time points posthepatectomy
compared to quiescent liver. (A) Sixteen miRNAs were found to
have altered levels of RISC-loading during the time course of the
experiment. (FDR < = 20%). miR-192-5p has the same seed sequence
as mir-215-5p so was included for comparison. (B) The total
expression of 16 of these miRNAs was measured using tagMan
gRT-PCR at indicated times after partial hepatectomy relative to
quiescent liver. N =2 samples. Significance was calculated by
ANOVA. Levels are normalized to quiescent liver for display
purposes. Red is lower, yellow-white is higher. A tagMan probe was
not available for miR-5620 and was therefore not analyzed.

The change in recruitment was extremely rapid for the
majority of these miRNAs. For example, RISC recruitment
of mir-215 increased approximately 5.6-fold by 1 h
posthepatectomy, and was also similarly enriched at the
time point corresponding to hepatocyte S phase (36 h) rela-
tive to quiescent liver. Surprisingly, mir-215 and mir-192,
which contain the same seed sequence (Additional file 3:
Figure S2), are both regulated by p53 [33,34] and expressed
at similar levels after hepatectomy (Figure 1B), followed dif-
ferent patterns of RISC recruitment. This discordance
could reflect requirements for sequences outside of the
seed region of the two miRNAs for binding to their targets
or interaction with RNA binding proteins.

This rapid change in miRNA recruitment to the RISC is
unlikely to be due solely to an increase in miRNA tran-
scription, and likely reflects enhanced miRNA processing,
stability, changes in miRNA subcellular localization, and/or
changes in the abundance of specific mRNA targets or
RNA binding proteins. Several miRNAs exhibited changes
in RISC recruitment at later time points posthepatectomy.
For example, significant RISC enrichment of mir-142-3p
occurred 48 h posthepatectomy. This miRNA has been
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shown recently to inhibit RAC1-mediated colony formation
migration and invasion in HCC cell lines [35] and could
have a similar function in proliferating hepatocytes. We in-
vestigated whether changes in miRNA recruitment to the
RISC were associated with corresponding changes in over-
all miRNA abundance during the regenerating time course
(Figure 1A, B). Importantly, with the exception of mir-31,
mir-144 and mir-378, we found no correlation between
miRNA expression and RISC recruitment and for many of
the miRNAs examined, changes in RISC recruitment and
overall expression were inversely correlated. Overall, the
dramatic changes in the levels of actively engaged miRNAs
over a short time frame emphasize the necessity to deter-
mine miRNA recruitment to the RISC rather than relying
on simple determination of miRNA abundance in order to
fully assess the impact of miRNA regulation.

Next, we turned our attention to the mRNAs that were
identified in the RISC using our HITS-CLIP assay. We
speculated that miRNA regulation would be more signifi-
cant for those mRNAs that were highly enriched in the
RISC relative to their overall abundance in the tissue.
Therefore, to identify ‘expression-weighted footprints, we
used RNA-seq to quantify total mRNA expression in qui-
escent liver, and 1 h, 36 h and 48 h posthepatectomy.
Next, we calculated RISC enrichment for all mRNAs rela-
tive to their overall abundance (Additional file 4: Table
S2). Using the enrichment-weighted values for all mRNAs,
we applied k-means cluster analysis to identify groups of
genes that exhibited similar changes in RISC recruitment
across the posthepatectomy time course. Pathway analysis
applied to these gene clusters identified specific networks
and biological functional categories that were highly sig-
nificant (Figure 2A, B and Additional file 5: Table S3 and
Additional file 6: Table S4). The overall mRNA expression
levels follow the expected expression patterns, with genes
involved in basic liver function pathways enriched in the
quiescent liver (e.g. clusters 5, 11), and cell cycle genes in-
creasing at 48 hours posthepatectomy (e.g. clusters 3, 8).
Cell cycle progression and checkpoint control gene clus-
ters were maximally enriched in the RISC (B) at 36 h
(cluster 3: mitosis p < 1.92E-10) and 48 h (cluster 12, DNA
replication checkpoint, p <2.71E-07). In contrast to the
pattern of cell cycle gene enrichment in the RISC, genes
involved in amino acid metabolism (p < 2.79E-07), lipid
metabolism (Cluster 10, synthesis of lipids, p < 3.41E-07),
and cell growth (Cluster 10, p <6.45E-08) were gradually
decreased in the RISC following hepatectomy. Growth fac-
tors expressed in hepatocytes during regeneration including
Fgfl and VegfA were enriched the RISC (Additional file 4:
Table S2) suggesting that these factors are also regulated by
miRNAs. HGE, which is synthesized by hepatocyte stellate
and endothelial cells, was also highly enriched in the RISC
in quiescent liver followed by a rapid and sustained fall in
enrichment that did not normalize until 48 h after partial
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Figure 2 (See legend on next page.)
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Figure 2 Clustering and functional analysis of mRNA and total regulatory load profiles. k-means clustering was used to summarize the
main patterns of mMRNA levels (A) and total regulatory load (B) across the regeneration profile. Within each cluster we identified enriched
pathways and functions. The numbers on the left of each cluster indicate the cluster number (referenced in Additional files 5 and 6) and the
number of genes in the cluster. Contrasting the mRNA expression levels with the total regulatory load (TRL) for a set of genes in an enriched
pathway reveals information about the potential effect of miRNA regulation. Genes in (C) and (D) display different regulatory relationships. Panel
C contains genes for which increased TRL precedes or coincides with decreased overall expression of immediately early (Fos) or antiproliferative
target genes (GAS1 and SPHK2), whereas in Panel D, containing genes involved in the DNA replication checkpoint pathway, the TRL (dashed lines)
begins to increase at 36 hours posthepatectomy (S phase peak), 12 hours prior to the increase of the relevant mRNAs (solid lines).

hepatectomy (Additional file 4: Table S2). Mobilization of =~ miRNA inhibition of HGF may serve to further enhance
preexisting HGF from extracellular matrix by urokinase =~ HGF mRNA levels during the regenerative response.

plasminogen activator provides a rapidly available source Regulation of mRNAs by miRNAs may either “fine-tune”
of this growth factor that is required to stimulate hepato-  or significantly inhibit target mRNA expression [4]. To in-
cyte proliferation [36]. Our findings suggest that relief of  vestigate the potential regulatory function of miRNAs for
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Figure 3 Examples of Ago footprint location and discovery. The profiles of coverage by HITS-CLIP sequence reads for three genes (A) Ptp4al
(PRL-1) (B) HDAC8 and (C) TRB (thyroid receptor beta); indicated time points are shown.
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their targets in the regenerating liver, we plotted total gene
expression and RISC recruitment for two clusters of genes
known to be important in the regenerative process after
partial hepatectomy [37]. The total regulatory load (TRL) of
Gasl, an inhibitor of proliferation, increases coincident with
a decrease in its overall expression, suggesting that its in-
hibition by miRNAs may facilitate the G;/S transition [38]
(Figure 2C). SPHK2 represses transcriptional activation of
the immediate-early growth gene Fos via inhibition of his-
tone acetylation [39]. These findings suggest that Fos and
SPHK2 inhibition by miRNAs could cooperatively contrib-
ute to the resolution of Fos activation posthepatectomy.
In contrast, the TRL of mRNAs encoding proteins involved
in DNA checkpoint regulation increases at 36 hours
posthepatectomy, prior to the observed overall increase in
mRNA at 48 hours posthepatectomy (Figure 2D). This
temporal relationship suggests that miRNAs may limit and/
or delay the increase in expression of replication checkpoint
genes during hepatocyte S phase, allowing for completion
of DNA replication.

The majority of miRNA target prediction algorithms
utilize complementary seed match pairing to the 3'UTR of
candidate mRNAs, although recent reports have identified
miRNA regulatory sequences in coding region (CDS) and
5'UTR regions [5-11]. Most of the Ago footprints aligned
to sequences in the 3'UTR of mRNAs, but we also found
footprints in the CDS and 5’'UTR in a subset of mRNA
targets (Figure 3 and Additional file 7: Table S5). Foot-
prints were identified for many genes with known roles in
liver growth. For example, we identified a dominant foot-
print in the 3'UTR of Ptp4al (PRL-1), an immediate-early
gene in the regenerating liver associated with cell growth
(Figure 3A) [40]. A unique footprint was found in the cod-
ing region of the histone deacetylase, HDACS8, a modula-
tor of estrogen related receptor alpha activity (Figure 3B)
[41]. An example of a strong 5'UTR footprint is shown for
thyroid receptor beta (THRB), a regulator of hepatic lipo-
genesis (Figure 3C) [41,42].

The mRNA fragments identified by HITS-CLIP are pre-
dicted to contain or be adjacent to miRNA regulatory ele-
ments (MREs), and therefore should enable us to refine
the computational predictions of miRNA-mRNA pairs by
reducing the ‘search space’ in which to evaluate matches
to miRNA seed sequences. For this purpose, we began by
compiling all mRNA fragments we obtained from the
Argonaute immunoprecipitation, and aligned them to all
RefSeq mRNAs. Next, we catalogued all starting positions
of these mRNA fragments. These mRNA fragments were
then coalesced into ‘footprints’ by the locally strongest ac-
cumulation of reads, yielding 472,474 footprints, or sites of
RISC occupancy in mRNAs. Finally, these footprints were
intersected with all predicted mRNA:miRNA targeting
relationships obtained by miRanda, when applied to all
known miRNAs and RefSeq mRNAs. This refinement of
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Figure 4 Method for high confidence prediction of miRNA-
mRNA targeting relationships. HITS-CLIP reads for mRNA fragments
from all our time-points were pooled for the purpose of predicting
miRNA/MRNA targeting relationships in the liver. Over 228 million raw
sequence reads were aligned to RefSeq mRNAs to yield over 8 million
fragment start positions. These mRNA fragments were coalesced into
footprints’ anchored by the locally strongest accumulation of reads,
yielding 472,474 mRNA footprints. These footprints represent the
mRNAs that are targeted to the argonaute-containing RISC at any time
during liver regeneration. Next, these mRNA footprints were
intersected with all possible predictions of mIRNA/mRNA targeting
relationships obtained from miRanda [43], yielding 125,949 unique and
high confidence miRNA/mRNA pairs. Note that the combination of the
computational approach (miRanda) with the experimental approach
(HITS-CLIP) refined the computational predictions by more than 20-fold.

Circles not drawn to scale.

the computational approach using our experimental data
on RISC footprints resulted in 125,949 unique and high
confidence miRNA/mRNA pairs, which is a greater than
20-fold refinement of the results obtained from computa-
tional target prediction alone (Figure 4).

To assess the accuracy of our predicted miRNA/mRNA
pairs, we compared our results to a set of genes whose ex-
pression was altered in liver in response to miR-29a-3p
antisense oligonucleotide treatment [44]. Hand and
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colleagues identified 78 genes that were up-regulated upon
blocking miR-29a-3p, and an additional 65 genes that
were down-regulated. We identified 381 predicted targets
of miR-29a-3p in quiescent liver using the methods sum-
marized in Figure 4. Of these predicted targets, 10 (p =
4.16e-06; Fisher exact test, followed by Benjamini-
Hochberg correction for multiple testing) were found in
the up-regulated set in Hand and colleagues [44] whereas
only 3 (p=0.228) were found in the down-regulated set.
Performing the same analysis for all miRNAs, we found
the targets of miR-29a-3p to have the second most signifi-
cant overlap with the up-regulated set obtained experi-
mentally [44]. The most significant overlap was with
miR-328-3p that had a similar overlap (10 genes in com-
mon with 282 targets and 4 targets in common with miR-
29a-3p). Next, we performed a similar comparison of the
miR-122-5p targets identified in the quiescent liver
[45,46], and obtained a similar trend. We identified 748
target genes and 866 target mRNAs for miR-122-5p. The
overlap between our targets and the microarray data
were significant for the genes up-regulated upon interfer-
ence with miR-122-5p activity (36 of 206 transcripts p =
3.87e-09 for Esau and 42 of 363 p=3.6%-15 for
Krutzfeldt), and not significant for the down-regulated
genes (32 of 619 p=1 for Esau and 16 of 305 p=1 for
Krutzfeldt). For both sets of up-regulated genes, miR-122
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-5p was the miRNA with the most significant overlap with
the microarray data. Based on the differences between the
experimental models, our results are likely to underesti-
mate the true extent of mir-29a-3p or miR-122-5p target
overlap. Nevertheless, these findings provide strong sup-
port for the validity of our target prediction approach.

A prediction of the ceRNA hypothesis is that mRNAs
containing the same MREs will compete for a common
pool of miRNAs [13]. We postulate that activation of a
subset of growth regulatory mRNAs in the regenerating
liver may be due in part to relief of inhibitory effects of
other highly induced mRNAs that compete for the same
pool of miRNAs. At present the extent of these ceRNA
networks has been difficult to establish, due to the afore-
mentioned limitations of the computational target predic-
tion algorithms. Therefore, we applied our mRNA:miRNA
targeting relationship predictions to build candidate
ceRNA networks in the regenerating liver, selecting those
mRNAs that had a single, strong miRNA footprint. Several
examples of predicted miRNA ceRNA networks identified
by our analysis are shown in Figure 5. Two members of
the mir-140-3p ceRNA network, Spred2 and Vamp7, exert
opposite effects on MAPK signaling pathways via inhib-
ition of Raf phosphorylation [47] and endocytosis of the
EGF receptor, respectively [48]. Thus, competition by these
two mRNAs for mir-140-3p could balance positive and
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negative regulation of MAPK signaling in the regenerating
liver, providing an example for the potential functional
relevance of ceRNA networks.

Conclusions

A significant challenge in the field of microRNA biology is
to understand physiologic miRNA:mRNA regulatory rela-
tionships in highly complex in vivo systems. We have
demonstrated here that the HITS-CLIP assay can be ap-
plied to a complex model of growth and proliferation. We
demonstrate that dynamic changes in miRNA recruitment
to the RISC in most cases did not correlate with overall
expression patterns in the regenerating liver, indicating
that assessment of expression levels alone does not reflect
miRNA activity. This lack of correspondence between
RISC recruitment and miRNA expression is likely to be
influenced by multiple factors including contributions of
RNA binding proteins [49] ratio of target mRNA:targeting
miRNA, flanking sequence homology [50] and changes in
miRNA subcellular localization [51]. Using miRNA sen-
sory and decoy libraries, Mullokandov and colleagues re-
cently showed that only highly abundant miRNAs showed
significant target repression, and in some instances were
also less active based on a high mRNA:miRNA ratio or
nuclear localization [51]. These findings suggest that the
small changes in miRNA expression that occur in the
regenerating liver may not contribute significantly to tar-
get mRNA regulation. We also show that inclusion of
HITS-CLIP data enhances miRNA target predictions in
hepatocytes by more than 20-fold over computational ap-
proaches alone. These findings provide a framework for
understanding the relationship of miRNA regulation to
changes in gene expression and will greatly facilitate the
determination of candidate ceRNA networks.

Methods

Animals

8-10 week old male C57Bl/6 mice underwent partial hep-
atectomy as described [52] using isofluorane anesthesia
between 8 AM and noon, and livers were harvested at the
indicated time points after partial hepatectomy. All proce-
dures involving mice were conducted in accordance with
approved Institutional Animal Care and Use Committee
protocols at the University of Pennsylvania and Thomas
Jefferson University.

High-throughput sequencing of RNA isolated by cross-
linking immunoprecipitation (HITS-CLIP)

At the time of tissue harvest, approximately 50% of the left
lateral lobe was coarsely homogenized with a Dounce
homogenizer and the resulting suspension cross-linked
three times on ice in a Stratagene Crosslinker at 400 m]J/
cm®, HITS-CLIP was performed using the monoclonal
argonaute antibody 2A8 [32] as described [28]. Libraries
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were generated for RNA-seq and Ago HITS-CLIP (both
mRNA and miRNA fraction) for quiescent liver, and liver
1 hr, 36 hr and 48 hr post partial hepatectomy, using two
biological replicates for each time point. Additional infor-
mation is available in Additional file 8 on-line.

Quantification of miRNA expression

Total RNA was extracted from frozen quiescent liver and
1, 36, and 48 h post partial hepatectomy using the Qiagen
miRNeasy Mini Kit (Cat. No. 217004, Valencia, CA). Real-
time quantitative polymerase chain reaction (qRT-PCR)
was performed as previously described [53]. 100ng of total
RNA was reverse transcribed using TagMan MicroRNA
Reverse Transcription Kit (Applied Biosystems, Cat. No.
4366596, Carlsbad, CA) and RT primers from the respect-
ive TagMan MicroRNA Assay kit (Applied Biosystems,
part number 4427975 — probe numbers listed separately
in Table 1). qRT-PCR was performed on a Agilent
Mx3005P using the TagMan Universal PCR Master Mix
(Applied Biosystems part number 4304437) and the
TagMan probe from the respective TagMan MicroRNA
Assay kit. Tissue miRNA levels were normalized to en-
dogenous snoRNA 202. Statistical significance of miRNA
expression across various time points was calculated using
One-Way ANOVA on GraphPad Prism (version 6.0). Null
hypotheses were rejected at p-value p<0.05. For all
miRNAs, F-statistic was not significant.

RNA-seq heat map
To construct the heat map, the log, of expression levels in
reads per kilobase per million (RPKM) were quantile-

Table 1 Tagman probes used for analysis of miRNA
expression

Part # Assay ID Description
4427975 001200 mmu-miR-215-5p
4427975 000439 mmu-miR-103-1-3p
4427975 000464 mmu-miR-142-3p
4427975 000465 mmu-miR-142-5p
4427975 002676 mmu-miR-144-3p
4427975 002308 mmu-miR-17-5p
4427975 002493 mmu-miR-21-3p
4427975 000528 mmu-miR-301a-3p
4427975 000185 mmu-miR-31-5p
4427975 002482 mmu-miR-376a-5p
4427975 002243 mmu-miR-378-3p
4427975 001516 mmu-miR-425-5p
4427975 002509 mmu-miR-324-3p
4427975 000435 mmu-miR-99a-5p
4427975 000491 mmu-miR-192
4427975 001232 snoRNA202
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normalized (R normalizeBetweenArrays from the limma
package) and averaged across the two replicates. mRNAs
expressed at a level of at least 2 RPKM were used. K-means
clustering was then performed using a range of K values
from 4 to 30. K =12 yielded a set of mostly unique profiles
with a few repeated profiles indicating that K was large
enough to identify the major patterns. Functional analysis
of the transcripts in each cluster was performed using
the ‘Core Analysis’ function at the Ingenuity website (www.
ingenuity.com).

Total regulatory load heat map

To construct the heat map, we calculated the total regula-
tory load (TRL) for all RefSeq transcripts, averaged over the
two biological replicates, then followed the method used
above for the RNA-Seq heat map. The strength of an indi-
vidual footprint was calculated as the reads per million
(RPM) in the footprint divided by the expression level of
the mRNA (RPKM). The total regulatory load is the sum of
the footprint strengths for all footprints on a given mRNA.
We included all mRNAs with a TRL over 1 [RPM/RPKM].
A workflow diagram of computational methods is summa-
rized in Additional file 9: Figure S3.

Contrasting mRNA and TRL levels

We selected genes in pathways enriched in the TRL k-
means clusters and plotted both mRNA and TRL profiles
for these genes. The k-means clustering ensures that the
TRL profiles are similar, but mRNA levels are not
constrained by this process.

miRNA-mRNA targeting prediction

Raw miRNA targeting relationships were predicted using
miRanda with settings of “-en -10 -sc 140" on all RefSeqs.
A miRNA-mRNA targeting relationship was considered to
be confirmed if the miRNA was present in the Ago-short
library at a minimum of 100 RPM, and had a miRNA regu-
latory element that fell within 5 to 43 bp downstream of
the start of a footprint with strength of at least 0.31 RPM/
RPKM. This analysis was repeated separately for each rep-
licate at each time point.

Overlap with miR-29a-3p and miR-122-5p regulated
genes

The set of genes, up- or down-regulated upon antisense
oligonucleotide-mediated inhibition [44-46], were inter-
sected with the set of genes that we identified as regulated
by miR-29a-3p or miR-122-5p as appropriate, as well as
the sets for all other miRNAs for which we could identify
targets. The statistical significance of the overlaps was
computed using a one-sided Fisher exact test (R function
fisher.exact), then corrected for multiple testing using
the Benjamini-Hochberg correction (R function p.adjust.)
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Additional information is available in Additional file 8
on-line.

ceRNA networks

To identify potential ceRNA networks, we selected all
mRNAs that had one major footprint targeted by a single
miRNA. For this analysis, footprints within 20 bp of each
other were merged. If (1) the second strongest distinct
footprint was less than 25% of the strongest footprint, and
(2) the most loaded miRNA in the strongest footprint was
10x higher than the second-most loaded miRNA in the
footprint, then the mRNA and miRNA were included in a
ceRNA network. This process was performed for each
time point. Networks for each miRNA were then merged
across all time-points to create summary networks.

Availability of supporting data
All sequencing data are available through ArrayExpress.

Accession number: E-MTAB-1612.

Additional files

Additional file 1: Schug Figure S1.

Additional file 2: Table S1. This contains the maximum (Max),
minimum (Min), and max/min fold change (FC) across the quiescent liver
and post-partial hepatectomy time course, as well as the average and
individual values for each time point. All data are in reads per million.

Additional file 3: Schug Figure S2.

Additional file 4: Table S2. This file contains the average total
regulatory load (TRL) for RefSeq sequences. We show the average values
at each time point as well as the minimum (Min), maximum (Max), and
max/min fold change (FC). The values are calculated by adding the total
RPM values for all Ago footprints on each RefSeq, then dividing by the
RNA-Seq expression values for RefSeqs in reads per million per kilobase
(RPKIW).

Additional file 5: Table S3. This file contains the significantly enriched
Ingenuity functions in the K-means clustering of the total regulatory load
(TRL) profiles. The functions are sorted by increasing p-value and by
function. A function is first listed with its best Benjamini-Hochberg
corrected p-value (FDR), and subsequent rows list any other clusters
where the function is enriched. The genes listed are those in the cluster
that are associated with the function. The p-value is corrected for
multiple testing. The Cluster number corresponds to those in Figure 2A.

Additional file 6: Table S4. This file contains the significantly enriched
Ingenuity canonical pathways in the K-means clustering of the total
regulatory load (TRL) profiles. The pathways are sorted by decreasing
statistical significance and by name. A function is first listed with its best
significance, and subsequent rows list any other clusters where the
pathway is enriched. The genes listed are those in the cluster that are
associated with the pathway. The FDR is the Benjamini-Hochberg
corrected p-value calculated by Ingenuity. The Cluster number
corresponds to those in Figure 2B.

Additional file 7: Table S5. Positions and strengths of mRNA footprints
and targeting miRNAs.

Additional file 8: Supplemental methods.

Additional file 9: Schug Figure S3.
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