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Abstract

these poorly characterised genomic regions.

genomes.

human and veterinary health.

Background: The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply
within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly
linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput
transcriptomic data available for this organism there is very little information regarding the location of key
transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic
exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information
regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over

Results: Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of
mRNA are large and apportioned predominantly to the 5" end of the open reading frame. Given the relatively
compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap,
temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions
is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we
extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact

Conclusions: Our study provides a theoretical framework that extends our current understanding of the
transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is
shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the
potential for our findings to have a wider impact across a phylum that contains many organisms important to
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Background

Plasmodium falciparum, the aetiological agent of the
most severe form of human malaria, imposes a signifi-
cant health and socioeconomic impact on those regions
of the world where this parasite is endemic [1]. This
malarial parasite has a lifecycle that alternates between a
human host and mosquito vector, requiring multiple
morphological and biological adaptations to successfully
invade, colonise and divide within diverse cellular
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environments. Progression of parasites through this
complex life cycle and the manifestation of virulence
within the human host are both tightly linked to the
temporal and spatial control of gene expression [2-9].
Over recent years we have garnered a greater appreci-
ation of the interplay between the molecular mecha-
nisms operating at the genetic and epigenetic levels
in regulating developmentally-linked gene expression
[4-6,8]. These insights have been provided by global ana-
lyses of the temporal programme of steady-state tran-
script accumulation [10-12], mRNA stability and RNA
polymerase II complex activity [13-16]. Yet despite these
advances, and with access to a fully-annotated genome
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[17], we know relatively little regarding the fundamental
organisation of the transcriptional unit in this important
pathogen. This bottleneck arises from the extreme AT
nucleotide bias in the intergenic regions (IGR). Here AT
content typically exceeds 80-90%, imposing significant
challenges for amplifying, cloning and sequencing of these
regions as well as the application of bioinformatics tools
(e.g. the unambiguous mapping of sequence reads from
massive parallel sequencing of cDNA). Thus, we under-
stand very little regarding the nature of the transcriptional
unit outside of the open reading frame (ORF).
Determining the coordinates of the transcriptional
start and stop sites is important. Sequences adjacent to
transcriptional start sites likely comprise the cis-acting
elements to which the regulatory and basal components
of the RNA polymerase II complex bind. Moreover,
these coordinates identify sequences in the 5" and 3" un-
translated regions (UTR) of the transcript. These UTR
similarly contain cis-acting sequences that direct transla-
tional efficiency, mRNA capping and stability. Knowing
the number and position of transcription start sites in P.
falciparum is potentially important as it may provide key
clues to the different molecular mechanisms employed
in the control of transcription. For example, is there a
generally relaxed transcriptional activation process that
relies on molecular mechanisms downstream to regulate
temporal patterns of steady-state transcript accumula-
tion? This model is certainly supported by recent reports
of a global programme of temporal mRNA stability dur-
ing intraerythrocytic development [14]. Or, does the
parasite utilise a single predominant transcription start
site that employs specific cis—trans interactions over a
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core promoter to drive temporal expression? This was
not previously a favoured model given the apparent pau-
city of specific transcription factors in the parasite’s gen-
ome [18-20], but it has recently regained support
following the identification and characterisation of an
expanded family of novel specific transcription factors
(ApiAP2) in apicomplexan parasites [21-26]. A combin-
ation of both models is likely at play — but resolving the
issue of where these key transcriptional coordinates are
located is essential.

Studies on the size and organization of IGR in fungal
species, which share a similarly compact genome as
P. falciparum, suggest that transcriptional and RNA pro-
cessing cis-acting regulatory sequences leave a “foot-
print” on the IGR [27,28]. IGR that contain divergent
transcripts, i.e. the flanking open reading frames (ORF)
are orientated in a head-to-head fashion (see Figure 1A),
are larger than those IGR with convergent transcrip-
tional units where the flanking ORF are organised tail-
to-tail. These studies indicate that gene spacing is not
random, but is instead organised to facilitate the spatial
arrangement of transcriptional units, and also that 5’
UTR are larger than 3" UTR. A provisional analysis of
IGR spaces from the incomplete chromosome 3 of P.
falciparum indicates the same gene spacing patterning is
present [29]. However, to date, no studies have
addressed the spatial and temporal organisation of tran-
scripts over these IGR.

As indicated above, there is a critical lack of data
concerning the P. falciparum transcriptional unit outside
of the ORF. Expressed sequence tag (EST) data from 3’
rapid amplification of cDNA ends (3" RACE) and RNA
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Figure 1 Distribution of IGR size in P. falciparum. A) Schematic representing the orientation of divergent, tandem and convergent
transcriptional units over IGR types A, B and C, respectively. Block arrows represent the orientation of flanking ORF, transcripts are indicated as
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dotted lines with the direction of transcription indicated using an arrowhead. Where relevant, the 5" end of a transcript is indicated with a solid
filled dot. For simplicity, only non-overlapping transcriptional units are represented. B) Box and whisker plot representing the distribution of size
of IGR types A, B and C. The box represents the 25-75% distribution, the enclosed line the median, with the whiskers indicating the range of sizes
between 2.5-97.5% of the entire range. Due to the distribution of data, outliers beyond the 2.5-97.5% of data represented by the range whiskers
are not shown. C€) Box and whisker plots representing the distribution of the size of IGR types A, B and C in subtelomeric (clear boxes) and
chromosomal internal (grey shaded boxes) domains. For each pair of IGR type, the differences are significant (ANOVA, *** p < 0.001). Due to the
distribution of data, outliers beyond the 2.5-97.5% of data represented by the range whiskers are not shown.
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ligase mediated RACE (RLM-RACE) provide some
coverage. For example, RLM-RACE provides transcrip-
tion start data for 1465 ORF (c. 27% of total) and is
available through the Full-Malaria database (http://
fullmal.hgc.jp) [30,31]. These data indicate that P. falci-
parum transcriptional start sites are generally located at
multiple loci, often spread over several hundred
basepairs, some 150-450 bp upstream of the ORF. In
addition to these genomic approaches, there are also a
number of single-gene studies that provide transcript
size data from Northern blots (see Additional file 1 and
Additional file 2). Whilst many of these studies do not
report the physical mapping of transcriptional start and
stop sites, they do generally indicate two features of the
P. falciparum transcript that seem at odds with the
available EST data. First, transcripts are typically much
larger than the OREF, suggesting a significant fraction of
a transcript is untranslated. Second, one or two major
transcripts are most often observed, which would sug-
gest either that only one or two major transcription start
sites exist, or that if many transcription start sites are
utilised then these are either very close together or else
only one or two give rise to a major stable transcript.
Assays of promoter structure that are complemented
with physical mapping of the transcription start site sug-
gest that transcripts initiate at one, or at two closely lo-
cated, transcription start sites and that these extend
between 400-1900 bp upstream of the ORF [5,32-37].
Despite what appears to be a disparity between the size
of UTR predicted from EST and Northern blot studies,
no systematic comparison of these data has been carried
out to date to explore this difference.

We describe here a study that explores the size and or-
ganisation of IGR in P. falciparum and correlates this
with UTR data available from Northern blots and EST
databases. Our findings suggest that P. falciparum tran-
scripts have a large UTR which appears preferentially
apportioned to the 5" end of the ORF. As this would
suggest that significant amounts of the IGR that flank

Table 1 IGR size and distribution in P. falciparum
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ORF are included in transcripts, we explore how tran-
scriptional units are spatially and temporally organised
over these IGR. Further, by showing a similar IGR ar-
rangement in other apicomplexan parasites important
for human and animal health, we suggest that our find-
ings may impact more widely in understanding the
molecular control of transcription across this phylum.

Results

The size of IGR is related to the transcriptional activity
that occurs within that space

The sizes of all 5588 IGR in P. falciparum (clone 3D7)
were determined and categorised into one of three
groups (A, B or C) to reflect the nature of transcrip-
tional activity that occurs over them (Figure 1A). Group
A IGR contain two divergent transcripts, orientated to-
wards the flanking head-to-head ORF and thus contain
two promoters (two 5" UTR). Group B IGR contain two
tandem arrayed transcripts over the head-to-tail flanking
ORF with one promoter (5" UTR) and one terminator
(3" UTR). The remaining type C IGR contain two con-
vergent transcripts over the flanking tail-to-tail ORF and
two terminators (two 3’ UTR). There are 1479, 2626
and 1483 of types A, B and C IGR, respectively, which
gives a relative ratio of 1:1.77:1 (Table 1), close to the
expected 1:2:1 ratio expected from the known
organization of P. falciparum genes into monocistronic
transcriptional units [5,38,39]. The sizes of IGR in the
three groups are significantly different (Figure 1B, p <
0.05) showing the relationship A > B > C (medians of
1938, 1385 and 677 bp, respectively) as a 2.9:2:1 ratio.
Thus, IGR size in P. falciparum clearly correlates with
the orientation of transcriptional units arrayed over
them with 5’ flanking IGR generally larger than 3’
flanking IGR.

P. falciparum chromosomes are typically divided into
subtelomeric and chromosome-internal domains; reflec-
ting their differing heterochromatic environment, multi-
gene family composition, sub-nuclear organization and

Region IGR Type n= Ratio of IGR Median size (bp) % change2 Ratio of median
types' size'
All genome A 1479 1.00 1938 2.86
B 2626 1.77 1385 2.05
C 1483 1.00 677 1.00
Subtelomeric A 123 0.98 2838 +46.4 1.84
B 379 303 2138 +544 1.38
@ 125 1.00 1545 +128.2 1.00
Internal A 1283 1.01 1905 =11 295
B 2118 1.66 1266 -86 1.96
@ 1276 1.00 646 -46 1.00

! Type C IGR is always defined as 1.00. % change compared to data from IGR in all genome.
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length plasticity [3,9,40-45]. Whilst we know there is a
reduced gene density within subtelomeric regions,
whether this is reflected in differences in the size and
orientation of IGR is not known. We determined the 28
breakpoints between the subtelomeric/chromosome-in-
ternal regions for the 14 chromosomes of P. falciparum
(Additional file 3) based on the loss of synteny with the
related Plasmodium spp. P. knowlesi and P. vivax. 627
IGR (11.8% of total) were defined as falling within the
subtelomeric region. The ratio of types A, B and C IGR
in the subtelomeric region is approximately 1:3:1
(123:379:125) (Table 1), reflecting the known bias for
head-to-tail orientation of the numerous members of the
rifin multi-gene family present in this region [46].
Subtelomeric IGR, however, were all significantly larger
(p < 0.05) than those in the chromosome internal re-
gions (Figure 1C). This increase in size was not equitable
across the different classes of IGR (Table 1), resulting in
an alteration of the A:B:C IGR spacing ratio from ap-
proximately 3:2:1 to 1.8:1.4:1.

A preliminary analysis on the sizes of IGR from
chromosome 3 of P. falciparum reported that A>B>C
and that they show a relative 3:1.9:1 size ratio; close to
that reported here (2.9:2:1) for the entire genome [29].
This study also describes an analysis of the partial gen-
ome of the similarly AT-rich organism Dictyostelium
discoideum, and concluded that a 3:2:1 length ratio for
IGR types A, B and C appears to be broadly true across
moderately compact genomes (2.5-4.8 Kb/ORF). We ex-
tended this preliminary analysis to encompass the entire
genomes of D. discoideum, the yeast Saccharomyces
cerevisiae, and ten additional apicomplexan parasites
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(P. knowlesi, P. vivax, P. yoelii, Babseia bovis, Crypto-
sporidium hominis, C. parvum, Neospora caninum,
Toxoplasma gondii, Theileria annulata and T. parva
[47-55]) that exhibit a range of AT content and genome
density (Table 2) to determine whether this orientation-
specific effect on IGR length held true on wider investi-
gation.

All types of IGR show a range of median sizes across
the 13 organisms investigated (Figure 2A). For all organ-
isms where A> B > C, and all comparisons were signifi-
cant (Table 2), an apparent 3:2:1 relationship is
maintained in these moderately compact genomes (here
2.3-4.6 Kb/ORF) irrespective of the AT content of their
genomes. Interestingly, only the two coccidian parasites,
Toxoplasma gondii and Neospora caninum, do not share
this same relationship, where instead A = B > C, and
gene density is greatly reduced (9.1 and 8.5 Kb/ORE, re-
spectively). Whilst no apparent relationship exists be-
tween the median sizes of the different types of IGR and
the AT content (Figure 2B), there is, as expected, a
strong relationship (R* between 0.86-0.93) with the gen-
ome density, i.e. more compact genomes have propor-
tionally smaller IGR (Figure 2C).

P. falciparum transcripts contain a long UTR that is

preferentially apportioned to the 5' end of the ORF

To better understand the relationship between ORF and
transcript size in P. falciparum, we collected a cohort of
Northern blot data from 105 ORF. Of these, 62 were
gathered during a review of the published literature with
the remaining 43 from Northern blots carried out for
this and other studies in our laboratory (Additional file 1

Table 2 Comparison of the size and organism of IGR from organisms used in this study

Organism IGR count Ratio of IGR  Median size of IGR (bp)  Ratio of median  Significant difference®
count? size?

%AT'" A B C A B C A B C A B C AB AC BWC
Babesia bovis 58.2 1124 1990 1032 11 19 10 543 352 175 3.1 20 1.0 Yes Yes Yes
Crytosporidium hominis 68.3 328 631 404 08 16 10 640 494 203 32 24 10 Yes Yes Yes
Crytosporidium parvum 70 994 1666 972 10 1.7 10 634 460 175 36 26 1.0 Yes Yes Yes
Dictyostelium discoideum 776 3312 6571 3313 1.0 20 10 825 602 241 34 25 1.0 Yes Yes Yes
Neospora caninum 452 1694 1965 1695 10 12 10 3603 3899 2172 1.7 1.8 1.0 No Yes Yes
Plasmodium falciparum 80.6 1405 2494 1409 10 18 10 1938 1385 677 29 20 1.0 Yes Yes Yes
Plasmodium knowlesi 62.5 1320 2225 1330 10 17 10 2162 1592 736 29 2.2 1.0 Yes Yes Yes
Plasmodium vivax 577 982 1668 944 10 18 10 1956 1434 643 30 22 10 Yes Yes Yes
Plasmodium yoelli 774 693 2679 1338 05 20 10 1192 578 582 20 10 10 Yes Yes Yes
Saccharomyces cerevisiage 617 1424 2726 1498 10 18 10 485 391 238 20 1.6 1.0 Yes Yes Yes
Theileria annulata 67.5 869 1856 857 10 22 10 439 277 125 35 22 1.0 Yes Yes Yes
Toxoplasma gondii 477 1134 1878 1121 10 1.7 10 2576 2437 1623 1.6 1.5 1.0 No Yes Yes
Theilera parva 65.9 886 2052 862 10 24 10 376 256 154 24 1.7 1.0 Yes Yes Yes

AT content of the whole genome. 2 In all ratios, the value for type C IGR is taken as 1. > ANOVA test with significant difference (p < 0.05) between different IGR

determined using Dunn'’s multiple comparison post-test.
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Figure 2 Distribution of IGR size in 12 additional organisms. A) Box and whisker plots representing the distribution of sizes of the different
IGR types in the indicated species. Due to the distribution of data, outliers beyond 2.5-97.5% of data are not shown. See Table 2 for details
relating to significance of intertype comparisons. B) and C) The median size of IGR types A, B and C for all 13 organisms plotted against the
mean genomic AT content (B) and mean gene density (C).

and Additional file 2). The size of the predicted UTR
from these 105 transcripts revealed a diverse distribution
between 486 and 4125 bases (Figure 3A, median 1518,
interquartile range 1150-1844 bases). There was insuffi-
cient data to demonstrate a normal distribution,
although there is clearly an evolving pattern of mono-
modal distribution with 72% of all UTR sizes falling

between 800-1800 bases. Comparing UTR size against
the size of their respective ORF reveals no significant
correlation (Figure 3B, R* = 0.04). Given the apparent re-
stricted distribution of the majority of UTR size, it was
not surprising to find a strong correlation between the
sizes of the ORF and the whole transcript (Figure 3C,
R*=0.88), with a slope close to one (1.07 +0.04) and a
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Figure 3 UTR size and apportionment in P. falciparum. A) Distribution of UTR sizes predicted from cohort of Northern blot data for 105 genes
(bin size 250 bp). B) and €) Scatterplots comparing the size of ORF against the size of predicted UTR (B, R? = 0.04) and the full length transcript

(C, R? =028 for this cohort of genes. D) Scatterplot comparing the UTR sizes predicted from Northern blots and EST database sources. Only
genes for which both 5" and 3’ EST data was available are plotted (n =44, R’ =0.02). E) Box and whisker plot representing predicted
apportionment to the 5" UTR. The two plots represent either an analysis of EST data alone (n =44 genes, EST) or a triage of this dataset (tEST).
The tEST dataset (n = 19) represents only those 3' EST that terminate with a consensus polyadenylation site.

y-intercept of 1444 + 99 bases (close to the median dis-
tribution of 1518 bases). Sorting of the Northern blot
data according to a range of criteria relating to its
source, the organisation of the ORF (number of exons
and orientation with respect to adjacent genes) and the
morphological stage in which the peak of steady-state
transcription occurs reveals no significant differences be-
tween the correlation, slope and y-intercept when com-
paring transcript against ORF size (Additional file 4).

Of these 105 genes, both 5" and 3" EST data are avail-
able for 44 (Additional file 5). The most distal 5" and 3’
EST coordinates were secured and used together to

predict a maximal UTR size. The distribution of sizes of
these UTR was more restricted (range 80-952, median
512, interquartile range 351-630 bases) than those pre-
dicted from Northern blots. Notably, the sizes of the
UTR from EST data were always smaller (Figure 3D)
and the lack of correlation (R*=0.02) with UTR sizes
predicted from Northern blots suggests there is unlikely
to be a systematic basis to the discrepancy in size deter-
mined from the two techniques employed.

Comparison of the 5" and 3" EST UTR data revealed a
bias in apportionment to the 5" UTR (Figure 3E, median
61.6, range 4.8-97.8%). However, given the discrepancy
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between the Northern blot and EST UTR data, some
caution must be applied to this provisional analysis. In
order to better refine UTR apportionment, we triaged
the 3" EST sequence data (termed tEST) to identify
those that contained a consensus canonical polyadeny-
lation site motif that P. falciparum shares with other
eukaryotes [37,56-59]. Of the 44 3’ EST available, 19
were identified with the remainder generally appearing
to result from mis-priming of 3" RACE from homopoly-
meric adenosine tracts commonly found in these AT-
rich IGR. Taking the size of these 3" UTR (range 177 to
473 bases) as a proportion of the total UTR available
from Northern blots provides a more discreet set of ap-
portionment data (Figure 3E) with a median 5" UTR ap-
portionment of 78.2% (range 70—86.1%).

Modelling spatial transcript organisation over IGR

Our data would suggest that transcripts extend further
into IGR than has currently been predicted from EST
and RNAseq studies. In order to explore the spatial ar-
rangement of transcripts in the IGR flanking each OREF,
in the absence of extensive mRNA coverage data, we de-
veloped a modelling approach. The aims of the model-
ling were to; (i) extend the evidence base for the
apparent preferential 5" UTR apportionment and (ii) ex-
plore whether transcriptional units are discrete non-
overlapping entities or whether they likely overlap given
the apparent large size of UTR in the relatively compact
P. falciparum genome. The modelling was performed by
incrementally apportioning UTR (from 100% at the 5’ to
100% at the 3’) of varying size over the IGR available
around each ORF in the genome. For each ORE, length
of UTR and % apportionment, a binary pass/fail was
recorded — with the mean fail rate across all ORF plot-
ted against transcript apportionment. Two scenarios
were explored. The first, scenario A, considers the tran-
script organisation over an ORF independent of tran-
scripts organised over adjacent ORF (Figure 4A). Thus,
the UTR to be apportioned need only fit in the total IGR
surrounding the ORF in question, and the tested appor-
tionment is considered to fail only when the transcript
overlaps with an adjacent ORF. This model therefore as-
sumes that transcripts initiate and terminate solely
within IGR. This was regarded as the least constrained
scenario as it does not consider the nature of the adja-
cent transcriptional units. A second, more constrained,
scenario B (Figure 4B) explores the potential for more
than one transcript arrayed over an IGR; here a fail oc-
curs when the UTR apportioned over the ORF in ques-
tion overlaps with a similarly apportioned transcript
over either adjacent ORF. This model therefore tests the
assumption that transcripts arrayed over an IGR exist as
similarly-apportioned non-overlapping entities.
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Modelling of both scenarios utilised a range of fixed
length UTR between 0.6 and 1.8 kb in 200 bp incre-
ments, reflecting the distribution of the majority of UTR
determined above. Modelling of scenario A essentially
describes a series of similarly shaped curves that show
the expected inverse relationship between minimum fail
rate (indicated by the lowest point on the curve) and
length of UTR (Figure 4C). For all UTR lengths investi-
gated, the best-fit was achieved when 70-80% of the
UTR is apportioned to the 5" end, correlating well with
the triaged EST UTR data described above (70-86.1% at
5" end). Similarly, using the more constrained scenario
B, for all UTR lengths investigated the best-fit is
achieved when the majority of UTR is apportioned to
the 5’ end, although here there is a slight increase to a
75-85% 5° apportionment (Figure 4D). The key differ-
ence between the two scenarios is the significant in-
crease in fail rates obtained, irrespective of the length of
UTR modelled, when attempting to fit two non-
overlapping transcripts over the IGR space available.
Minimum fail rates that range between 10.2 and 47.8%
in scenario A increase dramatically to between 23.2 and
81.8% in scenario B (values represent minimum fail rates
for 600 and 1800 bases UTR). Our modelling suggests
that the assumption that transcripts are arrayed over an
IGR as non-overlapping entities is incorrect. Moreover,
the high fail rates in scenario A suggest that the second
assumption that transcriptional start and stop sites are
solely located within IGR may similarly not be true.
However, it is worth noting these are mean fail rates and
the data can be granulated accordingly to determine the
effects of different possible orientations of types of
flanking sequence around an OREF. As expected, ORF
with large amounts of flanking sequence (type A at 5’
and B at 3') have lower fail rates, with the corresponding
opposite effect where less flanking sequence (type B at
5" and C at 3") is available (data not shown). Whilst the
potential for smaller transcripts apportioned over ORF
with smaller IGR spaces around them is possible —
examination of the UTR size for the different orienta-
tions of the 105 genes in the Northern blot cohort
data revealed no significant difference on this basis
(Additional file 4).

Temporal organisation of transcription over IGR during
the intraerythrocytic development cycle

Our modelling suggests that there is likely a significant
programme of transcriptional overlap within IGR. The
premise that two transcripts are necessarily synthesised
simultaneously over both template strands of an IGR,
however, may not generally occur given the extensive
programme of stage-specific transcription that occurs
during the parasite’s progression through its complex life
cycle [10,60,61]. We therefore explored the potential for
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co-spatial and co-temporal transcription over the IGR
that flank the 3835 ORF that are transcribed during the
intraerythrocytic development cycle (IDC). Comprehen-
sive stage-specific transcriptomic datasets are available
and provide an opportunity to define peak transcript
accumulation to defined temporal windows of the 46-48
hr IDC [10-12,62,63]. We adopted the organisation
of these 3835 ORF into four clusters described by
Jurgelenaite and colleagues [62]. Each cluster represents
a group of temporally co-transcribed genes, with peaks
of steady state transcript levels in the following morpho-
logically distinguishable intraerythrocytic developmental
stages (i) early ring, (ii) late ring and early trophozoite,
(iii) trophozoite and schizont, and (iv) schizont only
stages. Of the total of 5588 IGR, only 568 (10.2%) shared
transcripts from both flanking ORF within the same
window of peak temporal transcription during the IDC.
Specifically, these were; 202 type A (13.7% of total type
A), 237 type B (9%) and 129 type C (8.7%), with type A

IGR appearing slightly overrepresented in this analysis.
Comparison of the median sizes of these co-transcribed
IGR still show that the A > B > C relationship holds true
(Figure 5, median sizes of 1539, 1428 and 705 bp, re-
spectively). However, whilst the sizes of types B and C
cotranscribed IGRs are not significantly different from
those in the whole genome, those of cotranscribed type
A IGR are significantly smaller (Figure 5). We note that
whilst a total of 10.2% of spatially overlapping transcripts
in P. falciparum is similar to that determined in S.
cerevisiae and other eukaryotes, this value is probably an
overestimate given the relatively broad windows of time
used to define co-temporal transcription (8-12 hrs) in
this analysis.

Discussion

This study set out to address a fundamental gap in our
understanding of the P. falciparum transcriptional unit
outside of the ORF. Specifically, we examined the size
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and apportionment of the UTR as well as the spatial and
temporal organization of the transcriptional units within
the IGR that flank these ORF. In terms of the size and
apportionment of UTR, our data would indicate; (i) that
UTR are long, typically some 800—1800 bases, (ii) that
the size of the UTR is independent of the size of the
coding sequence and (iii) that 70-80% of the UTR is
preferentially apportioned 5" of the ORF. This would in-
dicate that transcriptional start and stop sites lay be-
tween 600-1350 bp and 200-450 bp either side of the
ORE. Apart from lengthening our current understanding
of the extent of the transcriptional landscape in P. falcip-
arum, these more distal transcriptional coordinates have
implications for our search and validation of regulatory
cis-acting regions. In silico searches for sequence motifs
enriched in the flanking regions of functionally related
and/or cotranscribed genes typically use 1kbp of flanking
sequence [64,65]. Whilst this would seem suitable for
searching downstream of an OREF, it is perhaps not suffi-
cient to identify all potential 5° positioned regulatory
elements. That said, a ScanACE analysis of at least 2kbp
of flanking sequence has provided an extensive catalogue
of putative ApiAP2 transcription factor binding sites
[22]. Testing of these putative sites will require func-
tional analyses of promoter activity. Our data regarding
the extent of UTR coverage, as well as the significant
chance of transcript overlap, provides insights that may
help guide selection of sites more likely to be trans-acting
factor binding sites to be tested in these studies.
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Of note was the discrepancy between the sizes of UTR
predicted from Northern blot and EST data; with those
predicted from EST data invariably being shorter. This
discrepancy is unlikely to result from a selection bias in
the cohort of 105 genes used in this study as the mean
size of all 5" UTR from the EST data for these genes
(305 £ 182 bp) is very similar to that published for 1465
genes for which 5" EST data is available (303 + 155 bp)
[31]. More likely, bias introduced into the EST data by;
(i) reduced processivity of reverse transcriptase over AT
rich sequences, (ii) partial RNAseH activity in early gen-
eration enzymes and (iii) the use of oligo(dT) for first
strand ¢cDNA synthesis in some EST datasets, are all at
play. Northern blot data are similarly prone to system-
atic error as often these are “guestimates” based on the
use of a limited set of size standards during electrophor-
etic size fractionation. We also recognise the limitations
arising from analysis of 105 genes by Northern blot ana-
lysis (c. 2% of all genes). This study does, however, repre-
sent the most complete meta-analysis of Northern blot
data in P. falciparum to date.

Assuming a range of UTR between 800 and 1800
bases would indicate that 40-90% of all IGR space in the
relatively compact genome of P. falciparum is included
in at least one transcript. Since it would appear likely
that there is significant transcriptional unit overlap, the
actual extent of this transcriptional landscape over the
genome would be reduced, although our data would
suggest it is still considerably more than previously pre-
dicted from the available RNAseq and EST coverage.
Why these UTR are so large in P. falciparum is intri-
guing. The size of the UTR, in part, would require that
it is long enough to contain the cis-regulatory elements
necessary for RNA metabolism. Whilst we know rela-
tively little about these, the high level of selective con-
straint throughout intergenic regions in P. falciparum
provides evidence of an evolutionary “footprint” for
these non-coding elements [66,67]. Selective constraint
is slightly, although not significantly, higher in proximal
intergenic regions [66], i.e. regions more likely encoded
in the UTR. In itself, however, the presence of these cis-
regulatory elements doesn’t provide an explanation for
the length of the UTR. The extreme AT bias of these
IGR, however, may provide some explanation for this
phenomenon. Like P. falciparum, transcripts in D.
discoidium have long UTR with a median length of
724 bp for the 14124 5" UTR sequences deposited in
Dictybase. Both organisms share a highly biased AT-rich
genome, effectively resulting in a binary nucleotide code
within the IGR. This reduction in information content
may necessarily lead to an expansion of sequences
necessary to encode/utilise regulatory information,
although this is perhaps an oversimplified interpretation
of the observation. Critically, the genomes of both
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organisms show evidence of extensive overrepresenta-
tion of homopolymeric poly(dA).poly(dT) tracks [68,69],
and these tracts are more highly overrepresented within
the IGR (own unpublished data). Thus, a requirement to
maintain non-coding cis-regulatory elements embedded
within flexible poly(dA).(dT) tracts that are prone to ex-
pansion could account for the increased length of UTR
in P. falciparum. This proposal would suggest that some
regions within the UTR are less essential than others -
an observation borne out by our own (Hasenkamp S,
Russell K, Ullah I, Horrocks P: Functional analysis of the
5" untranslated region of the phosphoglutamase 2 tran-
script in Plasmodium falciparum, in press) and other stud-
ies that have determined the effect on reporter gene
expression following deletion of UTR sequences [70-73].
Deletions of several hundred bases of the proximal 5"UTR
appear to have a minimal effect on the absolute and tem-
poral expression of the reporter gene, suggesting some
plasticity in the size of the P. falciparum transcript.

Our analysis of IGR organisation in P. falciparum
would indicate; (i) that the observed 1:1.8:1 relationship
for IGR types A, B and C, respectively, is close to
the predicted 1:2:1 ratio expected of independently-
organised monocistronic transcriptional units and (ii)
that IGR size directly correlates with the nature of the
transcriptional activity that occur over them with a ratio
of 2.86:2.05:1. Szafranski et al., using partial genome se-
quence from S. cerevisiae, D. discoidium, A. thaliana
and P. falciparum, reported a provisional investigation
of features of AT-rich organisms that may assist in gen-
ome annotation [29]. In doing so, they predicted that
relatively compact genomes would share a 3:2:1 gene
spacing rule for IGR types A, B and C. Their study
couldn’t correlate this 3:2:1 rule to AT content due to
the limited diversity of organisms investigated. Here we
have extended this analysis of IGR to encompass the en-
tire genomes of 13 organisms, exhibiting a range of AT
content and genome density, albeit with a focus on other
apicomplexan parasites. In this larger study, we confirm
that IGR size does not correlate with AT content,
whereas we do find, perhaps not unexpectedly, that IGR
size does correlate with the overall genome density, with
a close linear relationship (R*> between 0.84-0.98) for
genome densities between 2.3-4.6 Kb/ORF. This correl-
ation, although weaker does extend out to the 9.1 Kb/
OREF gene density found in T. gondii, although here the
3:2:1 gene spacing rule apparently collapses to an ap-
proximate 1.5:1.5:1 ratio. A novel finding in this study,
however, was the differing spatial arrangement of IGR
size within different chromosomal compartments in
P. falciparum, where IGR lengths, irrespective of their
type, are longer in subtelomeric regions. Multigene fam-
ilies that encode proteins likely to mediate interactions
with the host environment are preferentially located in
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this compartment and are best exemplified by the var
family that encodes the P. falciparum erythrocyte mem-
brane protein (PfEMP1) [9,41,46]. PfEMP1 are exposed
on the surface of infected erythrocytes where they medi-
ate adhesion to host cell surface ligands and, through
clonal variation of the PfEMP1 expressed, help to estab-
lish a chronic infection in the face of a human immune
response mounted against infected erythrocytes. We
would speculate that this immune response may act a
balancing selection pressure to that operating in the
chromosomal internal compartment to reduce gene
density through reduction in IGR size [74]. Repetitive se-
quence elements within the longer IGR in subtelomeric
regions may assist in the organisation of chromosome
ends at the nuclear periphery, a necessary factor in the
epigenetic regulation of clonal expression, or may pro-
mote recombination to drive the generation of antigenic
diversity in these multigene families.

Conclusions

Taken together, our data provides a theoretical frame-
work for the spatial and temporal organisation of tran-
scripts over the IGR, data that are not available from
current microarray, EST and RNAseq analyses. With the
potential for the next generation of directional RNAseq
data to extend cDNA coverage into the IGR, we propose
here a series of testable hypotheses that result from our
theoretical framework. Specifically, we would predict; (i)
UTR are typically between 800 and 1800 bp in size, (ii)
70-80% of UTR are preferentially organised to the 5 of
the transcript, (iii) 40-90% of the IGR sequences are
transcribed, resulting in 70-80% of the entire genome
organised within a transcript, (iv) that whilst UTR do
not temporally overlap, a significant proportion will
spatially overlap and (v) that a small number (up to 200)
of bidirectional promoters exist. In addition, our findings
suggest that how we think about the transcriptional
landscape across the P. falciparum genome should be
revised to a view that is more dynamic in terms of direc-
tion, timing and extent of coverage of transcription over
the genomic template. These insights should impact on
how we design studies to define and characterise functional
elements that govern processes such as developmentally-
linked gene expression and monoallelic expression of
virulence-linked multigene families. Finally, since we show
the organisation of IGR in related apicomplexans appears
to follow the same spatial rules, aspects of this work
may translate more widely across this group of parasites
important to human and veterinary health.

Methods

Cohort of Northern blot data

Transcript sizes for 43 genes were available as unpub-
lished data from our laboratory. These were generated
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using the same general method as previously described
[75]. Northern blots of total cellular RNA were prepared
and hybridized at 50°C with 500-800 bp DNA fragments
obtained from PCR over single introns of genes of inter-
est, labelled with alpha-*’P-dATP using Megaprime
(GE Healthcare/Amersham Bioscience), and exposed for
8-48 hrs and the image processed using a Cyclone sto-
rage phosphor screen apparatus controlled using
OptiQuant software (Packard). The remaining 62 tran-
script sizes were determined from a review of the pub-
lished literature. Criteria for inclusion in this study were;
(i) the manuscript had to specifically state the size of the
transcript or (ii) show a figure of the transcript with size
markers to enable an estimate to be made and (iii) not
be a member of a multigene family (often cannot reliably
allocate transcript to specific ORF).

Capture of IGR size and orientation

General feature format (GFF) files were obtained for
each of the organisms (where available, strain/isolate/
clone indicated) investigated. These were obtained from;
Genbank (B. bovis Texas T2Bo, T. parva Mugugu, T.
annulata Ankara clone C9), CryptoDB 4.0 (C. hominis
Tu502, C. parvum lowa), DictyBase (D. discoideum),
ToxoDB 5.1 (N. caninum Liverpool, T. gondii ME49),
PlasmoDB 5.5 (P. falciparum 3D7, P. knowlesi H strain,
P. vivax Salvador I, P. yoelii 17XNL) and Saccharomyces
Genome DB (S. cerevisiae). Using the start/end coordi-
nates and strand orientation fields, the size of each IGR
and the orientation of the flanking ORF were deter-
mined with the latter used to categorise these IGR into
three types (A-C) as described in the results section of
the manuscript. Analysis of the distribution of the size of
these types of IGR was by a Kruskal-Wallis one-way
analysis of variance (ANOVA) with a Dunn’s multiple
comparison post-test (GraphPad Prism v5.01, USA).

Correlation of IGR size with microarray datasets
Jurgelenaite et al. reports an analysis of the IDC transcrip-
tion profiles of 3835 ORF, producing 5 clusters of genes
that exhibit either a shared temporal peak of transcription
(4 clusters) or share an apparent constitutive pattern of
transcription throughout the IDC [62]. The 2491 ORF
listed within the 4 temporal windows of transcription were
parsed against the lists of pairs of genes that flank each
IGR. Those IGR for which both genes share the same
temporal window of transcription were secured and
categorised into types A-C and the distribution of the size
of these IGR analysed as described above.

Modelling apportionment of the UTR

Using the GFF annotation file for P. falciparum 3D7 the
start/stop coordinates for each ORF and both upstream
and downstream flanking genes were determined. From
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these data the size of each flanking IGR was calculated. A
length of UTR (fixed increments of 200 bp for whole gen-
ome or actual size of UTR for cohort of 105 genes used
here) was sequentially apportioned in 1% increments from
100% at the 5" of the ORF to 100% at the 3'. Overlap of
the UTR with flanking ORF (Scenario A) or with a simi-
larly apportioned UTR allocated to both flanking ORF
(Scenario B) was recorded as a failed apportionment. A set
of Perl language scripts were developed to automate these
tasks and are available at http://sites.google.com/site/
emesbioinformatics/group-software.

Additional files

Additional file 1: Cohort of 105 ORF from P. falciparum for which
Northern blot data was collated.

Additional file 2: Reference list for Additional file 2.

Additional file 3: Breakpoints used to define chromosomal
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